Abstract: Exergy analysis is based on combined first and second laws of thermodynamics and is a useful tool to analyze the energy systems in a better and more realistic way than an energy analysis, based on the first law of thermodynamics. Combination of exergy from thermodynamics with conventional concepts from engineering economy, which is referred as thermo-economy (exergo-economy) is a valuable tool to analyze the energy systems in a better way. In this paper, efforts are made to...
apply the concept of thermo-economy to analyze two power cycles (a combined Gas and Steam cycle and a conventional steam power plant). In this analysis, the results of an exergy calculation are combined with the economic aspects such as investment costs, fuel costs, and also operation and maintenance costs. The goal of this study is to show how to implement the concept of thermo-economy to these cycles and also how to estimate the price of the product (electric power generated). Assessment of the components exergy destruction costs is a second objective in this study. Results obtained from this analysis clearly show the effect of the cost breakdown and the component performance on the price of the final product. Comparison of the price of the product in these cycles shows that the combined cycle is superior to the conventional steam power plant.

Keywords: Exergy analysis, Thermo-economy, Combined cycle, Steam power plant, Component efficiency
در این مقاله حالت مرجع به کار رفته برای انجمام محاسبات
اکسیرژی دارای فشار 1 atm و دمای 25 °C است (یعنی همان
شراکت معروف محیط).
اکسیرژی شامل قسمتهای مختلفی است که آنها را به صورت زیر
می‌توان بیان کرد:
\[E = E_{PH} + E_{KN} + E_{FT} + E_{CH} \] (kJ)
(1)

\[E_{PT} \] در اکسیرژی فیزیکی، اکسیرژی جنینی، اکسیرژی تانسیل و اکسیرژی شیمیایی

3- بازده اکسیرژی

با توجه به معادله (2) نسبت که سیستم مورد نظر اکسیرژی ورودی را چگونه مصرف می‌کند:
\[\frac{E_s}{E_p} \]
که در معادله فوق \(E_p \) اکسیرژی تامین شده و \(E_s \) به عبارتی اکسیرژی منبع بوده و \(E_p \) هم اکسیرژی تولیدی و \(E_s \) به عبارتی اکسیرژی چاه است. به عنوان مثال برای کل سیکل یک نیروگاه
اکسیرژی تامین شده (محرکی) همان سوخت مصرف شده
است در حالی که اکسیرژی تولیدی \(E_p \) قدرت تولیدی نیروگاه، \(E_s \) است برای یک جزء به خصوص مثل یک مدل حوزنی؛ \(E_{p}\)
اکسیرژی تامین شده به صورت اختلاف اکسیرژی جریان داغ
ورودی به و خروجی از آن جز بوده و اکسیرژی تولیدی
\[\frac{E_{p}}{E_{s}} \]
امن از یک سیستم منبع گرفت تا آن سیستم از حالت اولیه به
صورت برگشت‌پذیر به حالت مرده محیط برسد. تعريف
\[\frac{M_{p}}{M_{s}} \]
در صورتی که در انتقال سیستم و محیط، به جای
سیستم محیط کار انجام دهد، اکسیرژی می‌تواند منفی باشد. در
حال مرده سیستم با محیط خود در حالت تعادل ترمودینامیک
خواهد بود و دما و فشار آن با دما و فشار محیط بررسی شود و
همچنین انرژی جنبشی و تانسیل نداشته و از نظر شیمیایی هم
خاتمه خواهد بود.

2- مفهوم اکسیرژی

در منابع ترمودینامیک، اکسیرژی را به عنوان جدایکار کاری
که از یک سیستم می‌توان گرفت تا آن سیستم از حالت اولیه به
صورت برگشت‌پذیر به حالت مرده محیط برسد. تعريف
\[\frac{M_{p}}{M_{s}} \]
در صورتی که در انتقال سیستم و محیط، به جای
سیستم محیط کار انجام دهد، اکسیرژی می‌تواند منفی باشد. در
حال مرده سیستم با محیط خود در حالت تعادل ترمودینامیک
خواهد بود و دما و فشار آن با دما و فشار محیط بررسی شود و
همچنین انرژی جنبشی و تانسیل نداشته و از نظر شیمیایی هم
خاتمه خواهد بود.
و هزینه مربوط به تعبیر و تغذیه از $Z_{OM}^{\text{تخته}}$ است. در صورتی که بالاتر از $Z_{OM}^{\text{تخته}}$ باشد، عوامل مبوی همگردد. بنابراین، باید به خصوص برای تغذیه مشخص کننده هزینه مربوط به لطفات اکسترژی در سیستم های انرژی است که در ادامه به آن می‌پردازیم و به عنوان تشویق و اساس مبارزه با اختلال اکسترژی ورودی به و خروجی از یک چسب سیستم ترموامپیس کمی审 منشات اشاره کرد که این راهبردهای می‌گویند و نشانی از به عادامل واکنش شیمیایی، انتقال گرمای و اصطلاحات است.

