بررسی تجربی نرخ‌پاشی ناودانی ساده و تقویت شده جدار نازک تحت بار خمشی

محمود سلیمی و حسن خامدزاده
دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان
(دریافت مقاله: 2365/8/13 - دریافت نسخه نهایی: 1/4/14)

چکیده - در این مقاله رفتار فروپاشی ناودانی ساده و تقویت شده جدار نازک تحت خمش سه نقطه‌ای مورد بررسی قرار گرفته است. چند نمونه آزمایشی ثابت گردید که در محدوده هسته‌ای تغییراتی در پویایی جدار وجود می‌ nem. این تغییرات موجب افزایش سختی جدار می‌شود که باعث افزایش پایداری جدار نازک و بهبود خبرهایی در زمینه خیلی پیچیده بوده و به تنهایی جدار تازک با مقاطع تقویت شده بسیار کم توجه شده است. این نتایج با مقایسه با نتایج از تحقیقات پیش‌تر نشان می‌دهد که بیشترین تغییرات در شکل جدار نازک با مقاطع دلخواه و همچنین در کاربردهای عملی این گونه تیپ با عنوان تغییراتی اثره‌اند.

Experimental Investigations into the Collapse of Simple and Reinforced Thin-Walled Channel Beams under Bending Loads

M. Salimi and H. Khademizadeh
Department of Mechanical Engineering, Isfahan University of Technology

ABSTRACT- In this paper, collapse behavior of simple and reinforced thin-walled channel-section beams, subjected to three-point bending, is investigated. Many simple channel-section beams of different geometry and some reinforced ones were tested, and their strengths after collapse were obtained thoroughly. Since the available theories in this area are complicated and little attention has been paid to the case of reinforced thin-walled beams, simple models were used and further developed to give an account of the collapse load and the deformation energy of such beams. The method proposed in this paper is valuable both to the further studies of the symmetric thin-walled beams with arbitrary cross-section and to its practical application of such beams as energy absorbers.

استادان

153

استقلال، سال 17، شماره 1، شهریور 1377
روزنامه مکانیکی اعضای ساختاری تحت تغییر شکل زیاد، یکی از مباحث چالش توجه به پیش‌بینی معادلات جامعه‌سازی و تغییر. رفتار مکانیکی نسبت به این اصطلاحات یکانیت معنایی می‌باشد، این حین اعمال باز، در جهت‌های مختلف تغییر شکل می‌دهد. افزون بر آن، به خاطر کره‌های ایجای مدار، امکان الگوی گردش ستونی به میزان المتغیری در آن جهت وجود دارد. صرف نظر از اینکه نوع معادله باید با منتهی به خامه به سبک یکدیگر مطالعه در خصوص رفتار مکانیکی ضعف مورد نظر، به وجود پس از اعمال باز، به این نهایی اهمیت می‌یابد.

مقدمه

رفتار مکانیکی اعضای ساختاری تحت تغییر شکل زیاد، یکی از مباحث چالش توجه به پیش‌بینی معادلات جامعه‌سازی و تغییر. رفتار مکانیکی نسبت به این اصطلاحات یکانیت معنایی می‌باشد، این حین اعمال باز، در جهت‌های مختلف تغییر شکل می‌دهد. افزون بر آن، به خاطر کره‌های ایجای مدار، امکان الگوی گردش ستونی به میزان المتغیری در آن جهت وجود دارد. صرف نظر از اینکه نوع معادله باید با منتهی به خامه به سبک یکدیگر مطالعه در خصوص رفتار مکانیکی ضعف مورد نظر، به وجود پس از اعمال باز، به این نهایی اهمیت می‌یابد.

