Windowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation

S. Sadri, S. Gazor and A. M. Doosthoseini

Department of Electrical and Computer Engineering, Isfahan University of Technology

ABSTRACT - During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array
تفکیک محتوای از یکدیگر ناممکن می‌شود. در روش کایوان
ضرایب ترکیب کننده خطای را چنان انتخاب کنند که توان
خروجی مگر به ازای ورود سیگنال از یک چهت خاص،
حفاظت شود. در روش پیشگویی خطای خروجی یکی از
گیزه‌ها برحسب ترکیبی از ورودی M-1 گیزه‌دان دیگر
پیشگویی می‌شود و بردار ضرایب ترکیب کننده خطای چنین
انتقال می‌شود که مجدداً قدر مطلق خطای تخیین در
پیشگویی مزبور حداکثر باشد. اینکه می‌شود که توانایی
روش پیشگویی خطای ذکر در تفکیک محتوای نزدیک به هم، از
روش کایوان دقیقتر است. مجموعه روشهایی با تحریک نام
"حداقل گرد مشورتی نا" شناخته می‌شوند. روشهایی این
هم بهصورت ثابت و هم به شکل وقیف و یا پردازش سیگنال
به صورت استوایی (بلوکی) ارائه شده‌اند [6].

1- مقدمه
کسترش الگوریتم‌های مختلف برای تخیم پارامترهای
مریبط به تعیین محل میانه سیگنال‌ها و تخیم و آشکارسازی
سیگنال‌های مریبط، در سال‌های اخیر جزو جالب‌ترین تحقیقات
در حوزه پردازش سیگنال‌ها بوده است. از این روشهای تخیم
در حوزه‌های کاربردی مانند تجزیه و تحلیل سری‌های زمانی,
تخیم طیف، رادار سونار و سیستم‌های امنیتی و غیره
استفاده شده است.
روشهای اولیه به تخیم محل میانه سیگنال‌ها به ترتیب
باید باریک و با افزایش ابعاد مسطح در فضا می‌پردازد. از
یک آراه‌ی از گیزه‌دان، شامل M گیزه‌دان، که در مقابل صحت‌هایی
انعک سیگنال‌های می‌گیرند استفاده می‌شود. سیگنال
دریافتی گیزه‌دان در یک ترکیب کننده خطای یکدیگر جمع
می‌شود و سیگنال خروجی در اینجا تست می‌شود. توان سیگنال
خروجی (0) مابین گردا گردا ورود سیگنال‌ها به آرایه است و
وجود قله‌های به مثابه تغییرات آن ناشانگر وجود ممکن
سیگنال‌های زواپیسی سیستم است. روش تخیم مزدک در
روشی دیگر همگامه می‌شود و کاربردی است. توان سیگنال‌های
زاویه برای تخیم زندگی دو کانال فرکانسی 1 محدودیت به
کانال [2] و روش پیشگویی خطای 2 محدودیت به
وارای [3] همگی بی‌رسی وابطه ناکام می‌شوند. در ساده‌ترین روش شکل داده به نماد
آرایه به داشتن تریکیب کننده خطای چنین انتخاب می‌شود که
تاخیر می‌رونه پردازش سیگنال ورودی از یک چهت مشخص
جبران شود. برای تخیم جبهه‌ای ورود نیز توان خروجی
محاسبه می‌شود و هر کچا قله وجود داشته باشد به داشت
وجود ممکن سیگنال زاویه مشتاق با یک تن قله می‌شود. اما به
مجرد آنکه ممکن به هم نزدیک شوند قله در هم قرار می‌رفته و

40

استقلال، سال 17، شماره 2، اسفند 1377
استخراج کنیم. برای این کار فرض می کنیم که از مجموعه در آرایه m-گیرنده در آرایه معمول در مورد بهتری باند باریک تری نیاز به استفاده از تکنیک FIRM کننده خشک ساده، در خروجی هر گیرنده از فیلترهای استفاده شده است. نشان داده شده است که اگر بهتری باند نسبی سیگالها از 5% تا 15% بزرگ شود طول فیلترهای این تیز بسیار بزرگ می شود [10-16]. به همین دلیل تله‌های سیگال هر (1)

\[ x_{m}(t) = \sum_{i=1}^{p} s_{i}(t - \tau_{m}(\theta_{i})) + e_{m}(t); m = 1, \ldots, M \]

در معادله (1) s_{i}(t) تأخیر دوباره سیگنال منبع i ام می‌باشد، \( \tau_{m}(\theta_{i}) \) تأخیر در دوباره سیگنال منبع i ام در سیگال‌ها به یک مساله مخفی نسبت به تأخیر توصیف می‌شود. \( e_{m}(t) \) می‌تواند تأخیر در دوباره سیگال‌ها باشد و \m_{m}(t_{i})\) می‌تواند مشخص می‌گردد. \( d_{mi}(t_{i})\) به شکل زیر قابل پیمان است:

\[ x_{m}(n) = \sum_{i=1}^{p} s_{i}(n - d_{mi}) + e_{m}(n) \quad (2) \]