۴- ترمو- اقتصادی

ترمو- اقتصادی، ترکیبی از تحلیل اکسترژی و اقتصاد است. تحلیل اکسترژی قادر است که مقدار انرژی اکسترژی را پراورد کند و برای این کار برنامه‌ای باید تهیه کرد که کل یک سیستم را تحلیل ترموامپیس کرده و پس از حکم سیستم ترموامپیس که جرم و انرژی و تغییرات مختلف در کلیه گره‌های تعیین شده در سیستم نیروگاه به پراورد لطفات اکسترژی پی آورده که این کار به طور جداگانه انجام شده است. با توجه به اینکه از تحویل محتواها و اطلاعات بقای جرم و انرژی برای گنجایش کلیه اجزای نیروگاه در دستگاه معادلات حاکم را با استفاده از روش‌های تکرار عددها، محاسبه می‌کنیم. البته این قسمت جوان امر نشاندگی است که اگر جزییات آن خودداری می‌شود، پس از پراورد لطفات اکسترژی نکته مهم بعدی این است که بهترین این لطفات محاسبه نماید.

۵- هزینه‌ای اکسترژی

برای یک سیستم ترموامپیسی می‌توان تعداد جریان جرم و انرژی در ورودی و خروجی به همراه ماده‌های کار و کرم با محیط داشت. طبقاً این جریان‌های جرم و انرژی، می‌توان جریان‌های اکسترژی را با دلیل و خارجی سیستم هم داشت و به طور همزمان به طرف پراورد شده هر جریان اکسترژی هم وجود خواهد داشت. اگر چه این سیستم اکسترژی به جریان اکسترژی احتمالاً ارج به سیستم سیستم اکسترژی در نیاز به خواهد داشت. اگر می‌توان داشت. این راهبرد به منشأ هزینه که این نتایج این انتقالات اکسترژی آن مرتبط کنیم. این قسمت ترمو- اقتصادی را هزینه یا اکسترژی کرده.

برای یک سیستم کلی معادله هزینه محصول تولیدی را به صورت زیر می‌توان نوشت

$$\hat{C}_{p,tot} = \hat{C}_{F,tot} + \hat{Z}_{OM}^{\text{تخته}} + \hat{Z}_{OM}^{\text{تخته}} (S/\text{hr})$$

این معادله نشان می‌دهد که هزینه کل برای تولید یک محصول (برای تولید یک محصول به سوخت $\hat{Z}_{OM}^{\text{تخته}}$ به علاوه هزینه مربوط به سرمایه‌گذاری اولیه (به کلیه هزینه مربوط به سرمایه‌گذاری اولیه (به کلیه هزینه مربوط به سرمایه‌گذاری اولیه

\begin{align*}
\hat{C}_1 &= c_1, E_1 = c_1, (m_\infty) \\
\hat{C}_{p,tot} &= \hat{C}_{F,tot} + \hat{Z}_{OM}^{\text{تخته}} + \hat{Z}_{OM}^{\text{تخته}} (S/\text{hr})
\end{align*}
معادلات با پاید با تعداد مجهول‌ها مساوی باشند. معمولاً لازم است که مقداری برای کمیت c_{L,k} تخمین زده شود و چون اغلب این کار دشوار است می‌توان هزینه انتقال اکسیژن را صفر فرض کرد یعنی:

\[\hat{C}_{L,k} = 0 \tag{12} \]

ابتنه معنی این کار این نیست که این هزینه را نادیده گرفته ایم، بلکه با پاید هزینه آن را به گونه‌ای در هزینه‌های تولید معنی می‌کنیم. به عنوان کرسی مورد کار را دارد که این هزینه را به صورت هزینه سوخت اضافی معنی می‌کند. این در تعادل‌هایی که هزینه متوقف بر واحد اکسیژن است، برای یک جزء در مجموعه یک سیستم تعادل هزینه‌ها به صورت زیر است. است. است. است.

