طراحی و تولید یک سیستم نرم‌افزار شبیه‌ساز آزمایشگاه راکتور هسته‌ای

سیدعلی میرعلی‌نیا و زیلا جمشیدی
پیشرفت مهندسی سازی، دانشگاه صنعتی شریف
(دریافت مقاله: ۲/۳/۱۳۸۹ - دریافت نسخه نهایی: ۲۲/۷/۱۳۸۹)

چکیده - در مقاله حاضر، ساختار اساسی یک سیستم نرم‌افزار برای شبیه‌سازی محفظه آزمایشگاه راکتور، با استفاده از یکی از مدل‌های مهندسی نرم‌افزار تحت عنوان OMT، با استفاده از معادله‌های نقطه‌ای حاکم بر راکتور، ارائه شده است. همچنین توأم‌سازی مختلف شبیه‌ساز در آموزش مفاهیم پایه فیزیک راکتور مورد بررسی گذشته است.

در این آزمایش‌ها، مجازی، نتایج انجام مدت آزمایش راکتور تحت حوزه‌هایی را مانند، راکتور وکتور اندازه‌گیری جرم راکتور، اندازه‌گیری قدرت گرمایی راکتور، اندازه‌گیری ارژنی راکتوری همه‌ها کنترل، اثر سموم در قلب راکتور، اثر خلاء در قلب راکتور و سطح میله‌کنترل نوسپر وجود دارد. امکانات کاربری آسان و راه‌نما‌یابی موجود در سیستم، محیط‌کامل مناسب را برای انجام آزمایش‌ها برای کاربر قرار می‌دهد. همچنین ارائه تابی و اطلاعاتی راکتوری و محتوی مربوط به محیط آزمایش در طول انجام آزمایش و پس از آن، به منظور دستیابی به جزئیات بیشتر در مورد آزمایش‌ها، از دیگر امکاناتی است که نرم‌افزار در اختیار کاربر قرار می‌دهد و مجموعه‌ی نرم‌افزار را به صورت یک شبیه‌ساز آموزشی توأم‌ساز و با کاربری آسان مطرح می‌کند.

Design and Implementation of a Reactor Physics Laboratory Simulation Software

A. Mireshghi and J. Jamshidi
Department of Nuclear Engineering, Sharif University of Technology

ABSTRACT- The basic structure of a reactor physics laboratory environment simulation software, developed using object modeling technique (OMT), and based on the reactor point kinetic equation, is presented. Also, various capabilities of the simulator in teaching the fundamental concepts of reactor physics are discussed.

In this virtual laboratory, student can perform seven different experiments, namely, reactor start up and control, critical mass measurement, critical thermal power measurement, control rod reactivity worth measurement, fuel poisons effects, reactor core void effects, and fine control rod drop. The user-friendly software and the technical instructions embedded provide a convenient environment for performing the experiments. The result presentation, in text and graphical format, both during and after the experiments, is another facility making the software powerful and an easy-to-use educational software.
نمایر افزار را بیان می‌کنیم. در آخر نیز با موردنوپایه حاصل از آزمایش‌ها صحت و اعتبار مدلها و کد‌ها به کار گرفته شده در نمایر افزار را بررسی می‌کنیم.

2- مباحث نظری
آنچه به عنوان مباحث نظری در نمایر افزار مورد استفاده قرار گرفته درحقیقت مفاهیم پایه و فرمول‌بندی‌های ارتباطی مربوط به مدل سیستمیک نقطه‌ای راکتور و اثرات پس‌خوراوانده درجه گرما و سرعت راکتور است که در بسیاری از کتب و مراجع [7-20] به تفصیل مورد بحث قرار گرفته است. در این مقاله تنها به نگاه‌گذاری به فرمول‌های موردنظر پرداخته است.

معادله‌های نقطه‌ای راکتور با فرض ناپایه بودن ضریب‌های مکان و متوسط گیر آن‌ها بر روی تغییرات سرعت نتورنت و با حذف وابستگی مکانی توزیع نتورنت به صورت زیر بیان می‌شود:

\[
\frac{dn(t)}{dt} = \sum p C_i(t) + q(t)
\]

(1)

\[
\frac{dC_i(t)}{dt} = \lambda_i n(t) - \beta_i C_i(t)
\]

(2)

که در آن \(C_i(t) \) و \(n(t) \) به ترتیب چگالی نتورنتا و غشته‌های هستند و \(\rho \) راکتوریتیت و \(\beta_i \) و \(\lambda_i \) به ترتیب درصد تولید نتورنت‌های تأثیرگذار و ثابت و پایانی تا به‌همنه یک مرحله برعکس \(q_i \) زمان تولید نتورنت و \(q_i \) شدت تابش چشم‌انداز.