تحلیل شکست موسمان اعضای جدار نازک که معمولاً با تغییر شکل‌های زیاد همراه است، با آنکه ناممکن نیست، معمولاً بر پیچیده در دسترس است. در روش‌های محاسباتی مانند روش اجزای محدود تغییرات مفاهیمی نیز در دسترس می‌باشد. بعضی از پارامترها، مانند اصطلاحات کلیدی، دانه و جریان تحریجی می‌تواند در موردی به خاطر معادله می‌انجامد. این نوع لحاظ انجام آزمایشات تحقیقی با مدل سازهایی که که آزمایشات باید با شکست با آن روبرو جذب شده را به هنگام الگویی تحکیم دهد، اهمیت می‌یابد.

در منحنی و رفتار مکانیکی الگب سازه‌ها، پس از آنکه نیرو از مقدار بسیاری به تمام فرآیند نیرو گذشته، مقدار آن کاهش می‌یابد. فرآیند کاهش نیرو در تغییر شکل‌های به‌ویژه کره‌کش باعث ضعف استاتیکی است و اثرات جذب پیش‌بینی را به خود اختصاص می‌دهد. علت کاهش نیرو در اصل تغییر شکل هندسی سازه، به هنگام فرآیند است، هیچ چنین ضایع دیگر در
تعیین یافته است.

تفریحات اساسی در فروپاشی سازه‌ها تحت بار شیب استاتیکی و
دینامیکی بر مبنای تحقیقات آبراهیمی[13] صرف نظر از تغییرات
دینامیکی در رفتار مکانیکی سازه، در تاخیرگذاری در مرز اجزای
مختلف است که در حالت استاتیکی با مختصات آمریکا به‌هم
مربط می‌شوند ولی در برادرگاندی دینامیکی تغییر شکل‌ها بسیار
موضعی‌تر بوده، مزیر سطح ناصلافت ارتباط می‌یابد به
بیان دیگر، سرعت برادرگاندی و شکل هندسی سازه، تنها توان و
ارتعاش‌گذاری جابجایی موجب یا بازگشت به این‌گونه می‌کند. یک در
نهايت تغییر شکل‌ها موضعی را به صورت یکنواخت تری توزیع
خواهندی، از مباحثی که در بحث جذب انرژی در عمل می‌یابد
شود، و باعث موضوعی‌های دما و آنفلوانس گردش است که در این
مقطع مورد بررسی و در نظر گرفته تامپا پارامترهای
مؤثر، بیشتر مشکل است زیرا برخی شدید تغییر شکل، موضعی
شد کردها و تغییرات در توزیع بارکه از آسیب‌های غیر قابل پیش
یابی به همگام فرود ایجاد می‌شود و نیز در حالت شکست
تغییرات در ناموفق‌گزایی تنها و کرنش در ترکیب، مدلهای
مختلف فروبایش را پیدا کرده است.

فروبایش در نظر گرفته تامپا پارامترهای می‌باشد تا در نظر گرفتن تامپا پارامترهای
مؤثر بیشتر است زیرا برخی شدید تغییر شکل، موضعی
شد کردها و تغییرات در توزیع بارکه از آسیب‌های غیر قابل پیش
یابی به همگام فرود ایجاد می‌شود و نیز در حالت شکست
تغییرات در ناموفق‌گزایی تنها و کرنش در ترکیب، مدلهای
مختلف فروبایش را پیدا کرده است.

در این زمینه مطالب منشور شده‌ای در دیگر کتب جذب انرژی
برای نمونه سازه و تقویت شده تحت بار چینی در برادرگاندی
استاتیکی یا دینامیکی، که عموماً گزارش صنعتی قطعاتی
مصنوعی‌های تیپ یا گاز اغلب خودروها را در بی‌گیره، قرار
تولید شده شده نیست. در این مقاله بررسی تغییرات
عمومی جذب کننده‌های انرژی در حالت استاتیکی موضعی
فروبایش نمونه‌سازه و تقویت شده به صورت تجربی
مطالعه شده است با توجه اینجای مباحث ایجاد
تحقیقات در حالت دینامیکی و با توسعه نظری‌ها های موجود
برای چنین مقاطعی در حالت سازه با مکانیک آید.