\[\sum C_{e,k} + \hat{C}_{w,k} + C_{q,k} = \sum \hat{C}_{i,k} + Z_k \tag{13} \]

در بعضی موارد لازم است که هزینه اکسیژن متهد شده را به صورت صریح بیان کنیم. در این صورت از ترکیب معادلات را حذف می‌کنیم. در نتیجه:

\[C_{p,k} \hat{E}_{F,k} = C_{F,k} \hat{E}_{F,k} + (C_{F,k} \hat{E}_{L,k} - \hat{C}_{L,k}) + \hat{Z}_k + C_{F,k} \hat{E}_{D,k} \tag{14} \]

اگرین جمله سمت راست معادله را می‌توان به عنوان هزینه انتقال اکسیژن تلقی کرد یعنی:

\[\hat{C}_{D,k} = c_{F,k} \hat{E}_{D,k} \tag{15} \]

معادله (16) در واقع، هزینه سوخت اضافی صرف شده برای جبران انتقال اکسیژن را به‌ویژه با ترکیب مجدد معادلات را یافته کرده کمی، معادله فوق به صورت زیر به‌ویژه می‌آید:

\[c_{F,k} \hat{E}_{F,k} = c_{F,k} \hat{E}_{F,k} + (C_{p,k} \hat{E}_{L,k} - \hat{C}_{L,k}) + \hat{Z}_k + c_{p,k} \hat{E}_{D,k} \tag{17} \]

6- هزینه‌های تلفات و انهدام اکسیژن

اگلب مواردی پیش می‌آید که در یک جزء اکسیژن درای بی‌انتفاع است. به عنوان مثال هنگامی که گرمایی به‌طور مختصر می‌شود. هزینه مربوط به انتقال اکسیژن را در جزئیات می‌توان با نظر گرفتن هزینه‌های خروجی از جزء که در معادله شناسانده می‌گردد. فاکتورهای مربوط به معادله فوق هر یا باید مثبت باشد.

\[\hat{C}_{p,k} = \hat{C}_{F,k} - \hat{C}_{L,k} + \hat{Z}_k \tag{18} \]

\[\hat{C}_{L,k} = c_{L,k} \hat{E}_{D,k} \tag{19} \]

در حالتی که انگل گرمایی دارای ازایم اکسیژن \(\hat{C}_{q,k} \) اندازه‌برداری \(\hat{C}_{L,k} \) انتقال‌یابی، \(\hat{C}_{q,k} \) نیست.

\[\hat{C}_{q,k} = \frac{C_{q,k}}{c_{L,k}} \]
این رابطه بیان کننده این امر است که از کل اکسیرزی مهندم شده، چه درصدی در جریان k روي داده است.

8- سیکل‌های مورد بررسی

پس از بحث مقدماتی که راجع به تحلیل اکسیرزی و ترمو بر اساس ارائه شد، اینکه بررسی دو سیکل مختلف می‌پردایم که اولی یک سیکل ترکیبی است و سیکل دوم هم به یک نیروگاه بخار معمولی مربوط می‌شود.

1-1- سیکل ترکیبی

این سیکل ترکیبی از یک توربین گازی به فردا تولید از 40 مگاوات و یک سیکل بخار به قدرت حدود 20 مگاوات تشکیل شده و در شکل (1) نشان داده شده است.

همان‌گونه که در این شکل مشه می‌شود، سیکل توربین‌های گازی شامل کم‌سرعت، اثاث ایجاد، توربین و ذرات‌پذیری بوده و در سمت چپ تصویر نشان داده شده است. مجموعه سیکل بخار هم که از گازهای جوئی و توربین‌های گازی استفاده می‌کند در سمت راست شکل دیده می‌شود. گازهای جوئی از توربین‌های تاژ وارد هفت مدل حرارتی مختلف شده که پس از عبور از آنها و انتقال گرمایی گازهای محصولات احتراق به آب در گردش در سیکل جزیر، بخار می‌بیند و در توربین‌های سیکل بخاری را روی می‌کند. سیکل نیروگاه بخاری یک سیکل و مرحله ای است. عیب در این شکل دیده می‌شود یک توربین توربین فشار قوی و یک توربین فشار ضعیف است. همانکننده است که در این شکل دیده می‌شود دو برابر حذف دیه از یک نیروگاه دیویژن از زیرکهای توربین فشار ضعیف استفاده کرد. برای انجام این کار توربین فشار ضعیف خود به دو توربین مجزا تقسمی کرده که این کار فقط به منظور انجام عمل شیب سازی است. در این شکل شیب‌ساز و پیش‌جاهم حماقل روانی است.