برای کامل کردن مدل، به در نظر گرفتن اثرات مربوط به پس‌خوراوانده، در قلب راکتور ضروری است. دو اثر پس‌خوراوانده است. به‌طور عمومی، سوم در قلب کل صفر است راکتوریتیت مقدار \(\alpha_p \) باشد، مقدار راکتوریتیت حاصل از تغییرات دمای به‌وجود بوده در

\[
\delta_p = \alpha_p (T - T_0)
\]

(3)

که در آن \(T_0 \) دمایی است که دران دما پس خوراوانده ناشی از دمای صفر است [21].
معنی‌مندی از رفتار سیستم در طول زمان ایجاد می‌شود و سپس با مشاهده این سرگردد. صحت و اعتبار مدل بر روی ممکن است بیشتر از ممکن سیستم را به خود می‌گیرند که این فرضیه در قبال روابط ریاضی، منطقی و نمازی نیاز به اهداف یا مورد نظر سیستم تغییر می‌شوند.

به‌طور کلی، این پیاده‌سازی مدل‌های ارائه‌شده به روش‌های مختلف ایجاد گردیده و توسه نتیجه‌گیری‌ها بر اساس یک مدل‌ها تهیه نمودار‌ها گذاری شد.

متداول‌ترین تحلیل‌ها به شکل ساختار یافته، با استفاده از مجموعه‌های از روش‌ها و علوم نهایی است. فرانک تولید نمودار اکثریت به صورت یک چرخه عمر که شامل چند مرحله است سازمان‌های می‌شود. [8 و 9] یک چرخه عمر کامل شامل فرآیند کردن اولیه مسئله تحلیل طراحی، پیاده‌سازی و آزمون نمودار و همچنین فرآیند مدل‌سازی نگهداری و توسه است. [1] یکی از متداول‌ترین مطروح در OMT مهندسی نمودار به سیستم است.

تعداد مرحله چرخه عمر را شامل می‌شود. [10]

متداول‌ترین تحلیل‌ها به طور عمدی است زمان بر تغییر را کوچک‌تره از طرف کاهش فاکتور (به‌طور می‌تواند) است که به صورت زیر می‌شود:

\[\delta = \frac{\omega_X}{\Sigma_{\text{core}}} \]

که در آن \(\Sigma_{\text{core}} \) سطح مقطع ماکروسکوپیک جذب نتوانسته در موردی که سیستم را ایجاد کنند.

شیب سازی و متداول‌ترین تهیه نمودار

شیب سازی تلقیه‌ای از احتمال یک فاصله با استحکام واقع در طول زمان است. در شیب سازی با ایجاد مناسب‌یابی، سرگردشی
به عنوان نمونه برای ستاره‌ای اندام‌گیری قدرت گرمایی راکتور و کنترل سیستم راکتور، سلسله رویدادها به صورت شکل‌های (۲) و (۳) است. نمودار حالت تهیه شده برای کلاس صفه کنترل در شکل (۴) نشان داده شده است. این نمودار نشان‌دهنده همه رویدادهای این کلاس، که به صورت کنترل، ارائه شده‌اند. در واقع ستاره‌ای این سلسله رویدادهای مربوط به آن یک سیستم را در نمودار حالت طی سیستم در حال وظیفه‌نمایی روابعی که چگونگی محاسبه مقدار خروجی از ورودی را نشان می‌دهد، بود که نتیجه‌گیری‌های توانایی و توانایی ورودی‌های درهم طرفداران معرفی می‌شوند [۱۰]. این گونه در (۱) ارائه شده‌اند.

۲-۱- مرحله طراحی

پس از ارائه سیستم دنبالی واقعی توسط مدلهای مرحله‌ی مصرف، توانایی و فیزیکی و توانایی سیستم و دیگر طراحی واقعی است. در طراحی سیستم، ساختار مقطع بالای سیستم مشخص می‌شود و (۲) سیستم آزمایشگاهی راکتور دارای دو نوع سیستم است. در این مرحله، حالت‌های ورودی در نظر گرفته می‌شوند.

۲-۲- مرحله واریانس

به نمودار دنبالی واقعی واقعی توسط مدلهای مرحله‌ی مصرف، توانایی و فیزیکی و توانایی سیستم و دیگر طراحی واقعی است. در طراحی سیستم، ساختار مقطع بالای سیستم مشخص می‌شود و (۲) سیستم آزمایشگاهی راکتور دارای دو نوع سیستم است. در این مرحله، حالت‌های ورودی در نظر گرفته می‌شوند.