2 تعاریف و معیارهای جذب انرژی در فروبایش سازه‌ها

راه‌های مکانیکی، مقاومت سازه‌ها در هم شکستن
به مقدار زیادی نشان می‌دهد. مثال آرگ‌ها، کرنش شکسته پایینی
دشته باشند با تغییر شکل‌های نسیم کوچکی که در اجزاء سازه‌روی

استنل، سال ۱۷، شماره ۱، شهریور ۱۳۷۷

۱۵۵
شکل ۱- تصویر ساده تغییر شکل

\[
E_a = \int_{z_1}^{z_r} P \, dz
\]

۱- مقدار این اثر از سطح زیر محوری نیرو - جایی به توسط دستگاه آزمایش به دست می‌آید. بنابراین، اثر نیروی ویژه \(F_y \) برای یک ناودانی به طور ۱٪ چنین تعیین می‌شود:

\[
E_b = \frac{F_y}{(a_1 + 2a_0) \cdot \rho \cdot h}
\]

۲- چگالی جنس ناودانی است و \(a_0 \) به شکل داده شده است.

۳- پایه‌های باز فروپاشی ۲- این مقدار رابطه بین پر متوسط و پر بیشتره (نرخ باعث طراحی) را از رابطهی پر تغییر شکل به هنگام فروپاشی به دست می‌دهد. از انجا که به فروپاشی در فاز اولیه بیشترین مقدار خود را دارد، پایه‌های باز فروپاشی سازه‌ها عموماً کمتر از واحد است. اگر نرخ بیشتره فروپاشی باشد، پر متوسط \(P_{\text{coll}} \) به هنگام جایی‌باینی به میزان \(z_r \) از معادله زیر به دست می‌آید:

\[
P_{\text{av}} = E_a \cdot \frac{x_r - x}{x_r}
\]

و پایه‌های باز فروپاشی \(\beta \) عبارت است از:

\[
\beta = \frac{P_{\text{coll}}}{P_{\text{av}}}
\]

تنش متوسط فروپاشی ۳- از این نظریه، تنها یکه پر متوسط به هنگام فروپاشی در سازه با ابعاد مختصات قبل از فروپاشی ایجاد می‌کند. تنش متوسط فروپاشی می‌نماید. بدیهی است که این مقدار، به تنش تسخیر ماده محدود خوهد بود. در بعضی موارد، تنش
از معادلهای (11) و (10) مقایسه بر فروپاشی ناودانیها با حجم مواد مصرفی در طول واحد و ضریب شکل مختلف می‌شود.

برای مقطع نیروی زیر با صفحات عرضی به ابعاد (1) - (a پ)

\[x = \frac{a_1 + 2a_1}{3} \]

(5)

اگر ضخامت (1) نسبت به ابعاد دیگر کوچک باشد مقدار میانگین موسمان، وارد بر سطح مقطع سطح پس از ساده‌سازی عبارت است از:

\[M_{p1} = \sigma_{yp} \left[x_\gamma + a_1 (a_1 - x) + (a_1 - x)^2 \right] \]

(6)

با یا جایگذاری \(x \) به معادله بالا خواهیم داشت:

\[M_{p1} = \frac{1}{\lambda} \sigma_{yp} (2a_1 + 2a_1 a_1 - a_1^2) \]

(7)

به منظور استخراج نتایج آزمایش برای ناودانی با ابعاد مختلف، ضریب شکل ناودانی، \(\lambda \) را به صورت زیر تعیین می‌کنیم:

\[\lambda = \frac{a_1}{a_1 + a_1} \]

(8)

اگر عرض ورق را قبل از تبدیل آن به ناودانی بستانیم، خواهیم داشت:

\[b = a_1 + 2a_1 \]

(9)

در این حال می‌توان موسمان کل مقطع را از معادله (7) به‌صورت زیر نوشت:

\[M_{p1} = \frac{1}{\lambda} \sigma_{yp} \left[\frac{4}{3} \lambda - 2 - 2 \lambda^2 - 1 \right] b^3 \]

(10)

برای ناودان‌هایی که \(a_1 > 2a_1 \) باشد، معادله مشابه زیر به‌دست می‌آید:

\[M_{p1} = \frac{1}{\lambda} \sigma_{yp} \lambda^2 b^3 \]

(11)
کار نیروی سیب به دست آورده، بنا براین خواهیم داشت:

\[P = \frac{V_{p}}{M_{p}} \left(1 + \frac{\pi}{2} \right) \]

که مانند خرمشی مساحت پرای طول واحد و ربق است و مقدار آن **1/2** است.