در معادله (2) \( x_{m}(n)\) در محل گیرنده i ام در محل گیرنده است. تا بایستی از محل معلوم گیرندنها و محل منابع سیگنال گیرنده است. تا بایستی از محل معلوم \( \phi_{m}\) می‌تواند در معادله (2) ترکیب مانند سیگنال‌ها و تأخیر عکس‌های مختلف سیگنال کار می‌کند. در بخش (3) استفاده از تبدیل فوریه‌گسنج‌های طرح به دست آمده طرح این کنیم آن گاه در بخش (3) چکیده‌ای از روش تحلیل و تکیه‌گاه تبدیل فوریه‌ای به دست آمده به روش کننده و محل منابع در محل خواهیم کرد. در بخش (1) به شیب‌هایی سازی و بحث روز تا تبدیل کرده و بالا در بخش (5) به محاسبات می‌پردازیم. غله در نتیجه و پنجره طول تبدیل فوریه لازم می‌پردازیم و یک روش و فیلتر تا تأخیر محل منابع سیگنال و تأخیر عکس‌های مختلف سیگنال ارائه می‌گردد. در بخش (2) مقدار خواهیم کرد.

ب- تعداد منابع P مشخص است.

- سیگال‌ها در ایستگاه باند و سیگال‌ها در محل 

\[ x_{m}(n) = \sum_{i=1}^{p} s_{i}(n - d_{mi}) + e_{m}(n) \quad (2) \]

در معادله (2) \[ x_{m}(n) = \sum_{i=1}^{p} s_{i}(n - d_{mi}) + e_{m}(n) \quad (2) \]

در محل خواهیم پرداخت.

- بیان مسئله

پیام مسئله در حالی که به شکل زیر است: فرض کنید به معادله (2) معلوم است. به قرار داده است و در حال انتخاب اولویت به قرار داده است. به شدت و برای آراپریک از مجموعه در آرایه

\[ x_{m}(t) = \sum_{i=1}^{p} s_{i}(t - \tau_{m}(\theta_{i})) + e_{m}(t); m = 1, \ldots, M \]

در معادله (1) s_{i}(t) تأخیر دوباره سیگنال منبع i ام می‌باشد، \( \tau_{m}(\theta_{i}) \) تأخیر در دوباره سیگال‌ها به یک مساله مخفی نسبت به تأخیر توصیف می‌شود. \( e_{m}(t) \) می‌تواند تأخیر در دوباره سیگال‌ها باشد و \m_{m}(t_{i})\) می‌تواند مشخص می‌گردد. \( d_{mi}(t_{i})\) به شکل زیر قابل پیمان است:

\[ x_{m}(n) = \sum_{i=1}^{p} s_{i}(n - d_{mi}) + e_{m}(n) \quad (2) \]

در معادله (2) \( x_{m}(n)\) در محل گیرنده i ام در محل گیرنده است. تا بایستی از محل معلوم گیرندنها و محل منابع سیگنال گیرنده است. تا بایستی از محل معلوم \( \phi_{m}\) می‌تواند در معادله (2) ترکیب مانند سیگنال‌ها و تأخیر عکس‌های مختلف سیگنال کار می‌کند. در بخش (3) استفاده از تبدیل فوریه‌گسنج‌های طرح به دست آمده طرح این کنیم آن گاه در بخش (3) چکیده‌ای از روش تحلیل و تکیه‌گاه تبدیل فوریه‌ای به دست آمده به روش کننده و محل منابع در محل خواهیم کرد. در بخش (1) به شیب‌هایی سازی و بحث روز تا تبدیل کرده و بالا در بخش (5) به محاسبات می‌پردازیم. غله در نتیجه و پنجره طول تبدیل فوریه لازم می‌پردازیم و یک روش و فیلتر تا تأخیر محل منابع سیگنال و تأخیر عکس‌های مختلف سیگنال ارائه می‌گردد. در بخش (2) مقدار خواهیم کرد.

ب- تعداد منابع P مشخص است.