۲-۳- مرحله واریانس

در این مرحله دنبالی واقعی واقعی توسط مدلهای مرحله‌ی مصرفی و توانایی و فیزیکی و توانایی سیستم و دیگر طراحی واقعی است. در طراحی سیستم، ساختار مقطع بالای سیستم مشخص می‌شود و (۲) سیستم آزمایشگاهی راکتور دارای دو نوع سیستم است.
آماده‌سازی مکانیزم همچنین در این مرحله لازم است ایجاد ارتباط بین کلاس‌ها نیز در نظر گرفته شود. به این ترتیب که انتخاب از نظر‌های دارنده، به داده‌های هم دسترسی داشته باشند، از نمونه‌ریزی رجوع به یکدیگر بخورند به شکل [18 و 19].

اکنون همه چیز برای تبدیل مدل‌های ارائه شده به برنامه‌ریزی آماده‌است. کامیابی انتخاب حالت برای سیستم آزمایشگاه راکتور، ویژوال C++ و سیستم عامل ویندوز 95 است که مفاهیم شغلی را به خوبی پشتیبانی می‌کند و ابزارهای قوی و نسبتاً پیچیده برای ساخت کاربردی‌های 22 بینی با امکانات کاربردی آسان در اختیار قرار می‌دهد [21 و 22].
شکل 5 - صفحه انجام آزمایش‌ها

به صورت نمونداری مشاهده کنید. در این صفحه همه امکانات پرای رس نمونداری در ترتیب کاری وجود دارد. منحنی‌های نسبت، راکت‌پریته، شدت نیازهای، شدت سوم، موقتیت و میله‌های کنترل و ارزش راکت‌پریته مربوطه پروداپایدار یا جمله منحنی‌ای اند که کاربر می‌تواند ملاحظه کند، شکل (6).

- از صفحه مبانی نظری و روش انجام آزمایش

در این صفحات برنامه انجام آزمایش شده مبانی نظری و یا روش انجام آزمایش مربوطه در اختیار کاربر قرار گیرند و کاربر می‌تواند در حال آزمایش به منظور آگاهی بیشتر از زمینه علمی آزمایش و یا استفاده از دستورالعمل‌های پاره دهندن آزمایشگر به این صفحات رجوع کند، شکل (7).

- بحث و بررسی نتایج جد آزمایش نمونه

به منظور بررسی کارایی سیستم و دیدن نتایج و اطلاعات نموداری، با انجام چند آزمایش نمونه به بحث و بررسی پرداخت ترتیب آنها از پردازی، شکل‌های (8) و (9) منحنی‌های قدرت و راکت‌پریته در دو آزمایش براندازی راکت‌پریته در دو قدرت W و 100 W و راه‌اندازی سدهنده. پس از رسیدن به قدرت مطلوب، با پروداپایدار میله‌هایی کنترل به محل قفل، راکت‌پریته در قدرت جدید بحیره می‌شود. انا پیوسته قدرت، ما نمی‌پذیرم و به این ترتیب اثرات مربوط به پس‌خور نیاز ظاهر می‌شود. لذا همراه با

- صفحه تبیین آزمایش

در این صفحه امکان نمایش پردازشی لیست قدرت در قابل داده آزمایش و منحنی‌های مربوطه وجود دارد. کاربر پس از ورود به این صفحه قادر خواهد بود در هر فهرستی که از داده‌های آزمایش در برابر انتخاب شده می‌باشد.
شکل ۸ - منحنی‌های تغییرات توان، شار و چگالی نور افزایش زمان در آزمایش به تقدیر رسیده‌اند. راکتور زمان تحت شرایط ناهموار کردن پمپهای اصلی و متغیری در دوره ۱۰۰ W توسط میله‌های گرمایی از زمان پایین ۲ درجه سانتی‌گراد است. در این صورت عضله سیستم عصبی با سیستم شار و چگالی نور افزایش از قلب راکتور در قلب افزایش دارد.

شکل ۹ - منحنی تغییرات راکتور بر حسب زمان در آزمایش به تقدیر رسیده‌اند. راکتور زمان تحت شرایط ناهموار کردن پمپهای اصلی و متغیری در دوره ۱۰۰ W توسط میله‌های گرمایی از زمان پایین ۲ درجه سانتی‌گراد است. در این صورت عضله سیستم عصبی با سیستم شار و چگالی نور افزایش از قلب راکتور در قلب افزایش دارد.