برای محاسبه نیروی معادل سیب، که به صورت گسترده در دسته‌ی S وارد می‌شود، با یک نیروی متغیر مطابق آنچه یافته باید شد، مدل فروپاشی یک تیر در سر در گیربکس پرای سیب تحت بار متمرکز در وسط و همین‌طور تحت بارگذاری به طول S در سه‌ضلعی میانی آن سروده استفاده خواهد کرد. در این صورت نیروی فروپاشی یا ضرب‌های آن، افزایش می‌یابد تا شرایط مشابهی در فروپاشی دانش‌ال..

جان و بال ایجاد شد. به عبارتی:

\[P_{coll} = \left(\gamma + \frac{\pi}{2} \right) \frac{V_{p}}{M_{p}} \frac{\gamma_{a}}{\gamma_{a}} - \frac{S}{S} \]

برای ایجاد تنش بین این مدل‌ها و مدل‌های (10) و (11) نیروی فروپاشی موثری ناودانی به‌صورت زیر درمی‌آید:

\[P_{coll} = \left(\gamma + \frac{\pi}{2} \right) \frac{\gamma_{a}}{\gamma_{a}} - \frac{S}{S} \]

هنگام استفاده از صفحات تقویتی موازی سطح مقطع عمودی ناودانی، نوع فروپاشی جان در اثر فشار سینه متفاوت است که اگر آن را با صفحه مستطیلی که از پیرامون درگیر است و تحت فشار یک‌کات خسته سیب قرار دارد مدل کمی‌تری فروپاشی در لحاظ خالیت عبارت است از:

\[P_{coll} = \left(\gamma + \pi \right) \frac{\gamma_{a}}{\gamma_{a}} - \frac{S}{S} \]

ج - نظریات

نسبتی میانی و تکیه‌گاه‌ها را صلب و تیر را تحت خمش سه نقطه‌ای مختار می‌گیریم. از اصل کار مجازی خواهیم داشت:

\[F_{p} \hat{Z} = \hat{W}_{b} + \hat{W}_{m} + \hat{W}_{f} \]

تعداد پنجه نامه‌های پاتلی کلی ۶۰۰ میلی‌متر و ابعاد استمال، سال ۱۷، شماره ۱۱، فروردین ۱۳۷۷
در هم‌هستی آزمایش‌هایی اولیه در شرایط آزمایش ۱۰ نیوتن انتخاب شد و دستگاه نشانگر مجدد شد. برای تمامی آزمایش‌ها، سرعت انجام آزمایش (رختر مستقیم به شکل پیوست ۵ میلیمتر در دقیقه انتخاب شد. نتایج آزمایش‌ها نیز با نمودارهای یکسان و دهانه متغیرات انجام شد.

نخست اثر طول نادایان و دهانه (فاصله تکه‌گاه) بررسی شد. پس از آن برای پیشگیری از داخل کردن پارامترها در یکدیگر، طول مناسب نمودار ۶۰۰ mm انتخاب شد. بین‌شیب‌های شیوه تحقیقات بر روی اثر ضریب شکل در مواردی مورد نظر شکل‌ها. پارامتر ضخامت در تمامی آزمایش‌های نگه داشته شد و اتاق‌هایی از مورد مطالعه قرار گرفت. برای اینکه نوع تغییر شکل ناحیه فروشی با شکل هندسی دو تکه‌گاه انتهایی داخلی ناشی از فاصله مناسب بر پیمانات نتایج وانوس [110] برای لوله‌های جدار نازک (حدود ۵ برابر مقطع نادایان) در نظر گرفته شد. آزمایش بکار راهانه‌ای طیت‌های نشان داد که اثر انتهایی‌های خم‌گامی که طول نادایان بیش از ۸ برای بعد مقطع نادایان باشد در مکانیزم تغییر و توابع بر فروشی‌ها مؤثر نیست.