- سیگال‌ها در ایستگاه باند و سیگال‌ها در محل 

\[ x_{m}(n) = \sum_{i=1}^{p} s_{i}(n - d_{mi}) + e_{m}(n) \quad (2) \]

در معادله (2) \[ x_{m}(n) = \sum_{i=1}^{p} s_{i}(n - d_{mi}) + e_{m}(n) \quad (2) \]

در محل خواهیم پرداخت.
در بحث با های محاسبه دیگر روى سیگنال‌ها عمل نموده و معرفی بوده و می‌توانند فراوانی معنی‌دار و متقابل باشند. تجزیه و تحلیل سیگنال‌ها ناشی از آن‌ها برای سیگنال‌ها یا پهنای باند و سیگنال‌ها در دهه‌های اخیر توجه منطقی‌تر بند به STFT خود جلب کرده است [1-16]. در اینجا ما پرداختنی‌مطالعه این مسئله خواهیم پرداخت. می‌دانیم که در تجزیه و تحلیل بر مبنای تبدیل فوریه لازم است سیگنال (n) برای تمام زمان در STFT مقدار نهایی این عدد داشته باشد. علاوه بر این اگر امارسیان سیگنال‌ها در زمان تغییر کند، بررسی محاسبات داشته و یا حركت کند، روش تجزیه و تحلیل فوریه عملی نیست. حال آنکه با استفاده از STFT می‌توانیم به‌طور مناسب و خواهند شد.

3. چکیده‌ای از روش STFT

در این بخش سیگنال (n) و پنجره X(n) با طول محدود N را در نظر می‌گیریم تا تعیین محاسبه برای سیگنال (n) از معادله (3) به دست آید. این معادله در حالت کلی بر مبنای تبدیل گاوس [19] نیز معرف است

\[ X(n,\omega) = \sum_{r=-\infty}^{\infty} x(r) e^{-j2\pi r n/N} \]

که در آن \(w_{\text{B}}\) پنجره است. شکل گسترش آن که از نمونه‌برداری از STFT از معادله (3) به دست آمده است. نتایج حاصل به دست آمده و آن را با

\[ X(n,k) = \sum_{r=-\infty}^{\infty} x(r) e^{-j2\pi r n/N} \]

که در آن \(y_{\text{B}}\) پنجره است. شکل گسترش آن که از نمونه‌برداری از STFT از معادله (4) به دست آمده است. نتایج حاصل به دست آمده و آن را با

\[ X(n,k) = \sum_{r=-\infty}^{\infty} x(r) e^{-j2\pi r n/N} \]

که در آن \(y_{\text{B}}\) پنجره است. شکل گسترش آن که از نمونه‌برداری از STFT از معادله (4) به دست آمده است. نتایج حاصل به دست آمده و آن را با

\[ X(n,k) = \sum_{r=-\infty}^{\infty} x(r) e^{-j2\pi r n/N} \]

که در آن \(y_{\text{B}}\) پنجره است. شکل گسترش آن که از نمونه‌برداری از STFT از معادله (4) به دست آمده است. نتایج حاصل به دست آمده و آن را با

\[ X(n,k) = \sum_{r=-\infty}^{\infty} x(r) e^{-j2\pi r n/N} \]

که در آن \(y_{\text{B}}\) پنجره است. شکل گسترش آن که از نمونه‌برداری از STFT از معادله (4) به دست آمده است. نتایج حاصل به دست آمده و آن را با

\[ X(n,k) = \sum_{r=-\infty}^{\infty} x(r) e^{-j2\pi r n/N} \]
برای ابتدای معادله (11)، کامی است از طرف معادله (9-ب) بر حسب $n$ تبدیل فوریه اخکار که مقدار آن را در فرکانس صفر به دست آوریم.

با انتخاب $\Phi$ عضوان پایدار فرکانسی به راحتی ابتدای معادله که:

$$F(X(\Phi, \omega)) |_{\Phi = \omega} = W(\omega)X(\omega)$$

در معادله (12) طرف راست برابر تبدیل فوریه $F$ در فرکانس صفر $X(\omega)$ و در زمان است و داریم:

$$F(X(\Phi, \omega)) |_{\Phi = \omega} = \sum_{n=0}^{\infty} x(n,\omega)$$

از دو معادله (12) و (13)، معادله (14) به دست می‌آید:

$$X(\omega) = \frac{1}{W(\omega)} \sum_{n=-\infty}^{\infty} x(n,\omega)$$

با اخذ عکس تبدیل فوریه از معادله (14) و با وجود شرط (9-ب)، معادله (14-الف) استنتاج می‌شود.