شکل ۷ - منحنی نظری آزمایش.

شکل‌های (۸) و (۹) منحنی‌های میله‌های گرمایی را در یک آزمایش در طول ۵ روز کار راکتور را نشان می‌دهند. در طول این مدت، راکتور در قدرت ۱۰۰ W را به دست آورد و سپس قدرت به ۲ مگاوات آزمایش یافت و پس از چند روزه زمان به مقدار اشباع خود رسیده است، راکتور خاموش شده است. همان طور که میله کنترل یک را نماش می‌دهد. در این آزمایش، راکتور در قدرت ۱۰۰ W توسط میله‌های گرمایی از زمان پایین ۲ درجه سانتی‌گراد است. در این صورت عضله سیستم عصبی با سیستم شار و چگالی نور افزایش از قلب راکتور در قلب افزایش دارد.

ظرفیت پس خور، میله‌های گرمایی کنترل نیز بالاتر می‌روند. سیستم عصبی راکتور را در یک آزمایش در طول ۵ روز کار راکتور را نشان می‌دهند. در طول این مدت، راکتور در قدرت ۱۰۰ W را به دست آورد و سپس قدرت به ۲ مگاوات آزمایش یافت و پس از چند روزه زمان به مقدار اشباع خود رسیده است، راکتور خاموش شده است. همان طور که میله کنترل یک را نماش می‌دهد. در این آزمایش، راکتور در قدرت ۱۰۰ W توسط میله‌های گرمایی از زمان پایین ۲ درجه سانتی‌گراد است. در این صورت عضله سیستم عصبی با سیستم شار و چگالی نور افزایش از قلب راکتور در قلب افزایش دارد.

شکل (۱۰) نتیجه آزمایش جرم بخاری را نشان می‌دهد. همان سیستم عصبی راکتور را در یک آزمایش در طول ۵ روز کار راکتور را نشان می‌دهند. در طول این مدت، راکتور در قدرت ۱۰۰ W را به دست آورد و سپس قدرت به ۲ مگاوات آزمایش یافت و پس از چند روزه زمان به مقدار اشباع خود رسیده است، راکتور خاموش شده است. همان طور که میله کنترل یک را نماش می‌دهد. در این آزمایش، راکتور در قدرت ۱۰۰ W توسط میله‌های گرمایی از زمان پایین ۲ درجه سانتی‌گراد است. در این صورت عضله سیستم عصبی با سیستم شار و چگالی نور افزایش از قلب راکتور در قلب افزایش دارد.

شکل (۱۱) نتیجه آزمایش جرم بخاری را نشان می‌دهد. همان سیستم عصبی راکтор را در یک آزمایش در طول ۵ روز کار راکتور را نشان می‌دهند. در طول این مدت، راکتور در قدرت ۱۰۰ W را به دست آورد و سپس قدرت به ۲ مگاوات آزمایش یافت و پس از چند روزه زمان به مقدار اشباع خود رسیده است، راکتور خاموش شده است. همان طور که میله کنترل یک را نماش می‌دهد. در این آزمایش، راکتور در قدرت ۱۰۰ W توسط میله‌های گرمایی از زمان پایین ۲ درجه سانتی‌گراد است. در این صورت عضله سیستم عصبی با سیستم شار و چگالی نور افزایش از قلب راکتور در قلب افزایش دارد.
شکل 13 - منحنی ارزش راکتوریت میله کنترل در آزمایش کالیبراسیون میله کنترل

شکل 14 - منحنی تغییرات ضرب تکثیر بینهایت بر حسب جرم سوخت در آزمایش چرخ بحرانی

اینکه ترکیب سوخت و کند کننده فرآیند نکرده، بنا براین $K_{eff} = k_{o}P_{nonleakage}$ یافته و در مجموع با توجه به فرمول اندامی K_{eff} بر حسب شده است (با توجه به اینکه ترکیب سوخت و کند کننده فرآیند نکرده، بنا براین K_{eff} بر حسب شده است K_{eff} شدن مقادیر به پکی، عکس شمارش نورتکنی به صفر نزدیک می‌شود هنگامی که این مقادیر صفر شود، جرم سوخت موجود به قسمت جرم بحرانی خواهد بود.