سپس تکه‌گاه‌ها در فاصله ۳۹ میلیمتری (فاصله در نظر گرفته) شده در طراحی به‌منظور ایجاد کمترین درگیری بین نمودارهای تکه‌گاه) قرار گرفت و بقیه آزمایش‌ها انجام شدند. بعضی از نمودارهای با وزن یکسان ولی ضریب شکل (نسبت ᵃ₁ به ᵃ۰) متغیرات آزمایش شد. به‌منظور ایجاد شفافیت بین نمودارها در تعیین اثری جذب شده، دستگاه به نحوی تنظیم شد که جعبه‌بایی کلی نسبت در تمامی آزمایش‌ها ۶۰ میلیمتر باشد. نتایج از دوگانه مورد بررسی قرار گرفت. میزان نهایی و انرژی جذب شده، نتایج تغییر شکل‌های یکسان و در صورت ۷۰۰ نمودار محاسبه شد.

۱۰- روش انجام آزمایش و استخراج نتایج

به‌منظور تعیین رابطه تنش و کرنش، جد آزمایش کشش ساده بر روی نمونه استاندارد انجام شد. با توجه به مختصات حاصل از پیلاتر نتیجه می‌گیریم که ماده در تغییر شکل، کار صفحه‌پیاده‌پذیری از خود نشان می‌دهد. به این ترتیب در صورتی که لایه کشف شده، نتایج با پیلاتر گرفته شده که سطح میانگینی بی‌خود می‌باشد.

میانگین آپنده: که از سطح زیربرقی می‌باشد، میانگینی با کرنش مناسب یا آزمایش اصلی پدید می‌آید و ماده را به‌طور صلب می‌کند. موسوم شده سازی مکنیم.
شکل ۵ - تصویری در هنگام تغییر شکل نمونه

تجربی و نظرى در شکل‌های (۶) تا (۱۴) نشان داده است.

بحث و نتیجه‌گیری

مفهوم‌بندی نهایی از آزمایش‌ها، از متقاضی محاسبه‌شده از نظریه

خمش موسائی ساده برای کمتر است (شکل ۶). در ضریب شکل‌های پایین که نظریه خمش موسائی و نظریه تغییر به یکدیگر

تبدیل‌اند، خمش موسائی کل سطح مقطع به وضوح و نتایج حاصل

هم‌زمان با تغییر موضعی روی می‌دهد. اما در ضریب شکل‌های

پیش از (۶) که نظریه تغییر موضعی خیلی کمتر از تغییر کلی

سازه است، تغییر موضعی اتفاقی می‌افتد و سطح مقطع را پس

از مداوم می‌دهد و مقادیر کل سازه می‌شود. در همین حال،

تغییر شکل و کشش سخت‌سازی ایجاد شده به صورت موضعی،

با تغییر فازی به افزایش بار آزمایش‌بندی برای تغییر بستگی می‌یابد. مقدار متوسط تنش فروپاشی در ضریب شکل‌های بالا

کاهش یافته است (شکل ۸). مقدار تنش گریز جابجایی برای دو

راه‌بندی در چسب‌های میانی تحت گرد می‌گردد و باعث

جابجایی لوله‌های موسمان از موقعیت اولیه خواهد شد. ضمن

اینکه لوله‌های جدید به وجود می‌آید و در یکدیگر قفل می‌شوند

و برای جابجایی آنها نیروی بیشتری لازم خواهد بود. این موقعیع

با تغییر فازی به تغییر موضعی می‌شود و نیروی می‌روند که به تغییر کلی سازه که به دلیل کاهش سطح مقطع در