4- بیان ریاضی مشهول اگر از معادله (2)، را اخذ کنید، داریم:

$$x(n,k) = \sum_{l=1}^{p} S_{l} (n-d_{ml}, k)e^{j\pi r_{ml}k}N + E_{m}(n,k)$$

اگر فرض کنیم را در و بردار تأخیر‌های منابع سیگنال در محل گردد. در این صورت معادله (15) را به شکل بردار نیز می‌توان توانست:

$$X_{m,n,k} = a_{m}T(k)S_{m,n,k} + E_{m}(n,k)$$

که در آن تعريف می‌کنیم:

$$a_{m}(k) = \begin{bmatrix} W_{m11} & W_{m12} & \ldots & W_{m1p} \\
W_{m21} & W_{m22} & \ldots & W_{m2p} \\
\vdots & \vdots & \ddots & \vdots \\
W_{mp1} & W_{mp2} & \ldots & W_{mpp} \end{bmatrix}T$$

و با کمک معادله (8) به صورت زیر شبیه‌سازی می‌کنیم:

$$y(n) = \frac{1}{Nw(\omega)} \sum_{k=0}^{N-1} x(n,k) e^{j\pi \omega k}$$

ثابت می‌شود که اگر شرط زیر:

$$w(n)N \sum_{r=-\infty}^{\infty} d(n-rN) = \frac{Nw(\omega)}{Nw(\omega)}$$

برقرار باشد $y(n) = x(n)$. در حقیقت برقراری شرط $w(n)N \sum_{r=-\infty}^{\infty} d(n-rN) = \frac{Nw(\omega)}{Nw(\omega)}$ با توجه به این شرط و با اخذ تبدیل فوریه از طرفین معادله (9-ب)، معادله (9-ج) به دست می‌آید:

$$W(n)N \sum_{r=-\infty}^{\infty} d(n-rN) = \frac{Nw(\omega)}{Nw(\omega)}$$

در نتیجه بر این می‌توان گفت $y(n)$ که هر یک به ایجاد $W(\omega)$ از طرف دوم با توجه به این تاثیر و با وجود شرط (9-ب)، معادله (10-الف) استنتاج می‌شود.

5- بیان ریاضی مشهول اگر از معادله (2)، را اخذ کنید، داریم:

$$x(n) = \frac{L}{W(\omega)} \sum_{p=-\infty}^{\infty} \sum_{k=0}^{N-1} x(p,l,k) e^{j\pi \omega k}N$$

که در معادله (10-الف)، $w(n)$ از معادله (10-ب): $W(\omega) = \sum_{n=-\infty}^{\infty} w(n)$ و تحت شرط (10-ب):

$$\sum_{l=\infty}^{n=-\infty} w(p,l-n) = \frac{w(\omega)}{L}$$

به دست می‌آید. این به معنی دارد که تاکنون، شرایط (10-یک) به دست آورده‌ایم.

33

استناده، سال 17، شماره 2، اسفند 1377
بنابراین معادله (۲۵) را به صورت فشرده‌تر از نظر ابعاد نیز می‌توان نوشت:

\[ X(n,k) = A(D,k) S(n,k) + E(n,k) \]  

که در معادله (۲۶-الف) داریم:

\[ A(D,k) = \begin{bmatrix} a_1, a_2, \ldots, a_M \end{bmatrix}^T \]  

که در آن \( D \) ماتریس تأخیر‌های است و \( \Phi = [\Phi_1, \Phi_2, \ldots, \Phi_M]^T \) و محل گزارش‌ها است. \( \theta = [\theta_1, \theta_2, \ldots, \theta_M]^T \) اگر خطای موجود در تقیق معادله (۲۱) را به صورت زیر تعیین کنیم:

\[ E = E\left\{ |S_n(k) - S_{n-d_{mk}}|^2 \right\} \]  

که در معادله (۲۷-الف) \( E \) معرف میانگین است، و خطای نسبی \( \delta \) به صورت زیر تعیین نمی‌شود:

\[ \delta = \frac{E\left\{ |S_n(k)|^2 \right\}}{E\left\{ |S_n(k)|^2 \right\}} \]  

در پیوست ۱ ثابت می‌کنیم که معادله (۲۷-الف) برای وقتی که سیگنال ورودی نواز سفید باشد به معادله زیر تبدیل می‌شود:

\[ \delta = \frac{1}{\sum_{m=0}^{\infty} w(m)w(m-d_j)} \sum_{m=0}^{\infty} w(m) \delta \]  

از معادله بالا به سادگی نشان داده می‌شود که برای آنکه در پنجره \( N_w \) مستطیلی (۱۰) را باشد کافی است که

\[ \frac{M-1}{T_s} \leq \frac{1}{T_f} \]  

که در آن \( M \) عادد گیرنده، \( T_s \) متغیر زمانی از سیگنال ورودی است (پیوست). در جدول‌های (۱) و (۲) از پیوست می‌توان بر معادله (۲۴-ب) بیان کرد که برای طول آزادی گیرنده‌ها ممکن است

\[ N_w \text{ را برحسب طول آزادی گیرنده‌ها محدود بسازد. خواهیم دید که طبق} \]  