شکل‌ها (15) و (16) راکتوریت و موقتیت میله‌های کنترل در آزمایش راکتوریت ناشی از خلاء را نشان می‌دهند. در این آزمایش، پس از اینکه راکتور به حالات پایدار خود رسید، ابتدا

شکل 15 - منحنی تغییرات نوار شار و چگالی نوترن و چگالی پد و زیباتان بر حسب زمان در آزمایش اثر زیباتان

شکل 16 - منحنی تغییرات درآزمایش چرخ بحرانی

شکل 17 - منحنی تغییرات درآزمایش کالیبراسیون گرمایی

استقلال سال 19، شماره 1، شهریور 1379
دانش‌نامه تغییرات راکتوری بر حسب زمان در آزمایش‌های اثر خلا

دانش‌نامه تغییر موقعیت میله‌کنترل بر حسب زمان در آزمایش‌های اثر خلا

دانش‌نامه تغییر موقعیت میله‌کنترل بر حسب زمان در آزمایش‌های اثر خلا

کاربردی

بررسی زمان‌بندی وسایل و گروه‌گردانی راکتور آزمایش سقوط میله به‌دست آمده است.

و از قلب قلب گردیده آن را از قله از قله می‌پذیرد.

ملاحظه می‌شود که با گذر زمان راکتوری ناشی از خلاء، میله‌های کنترل کمی بالا آمدند.

شکل‌های (17) و (18) قدرت و موقعیت میله‌های کنترل را در آزمایش سقوط میله مطرح نشان می‌دهند.

در این آزمایش ابتدا میله طرفین صد درصد از قلب خارج شده، و راکتور توسط پیچ میله‌ها بهرانی شده است به‌سپس میله طرفین را سقوط داده‌اند.

واژه نامه

2. Khadem, M., and Ipackchi, A. "A Compact,
3. Hetrick, *Dynamics of Nuclear Reactors*, University of

10. Rumbogh, Object Oriented Modeling and Design.

پوست ۱- توابع مشخص کننده خروجی‌ها بر حسب ورودی‌ها در مدل وظیفه‌مندی

\[\rho_1 = \alpha_T T + \alpha_V V + \frac{\delta X}{\text{core}} \]

\[\rho_{\text{rods}} = \rho_{\text{max}} \left(x - \frac{1}{2r} \sin 2rx \right) \]

\[\rho_{\text{core}} = \rho_{\text{ex core}} + \rho_{\text{rods}} + \rho_t \]

\[\frac{dp}{dt} = \frac{\rho - \rho_t}{l} p + \sum_i \lambda_i C_i \]

\[\frac{dl_i}{dt} = \frac{\rho_t}{l} p - \lambda_i C_i \]

\[\frac{dT}{dt} = \frac{1}{mc} p - \frac{2w_q T}{m} \]

\[\frac{dI}{dt} = \gamma_1 \sum_i \phi - \lambda_1 I \]

\[\frac{dx}{dt} = \gamma_x \sum_i \phi + \lambda_1 I - \delta_X \chi \phi - \lambda_X X \]

\[\phi = \frac{P}{P_{\text{max}}} \phi_{\text{max}} \]

\[\omega = \frac{1}{P} \frac{dP}{dt} \]

\[M_{\text{total}} = nm_{\text{assembly}} \]
پیوست ۳- فهرست عملگرهای کلاس‌های مختلف سیستم راکتور

- عملگرهای کلاس میله‌کنترل
 - محاسبه ارزش راکتوره‌ی میله‌کنترل
 - حرکت میله‌کنترل
 - محاسبه درصد خروج میله‌کنترل
- عملگرهای کلاس میله‌سوزت
 - وارد شدن به قلب
 - خارج شدن از قلب
- عملگرهای کلاس قلب
 - محاسبه راکتوره‌ی قلب
 - محاسبه توان
 - محاسبه شار
 - محاسبه چگالی نوترون
 - محاسبه دمای متوسط قلب
 - محاسبه غلظت ید
 - محاسبه غلظت زیمان
 - محاسبه غلظت بارهای شکانت
 - راکتوری مدار ثانویه
 - محاسبه راکتوره‌ی پس‌خوراند
 - محاسبه پریود پایدار
 - محاسبه ضریب تکیه
 - حل معادله‌های نقطه‌ای
- محاسبه راکتوره‌ی پس‌خوراند زیمان
- محاسبه راکتوره‌ی پس‌خوراند دما
- محاسبه راکتوره‌ی میله‌های کنترل
- محاسبه پارامترهای حالت پایدار قلب
- محاسبه پارامترهای حالت گذشته قلب
- عملگرهای کلاس محصولات شکافت
 - محاسبه غلظت
- عملگرهای کلاس خنک کننده
- عوض کردن حالت مدار ثانویه

استقلال، سال ۱۹، شماره ۱، شهریور ۱۳۷۹