2- ضریب اکسیرزی - انتقاد

برای یک جزء k این ضریب به صورت زیر تعیین میشود:

\[
f_k = \frac{Z_k}{Z_{k} + c_{p,k} \hat{E}_{D,k} + c_{p,L} \hat{E}_{L,k}}
\]

این ضریب در واقع نسبت بین هزینه‌های که به اکسیرزی مرتبط نیستند و به کل هزینه‌های یک جزء بیان می‌کند. اگر این ضریب بیش از 0.5 باشد معنی آن این است که افزایش هزینه‌های این جزء، عمداً ناشی از هزینه‌های بالای سرمایه‌گذاری اولیه و هزینه‌های تعیین و تکنولوژی است.

3- نسبت انهدام اکسیرزی (yD,k)

این ضریب برای یک جزء k به صورت زیر است:

\[
y_{D,k} = \frac{\hat{E}_{D,k}}{\hat{E}_{F,k} + \hat{E}_{L,k}}
\]

استقلال سال 74، شماره 1، جلد نهم، شهریور 1384

418
همه سیستم به ترتیب متوسط هزینه‌های مربوط به جریان هواي خروجی از کمپرسور و شافت ورودی به آن است. در نتیجه معادله نهایی به صورت زیر می‌شود.

\[
\begin{align*}
\dot{c}_1 &= \dot{c}_4 \dot{c}_{45} \dot{E}_{45} = \dot{Z}_{AC} \\
\dot{C}_4 + \dot{C}_{45} + \dot{Z}_{AC} &= \dot{C}_1
\end{align*}
\]

و با

\[
\dot{c}_4 \dot{E}_4 + \dot{c}_{45} \dot{E}_{45} + \dot{Z}_{AC} = \dot{c}_1 \dot{E}_1
\]

به‌دست می‌آید. پس از به‌دست آوردن اطلاعات مربوط به معادلات مربوط به هزینه‌ها و می‌توانیم که به عنوان مشابه سیستم کمپرسور را به صورت یک حجم معادل در نظر بگیریم، خواهیم داشت:

\[
\dot{E}_{45} = \dot{m} (h_1 - h_4)
\]

که مقدار آن معلوم خواهد بود، و مقدار \(\dot{E}_1 \) هم از قسمت قبل به‌دست می‌آید. بنابراین نهایتاً معادله مقدار \(c_1 \) و \(c_4 \)
ینب‌ها، عمر و مدیریت آن می‌تواند بی‌شک با کمتری از این مقدار یک‌ارکتریزی به جهت در اندام اسکرتیزی سستی می‌رساند. یک‌ارکتریزی درصد اصلی از این مقدار استفاده گرفته شد. از طرفی اما به‌طور کلی این اندام اسکرتیزی به تعداد ۱۰۰۰۰ ریال بایر هر دلار نسبتاً حدود همان مبلغ (۵/۲۰۱۰۰۰) به دست می‌آید. بنابراین در هر موردی که بخواهیم مطالعاتی از اینجا را که در جدول‌ها آمده و دسته‌بندی می‌کنیم، می‌توانیم در ضریب مربوطه ضرر کرده (۷۰۰۰۰ ریال بایر هر دلار) و مطالعه آن را به دست آوریم. اگر این تحول را برای دیگر اجرا مانند اتفاق توپرین، توپرین گاز، توپرین‌های بخار، و ... می‌شناسیم که مقدار این مقادیر به‌طور خاص در حضور مجموعه اسکرتیزی مورد توجه می‌باشد. از طرفی اما به‌طور کلی این اطلاعات که شدید هری‌های و رودی و خروجی وک جزء از مشخص می‌کند می‌توان به تحلیل هری‌های تولید و مصرف اسکرتیزی در هر یک از اجزای برداشت. نتایج این نتایج در جدول (۱) نشان داده شده‌اند. ستون اول این جدول شامل نام اجزای مورد بررسی در این سیکل است. این اجرا بی‌شک از اکسپورتور اکسپورتوری و تیپ (HRSG) نمایش داده‌اند. همچنین توپرین‌های بخار فشار قوی و شارژ پیچیده، ارتش خیار، زنده‌ور و کل سیستم یکسان داده شده‌اند. اطلاعات ستون دوم تولید اکسپورتوری هر این محصول می‌کند. به عنوان مثال اولین عدد ستون دوم که ۲۴/۱۰۴ مگاوات است تولید اکسپورتوری کمربور است که اخلاق اکسپورتوری جریان‌های مواد و خروجی هوا به آن می‌دهد. ستون سوم، مصرف اکسپورتوری یا اکسپورتوری (با اکسپورتوری سوخت) هرچکس به مشخص می‌کند با عنوان مثال برای کمربور مقدار آن ۴۴/۷۳ است که این مقدار بر اساس قدرت ورودی به کمربور است و به عنوان اکسپورتوری سوخت کمربور مصرف شود و نتایج این مقدار که در ستون چهارم نوشته شده است که مابت و موضوع این مقاله خارج بوده و جزو...
جدول 1- انهدام اکرزری و راندمان اکرزری برای سیکل ترکیبی