در صورت برقراری روابط مربوطه، پیشنهاد کرده‌ایم و به صورت کمک‌العملی مربوطه، به طوری استعمالی داشت. به طوری DSTFT تعریف کرده‌ایم. در نتیجه، معادله (۱۸) به شکل زیر در می‌آید:

\[ S_m(n,k) = \begin{bmatrix} S_{1-(n-d_{m1}+k)}, S_{2-(n-d_{m2}+k)}, \ldots, S_{P-(n-d_{mp}+k)} \end{bmatrix}^T \]  

اذاً به وسیله DSTFT تعریف کرده‌ایم. در نتیجه، معادله (۱۸) به شکل زیر در می‌آید:

\[ S_m(n,k) = \begin{bmatrix} S_{1-(n-d_{m1}+k)}, S_{2-(n-d_{m2}+k)}, \ldots, S_{P-(n-d_{mp}+k)} \end{bmatrix}^T \]  


استقبال: سال ۱۷، شماره ۲، اسفند ۱۳۷۷

17
می توانم بنویسم: \[ \hat{\theta}_i(n+1) = \hat{\theta}_i(n) - \mu \nabla \hat{L}(n) = \hat{\theta}_i(n) + \mu \sum_{k=1}^{N-1} \frac{S_i(n,k)}{\sigma N(k)} \nabla \hat{L}(\hat{\theta}_i, n) \]

\[ V_{\theta_i}(A(D(\theta, k), k)H) \cdot [X(n, k) - A(D(\theta, k), k)H] \cdot \hat{S}_i(n, k) \]

(28)

بنابراین گروئیم وفقه پس از انتخاب اولیه پارامتر \( \mu \) و تعیین مقادیر اولیه زاویای ورود در فضای زیر به تعیین نهایی 
زاویای ورود و سیگنال‌ها می‌پردازد: \( X(n, k) \)

الف - با کمک معادله (22) و با توجه به معنی بودن \( D(k) \) از داده‌ها و معنی بودن \( D(k) \) از معادله (22-1)، STFT 

ه - به‌دست می‌آید: \( H(n, k) \) 

ب - با معلوم بودن تعیین اولیه زاویای ورود و همچنین محاسبه \( \hat{\theta} \) از قدم قبل و با استفاده از معادله (28) مقادیر جدید \( \hat{S}(n, k) \) 

به‌دست می‌آید و سپس قدم (الف) تکرار می‌شود تا سرانجام 

گروئیم به همه‌گیری برسرد.

در انجا به گذر یک کل انتخاب 

مقادیر اولیه پرای زاویای ورود \( \hat{\theta}_i(k) \) از اهمیت زایده رخ‌داده است. 

با این نظریه شروع \( \theta_j \) نزدیک به لوب اصلی‌ای باشد که را 

حاصل می‌کند در غیر این صورت ممکن است الگوریتم به مقادیر 

\( L(\theta) \) را با نقاط محلی حداکثر به‌مقدار مهم‌گرا شود. اگر پنتای 

بانده سیگنال‌ها با بیشتر تعداد نقاط محلی حداکثر در 25 آما 

در حال حاضر باید برای پرداختن به نقاط محلی برای بانده با بیشتری 

فرکانسی در کانال هم قرار دارند و با تغییر فرکانسی چاپ جا به کانال 

به همزمان لایه تابع معیار \( \Phi \) و \( \theta \) معیار محیطی 

منابع و گیرنده‌ها هستند، از روش گرادیان آماری می‌توان گروئیم 

تاپ چگالی احتمال مشروط محیطی (25) استفاده کنیم. برای 

این کار \( \theta_j \) ها را انتخاب کنیم که تابع \( L \) تعریف شده در معادله

(27) که با گرایش تابع چگالی احتمال ارتباط دارد حذف شود:

\[ N-1 \sum_{k=1}^{N-1} \left| X(n, k) - A(D(\theta, k)S(n, k) \right|^2 \]

(25)

تخمین برای سیگنال ML 

با فرض در دسترس بودن محل 

منابع (یا در دسترس بودن تخمین ماتریس \( D(k) \) از معادله (26) با دست 

می‌آید:

\[ \hat{S}(n, k) = [A(D(\theta, k)H)A(D(\theta, k)H)]^{-1}A(D(\theta, k)H)X(n, k) \]

(26)

برای تخمین تخمین‌ها که تابعی از بردارهای 

می‌باشد، از روش گرادیان آماری می‌توان گروئیم 

تابع چگالی احتمال مشروط محیطی (25) استفاده کنیم. برای 

این کار \( \theta_j \) ها را انتخاب کنیم که تابع \( L \) تعریف شده در معادله

(27) که با گرایش تابع چگالی احتمال ارتباط دارد حذف شود:

\[ L(n, \theta) = - \sum_{k=1}^{N} \frac{1}{\sigma N(k)} \left| X(n, k) - A(D(\theta, k)S(n, k) \right|^2 \]

(27)