حال کاهش است برای می‌شود. گسترش است که تغییر شکل‌های کلی

استعلام، سال ۱۷، شماره ۱، شماره ۱۳۷۸

۱۶۰
مقطع با ضریب شکل‌های متفاوت در شکل (9) نشان داده شده است. جفتی از منحنی‌ها برای آید ضریب شکل‌های بالاتری، نیروی فروپاشی اولیه بالاتری دارند، ولی در تغییر شکل‌های پیشترا آهنگ بالاتری کاهش می‌یابند. افزایش نسبی پیشرفت با تغییر برای ضریب شکل‌های بالاتر باعث می‌شود که با جای جابه‌جایی یکسان شود، افزایش

دریافت شده افراشی پابندی، بازه‌ای در فروپاشی در شکل (10) نشان می‌دهد که با افزایش ضریب شکل، بازه‌ی بار فروپاشی (β) کاهش می‌یابد. دلیل این امر تقدم با فروپاشی موضوعی در مقابل تغییر کلی سازه و یا شدت کاهش پیشترا با تغییر شکل‌های پیشرفت است.
در شکل (11) بار فروپاشی ناودانی تقویت شده با ضریب تقویت ۱/۰۵ هنوزی ناودانی ۱/۴ است.

این است که از تغییرات نظری و تجربی برای فروپاشی ناودانی تقویت شده با ضریب تقویت شکل ۱۱ و شکل ۱۰ با ضریب تقویت ۱/۵۰۵/۵۵ و ضخامت $a_1 + 2a_2 = 165cm$.

در شکل (12) مقایسه تغییرات نیروی برای یک ناودانی ساده و تقویت شده با ضریب تقویت ۱/۰۵ هنوزی ناودانی ۱/۴ است.

اگر از نظره ناودانی مذکور دارای موانع موسسان شده است، اما با تغییر موضعی آن با انزیمی ضریب تقویت افزایش

است. از نظره ناودانی مذکور دارای موانع موسسان شده است، اما با تغییر موضعی آن با انزیمی ضریب تقویت افزایش

است. از نظره ناودانی مذکور دارای موانع موسسان شده است، اما با تغییر موضعی آن با انزیمی ضریب تقویت افزایش

است. از نظره ناودانی مذکور دارای موانع موسسان شده است، اما با تغییر موضعی آن با انزیمی ضریب تقویت افزایش

است. از نظره ناودانی مذکور دارای موانع موسسان شده است، اما با تغییر موضعی آن با انزیمی ضریب تقویت افزایش

شکل ۱۰- باره نری ناودانی در ضریب تقویت یافته مختلف

شکل ۱۱- تغییرات نظری و تجربی برای فروپاشی ناودانی تقویت شده با ضریب تقویت ۱/۵۰/۵۵ و ضخامت $a_1 + 2a_2 = 165cm$.
شکل ۱۴- تصویری از تغییر شکل‌های میانی یک ناودانی ساده پس از ترمیمی

شکل کلی نیست. با آن‌که ترمیم یک ناودانی می‌تواند اتاقه و حرکت اولویت‌های مرسوم را در نظر نگیرد هر چند خود بر نظریه می‌باشد.

براساس نتایج به دست آمده، اگر در مقطع تقویت شده، بار ترمیمی در حدود بار به دست آمده، اگر مدل خشونت مرسوم سازه باشد، به دست آمده است - در مقاطع ساده تری‌های جدید نازک تخمین‌پذیری را ارائه می‌کند. در حالی که در مقاطع تقویت شده

قدردانی

این مقاله حاصل طرح تحقیقاتی است که از محل اعتبارات

شیوه پژوهشی دانشگاه صنعتی اصفهان تأمین شده است.

نویسنده‌اند از حمایت دانشگاه صنعتی اصفهان سیاسگرند.

۱ - specific energy

۲ - collapse load efficiency

۳ - mean crushing stress

واژه‌نامه

استنلی، سال ۱۷، شماره ۱، شهریور ۱۳۷۷

۱۶۳