<table>
<thead>
<tr>
<th>Unit</th>
<th>Prod. Ex. (MW)</th>
<th>Fuel Ex. (MW)</th>
<th>Dest. Ex. (MW)</th>
<th>eps (%)</th>
<th>Edrel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>43/0.1</td>
<td>44/3/3</td>
<td>7/8/2</td>
<td>9/4</td>
<td>5/21</td>
</tr>
<tr>
<td>CC</td>
<td>1/8/0.8</td>
<td>155/0.1</td>
<td>9/3/4/8</td>
<td>7/5/7</td>
<td>27/99</td>
</tr>
<tr>
<td>GT</td>
<td>10/0.12</td>
<td>91/1/2</td>
<td>5/1/4</td>
<td>9/3/0</td>
<td>5/92</td>
</tr>
<tr>
<td>HRSG</td>
<td>24/0.7</td>
<td>34/2/9</td>
<td>3/3/2</td>
<td>8/8</td>
<td>3/7/8</td>
</tr>
<tr>
<td>H.P.Turbine</td>
<td>10/0.4</td>
<td>11/0/2</td>
<td>1/0/3</td>
<td>9/7</td>
<td>4/9/1</td>
</tr>
<tr>
<td>L.P.Turbine</td>
<td>10/0.7</td>
<td>11/0/2</td>
<td>1/0/3</td>
<td>9/7</td>
<td>4/9/1</td>
</tr>
<tr>
<td>Dearator</td>
<td>1/0/2</td>
<td>1/0/2</td>
<td>1/0/3</td>
<td>9/7</td>
<td>4/9/1</td>
</tr>
<tr>
<td>Generator</td>
<td>11/0.6</td>
<td>62/0.9</td>
<td>7/3/2</td>
<td>9/7</td>
<td>4/9/1</td>
</tr>
<tr>
<td>System</td>
<td>11/0.6</td>
<td>117/3/0</td>
<td>5/2/4</td>
<td>9/7</td>
<td>4/9/1</td>
</tr>
</tbody>
</table>