با توجه به اینکه \( \theta_j \) ها را انتخاب کنیم که تابع \( L \) تعریف شده در معادله

(27) که با گرایش تابع چگالی احتمال ارتباط دارد حذف شود:

\[ \frac{\partial L(n, \theta_i)}{\partial \theta_i} = - \sum_{k=1}^{N} \frac{1}{\sigma N(k)} \left| X(n, k) - A(D(\theta, k)S(n, k) \right|^2 \]

(27)

با توجه به اینکه \( \theta_j \) ها را انتخاب کنیم که تابع \( L \) تعریف شده در معادله

(27) که با گرایش تابع چگالی احتمال ارتباط دارد حذف شود:
که در آن علامت $\Delta$ معرف انحراف معیار است.

در بخش‌هایی در هر مرحله در دقت تخمین و پس از آن اثر انتخاب نتیجه
سیگنال به روش و همچنین وابستگی این سیگنال به یکدیگر بررسی
می‌شود.

$\text{av.bias} = \frac{E(\hat{\theta}) - \theta}{\sqrt{\text{var}(\hat{\theta})}}$ (۲۹) (الف)

$\text{av.std} = \sqrt{\text{var}(\hat{\theta})}$ (۲۹) (ب)

$\text{نیاز است. به همین ترتیب حجم محسوبات در معادله (۲۸) نیز در
مرتبه است.}$

$\text{و باعث است که با کوچکترین نسبت } N_{\omega}(\Delta)\text{ مقدار}}$

$\text{متوسط بیشتری وجود دارد. این موضوع در بخش شیپسازی بحث می‌شود.}$

$\text{اندازه‌گیری شبیه‌سازی و بحث بر روی نتایج}$

فرض کردن که سیگنال‌های آنالوگ دارای اتفاق در گسترته $\text{Hz}$

$1600 < f_{\text{ذ.}} < 3200\text{ kHz}$

$\text{که در این صورت نیاز به مقدار } N_{\omega} \text{ گسترش یافته‌}$

$\text{زمان} \frac{1}{256} \text{ گسترش یافته‌}$

$\text{طول نیز تکرار نموده‌}$

$\text{و با توجه به سه شرایط}$

$\text{با فاصله‌های مسایلی}$

$\text{د روزی و در گردوبرد.}$

$\text{ارگ این انتخاب } \lambda_{\text{min}}^\text{فيشر بنده گردن‌ها باشد.}$

$\text{ارگ این انتخاب } \lambda_{\text{min}}^\text{فيشر بنده گردن‌ها باشد.}$

$\text{و در تمام آنها از هم‌شیپ‌سازی فضاهای چاپ‌گری کنیم.}$

$\text{340 m/sec فرض کنیم [۲۴]}$

$\text{در این انتخاب اگر فرض کنیم که}$

$\text{زوریا و مصالح می‌تواند به ناحیه رشته‌گردن‌های در}$

$\text{حتی در تحقیق در حوادثی}$

$\text{زمان- فرکانسی بهینه است}}[۱]$. نمودار $\text{ارگ این انتخاب}$

$\text{مشخص کنیم. بندهگردن با فاصله‌گردن‌ها}}$

$\text{پنجره مستطیلی است. به‌عبارت دیگر پنجره‌های هیامگی و همینگی}$

$\text{شباهت بیشتری به بینه بهینه دارند.}$

$\text{بایان و ارتباطات تخمین می‌شود.}$

$\text{اگر وصله‌گردن‌ها و مستقل از سیگنال‌ها و مستقل از یکدیگر فرض شده‌}$

$\text{از پنج‌روزی‌ها مختلف و برا} \times 1 = 16 \text{ (الف)}$

$\text{مقدارها}}[۲۹] (\text{الف})$ و $\text{بایانات و ارتباطات تخمین می‌شود.}$

$\text{بایانات و ارتباطات تخمین می‌شود.}$
جدول ۱ اثر نوع پنجره بر الگوریتم

<table>
<thead>
<tr>
<th>نوع پنجره</th>
<th>اثرات معیار</th>
<th>متوسط خطای تخمین</th>
<th>متوسط خطای تخمین</th>
</tr>
</thead>
<tbody>
<tr>
<td>هانینگ</td>
<td>0/122</td>
<td>4/58</td>
<td>5/21</td>
</tr>
<tr>
<td>تریانگل</td>
<td>0/121</td>
<td>0/280</td>
<td>0/178</td>
</tr>
<tr>
<td>مستطیل</td>
<td>0/124</td>
<td>0/257</td>
<td>0/166</td>
</tr>
<tr>
<td>پارالله</td>
<td>0/129</td>
<td>0/257</td>
<td>0/166</td>
</tr>
<tr>
<td>کایزر (β=3)</td>
<td>0/122</td>
<td>0/257</td>
<td>0/166</td>
</tr>
<tr>
<td>کایزر (β=5)</td>
<td>0/122</td>
<td>0/257</td>
<td>0/166</td>
</tr>
<tr>
<td>هندیک</td>
<td>0/122</td>
<td>0/257</td>
<td>0/166</td>
</tr>
</tbody>
</table>

شکل ۱ - اثر نوع پنجره بر متوسط خطای تخمین زوایای ورود

طرح زمانی پنجره زیادتر باشد، دقت در تعیین فرکانس آن کاهش می‌یابد و بالعکس [22]. بنابراین واقعی است که برای یک سیگنال استوانهای باند بزرگ و با طوف فرکانسی مشخص، پنجره با طول متوسط وجود دارد که بهترین دقت را در حوزه زمان=فرکانس به دست می‌دهد. علاوه بر این مشاهده کرده‌ایم که از یک طرف برای پنجره W زیگ باشد تا خطای نسبی کوچک باید از طرف دیگر برای کاهش حجم محاسبات باشد. نتایج این مقاله یافته‌ها از اهمیت فوق را به طور همزمان با وروده می‌سازد و این با نتایج شبیه‌سازی هم‌اکنون است. اگر سیگنال‌ها غیر استوانهای باندی می‌توان طول پنجره را مناسب با فرکانس لحظه‌ای به طور وقیفی تغییر داد. بررسی این

شکل ۲ - اثر طول پنجره بر متوسط خطای تخمین زوایای ورود

زمان، مهندسی و نیروی انتخاب از W را به دست آمده هنگامیکه W = نامناسبی در مورد بعد بین می‌شود.

شکل ۳: اثر تغییرات W را بر متوسط خطای تخمین زوایای ورود معادله (29) آلفا، نشان می‌دهد. منحنی‌های نشان داده شده، طول ۵۵ طرح تکراری می‌باشد. می‌توان نتیجه گرفت که برای W طول متوسط وجود دارد که بهترین دقت را در حوزه زمان=فرکانس به دست می‌دهد. علاوه بر این مشاهده کرده‌ایم که از یک طرف برای W زیگ باشد تا خطای نسبی کوچک باید از طرف دیگر برای کاهش حجم محاسبات باشد. نتایج این مقاله یافته‌ها از اهمیت فوق را به طور همزمان با وروده می‌سازد و این با نتایج شبیه‌سازی هم‌اکنون است. اگر سیگنال‌ها غیر استوانهای باندی می‌توان طول پنجره را مناسب با فرکانس لحظه‌ای به طور وقیفی تغییر داد. بررسی این

شیب‌سازی‌های بعدی از آن استفاده می‌شود.

جدول ۲- اثر طول پنجره (W)

<table>
<thead>
<tr>
<th>طول پنجره (W)</th>
<th>اثرات معیار</th>
<th>W = نامناسبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/999</td>
<td>0/257</td>
<td>0/166</td>
</tr>
<tr>
<td>0/856</td>
<td>0/275</td>
<td>0/166</td>
</tr>
<tr>
<td>0/742</td>
<td>0/168</td>
<td>0/166</td>
</tr>
<tr>
<td>0/64</td>
<td>0/33</td>
<td>0/166</td>
</tr>
<tr>
<td>0/219</td>
<td>0/549</td>
<td>0/166</td>
</tr>
<tr>
<td>0/817</td>
<td>0/257</td>
<td>0/166</td>
</tr>
<tr>
<td>0/549</td>
<td>0/257</td>
<td>0/166</td>
</tr>
</tbody>
</table>

نتایج عملی به دست آمده در بالا منطقی است. این هر چه

استلال، سال ۱۷، شماره ۲، اسفند ۱۳۷۷
موضوع خارج از حوزه این مقاله است.

نشریه اثر تغییرات بر متوسط خطا در تخمین زواياي ورود

شکل ۳ - اثر تغییرات بر متوسط خطا در تخمین زواياي ورود

کامل در حوزه، ضبط مي كنند طول كه مي توان دوباره آنها را استخراج كرد. پايد انظار ذاتي به طور نامتوازنگي که نمونه مي توانند گفت که ذات تغییرات ورود به طور عادی مي توانند به‌صورت طرفداران و باعث مي‌كنند که سرعت همگرايی کاهش یابد و اگر طول داده‌ها محدود باشد، تغییرات در تخمین ورود باعث کاهش خواهد بود. باعث می‌شود که کاهش به‌عنوان افزایش فاکتور نیروی خدمه و کاهش می‌باشد.

نمودار 5- همبستگی معادل سیگنال (1)س و تخمین آن (1)س

نمودار 4- اثر میزان همبستگی منابع سیگنال بر متوسط خطای تخمین زوایای ورود

نمودار 6- وابستگی میزان دقت الگوریتم در تفکیک منابع سیگنال نودیک به هم به طول آرا به سیگنال وابسته نمی‌باشد.

نتیجه‌گیری
در این مقاله برای تخمین محل استقرار منابع سیگنال در حالت پهناوی باند و سیم با کمک یک آرای از گیرنده‌ها از یک الگوریتم وقیف مبتنی بر تبدیل سیگنال‌ها در دسته‌بندی (ML) استفاده شده. این الگوریتم که در آن برای تبدیل سیگنال‌ها از جریان یا فضای حوزه ساخته شده و از تبدیل فوریه کژ تا زمان استفاده شده است. نتایج بدنش جهت انتخاب نوع پنجره، طول و میزان جهش آن در اختیار می‌گذارد. نشان دادیم که با انتخاب مناسب نوع، طول پنجره و میزان جهش آن می‌توانیم با

6.5 دقت در تخمین سیگنال‌ها
در شکل (5) همبستگی منقابل سیگنال اصلی (1)س و تخمین آن (1)س برای یک SNR=20 dB، μ=10^{-7}, N=16 و L=12 که سیگنال تخمین زده شده با دقت پیسای خویی با سیگنال اصلی مطابقت دارد.


پیوست

1- تعبین حداقل طول لازم برای پنج‌بر پرحس طول آرایه می‌خواهم پرستی کنیم که تحت چه شرایطی تساوی نیاز به بازو اوی سیگنال که تحت تأثیر اعمال ویکی‌کارکرد است. در این معادله

\[ S_i(n,k) = S_i(n-d_{ji}, k) \]

برای پرحس سیگنال (1) در میدانی از مکان‌های است. در

\[ w(n-m)w(n-m-d_{ji}) \]

را در یک بازویی تحت جهت چه شرایطی می‌خواهم پرستی کنیم که تحت تأثیر اعمال ویکی‌کارکرد است. در این معادله

\[ E\left| w(n-m)w(n-m-d_{ji}) \right|^\gamma \]

این بازی که داریم:

\[ \varepsilon = E\left( | S_i(n,k) - S_i(n-d_{ji}, k) |^\gamma \right) \]

\[ E\left\{ \sum_{m=\infty}^{+\infty} w(m)e^{-j\gamma r k m/N_x} \right\} \]

\[ + \sum_{q=-\infty}^{+\infty} s_i(q-d_{ji})w(n-q)e^{-j\gamma r k q/N_x} \]
جدول ۱- طول مودورنیز برای پنجره‌های مختلف بر حسب طول نمایی‌های شده آرایه و برای $\delta = 0.05$ 

<table>
<thead>
<tr>
<th>طول آرایه</th>
<th>Kaiser</th>
<th>Bartlett</th>
<th>Hamming</th>
<th>Hamming</th>
<th>Rectangular</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>11</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>19</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>21</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>56</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
</tr>
</tbody>
</table>


dجدول ۲- طول نمایی‌های شده آرایه بر حسب طول نمایی‌های آرایه و برای $\delta = 0.05$ 

<table>
<thead>
<tr>
<th>طول نمایی‌های آرایه</th>
<th>Kaiser($\beta=1$)</th>
<th>Hamming</th>
<th>Bartlett</th>
<th>Hamming</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>32</td>
<td>32</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>19</td>
<td>128</td>
<td>128</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>21</td>
<td>256</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>76</td>
<td>512</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
</tr>
</tbody>
</table>

و با توجه به تعریف $\delta = \frac{\epsilon}{E(S(n,k))}$ (۱) خواص هم داشت:

$$\delta = 2 \left( 1 - \frac{\sum_{m=-\infty}^{\infty} w(m) w(m-d_{ji})}{\sum_{m=-\infty}^{\infty} |w(m)|^2} \right)^{1/2}$$

به عنوان مثال برای پنجره مستطیلی ($\beta=1$) برای هر مکان نمونه $N_w = \delta_{ji}$ خواهیم داشت $|d_{ji}|$ از معادله (۵) به دست می‌آید:

$$\max |d_{ji}| = \frac{(M-1)d}{\sqrt{T_s c}}$$

که در این معادله، $M$ تعداد گیرنده، $d$ فاصله دو گیرنده، $c$ سرعت سیگنال و $T_s$ دوره نمونه‌برداری امواج است. با توجه به اینکه $\delta = \frac{\epsilon}{E(S(n,k))}$ به عنوان مکان حداکثر فرکانس از دامنه سیگنال و رودی است، خواص هم داشت:

$$\max |d_{ji}| = \frac{(M-1)d}{\sqrt{T_s c}}$$

برنامه امکان‌پذیر است از میزان نایکوئیست را به‌دنبال $1$ خواهیم داشت.