جدول 2- هزینه‌ها و ضریب اقتصادی برای سیکل ترکیبی

<table>
<thead>
<tr>
<th>Unit</th>
<th>C_f ($/h)</th>
<th>C_p ($/h$)</th>
<th>c_f ($/GJ$)</th>
<th>c_p ($/GJ$)</th>
<th>C_D ($/h$)</th>
<th>f (%)</th>
<th>s (%)</th>
<th>y (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>40/3.9</td>
<td>4/3/3</td>
<td>4/0/3</td>
<td>4/3/3</td>
<td>4/3/3</td>
<td>4/0/3</td>
<td>4/0/3</td>
<td>4/0/3</td>
</tr>
<tr>
<td>CC</td>
<td>39/0.9</td>
<td>3/0/2</td>
<td>3/0/2</td>
<td>3/0/2</td>
<td>3/0/2</td>
<td>3/0/2</td>
<td>3/0/2</td>
<td>3/0/2</td>
</tr>
<tr>
<td>GT</td>
<td>10/0.4</td>
<td>10/0.4</td>
<td>10/0.4</td>
<td>10/0.4</td>
<td>10/0.4</td>
<td>10/0.4</td>
<td>10/0.4</td>
<td>10/0.4</td>
</tr>
<tr>
<td>HRSG</td>
<td>50/0.5</td>
<td>6/0.6</td>
<td>6/0.6</td>
<td>6/0.6</td>
<td>6/0.6</td>
<td>6/0.6</td>
<td>6/0.6</td>
<td>6/0.6</td>
</tr>
<tr>
<td>H.P.Turbine</td>
<td>90/0.7</td>
<td>9/0.9</td>
<td>9/0.9</td>
<td>9/0.9</td>
<td>9/0.9</td>
<td>9/0.9</td>
<td>9/0.9</td>
<td>9/0.9</td>
</tr>
<tr>
<td>L.P.Turbine</td>
<td>100/1.1</td>
<td>100/1.1</td>
<td>100/1.1</td>
<td>100/1.1</td>
<td>100/1.1</td>
<td>100/1.1</td>
<td>100/1.1</td>
<td>100/1.1</td>
</tr>
<tr>
<td>Dearator</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
</tr>
<tr>
<td>Generator</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
</tr>
<tr>
<td>System</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
<td>100/2.4</td>
</tr>
</tbody>
</table>

جدول 3- انهدام اکرزری و راندمان اکرزری برای سیکل معمولی

<table>
<thead>
<tr>
<th>Unit</th>
<th>Prod. Ex. (MW)</th>
<th>Fuel Ex. (MW)</th>
<th>Dest. Ex. (MW)</th>
<th>eps (%)</th>
<th>Edrel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.P. Turbine</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
</tr>
<tr>
<td>L.P. Turbine</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
</tr>
<tr>
<td>L.P. Turbine</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
</tr>
<tr>
<td>Generator</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
</tr>
<tr>
<td>Boiler</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
</tr>
<tr>
<td>Preht1+cond.</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
</tr>
<tr>
<td>Dearator</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
</tr>
<tr>
<td>Pump2</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
</tr>
<tr>
<td>Preheater2</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
</tr>
<tr>
<td>Preheater3</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
</tr>
<tr>
<td>Preheater4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
</tr>
<tr>
<td>System</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
<td>100/0.4</td>
</tr>
</tbody>
</table>

421
بیان هم با شدت تمام حضور دارد. روند این تدریج با روند تابی معکس شده در موج 6 همخوانی خوبی دارد.

9- مقایسه هزینه تولید سیکل‌های ترکیبی و بخار

در این فصل به هزینه واحده قدرت تولیدی در سیکل

می‌پردازیم. هزینه واحده قدرت تولیدی سیکل ترکیبی

است در حالت که هزینه واحده قدرت تولیدی سیکل

بخار معمالی S/GJ (6/4988) است. این مقایسه

شناس می‌دهد که در سیکل بخار واحده معامله که سیکل با

طرح قدمی تر، هزینه قدرت تولیدی بالاتر از یک

سیکل جدیدتر (سیکل ترکیبی) است. یاد به ذكر است

که سیکل جدیدتر که 3/16 درصد است بالاتر از راندمان

سیکل بخار معامله می‌گذارد. این ادعا را به ترتیب در

آینده نزدیک به دست خواهد آمد.

- 2- سیکل بخار

این سیکل شبیه سازی یک بخار است که قدرت

تولیدی این سیکل است و شامل پیوندهای فعال و

خواهان فشار قوی، فشار مونتاژ و فشار ضعیف بوده در

آن کنترل شناور و در نهایت به همراه پیشگیری‌های آبی

تغذیه است. مقدار مهندس سیکل ترکیبی معادلات خلج و مکیمی

انرژی را برای این سیستم معامله کرده‌ام. مسیر معادلات

حاصل این توجه به برخی اطلاعات اولیه حل می‌کند. پس از

حل معادلات حاصل، مقدار مهندس سیکل ترکیبی معادلات

مربوط به هزینه‌ها و می‌توان نتیجه گرفت که این برای دستگاه معادلات

مربوطه دارای 16 معدا و 16 مجهول است. همانند سیکل

ترکیبی از حالت دستگاه معادلات کلیه مجهول است به

دست می‌آید. با مشخص کردن اجزای مرتبه که شامل توربین

فشار قوی، توربین فشار مونتاژ، توربین فشار ضعیف، ترکین،

بخار، دیگ بخار، کرم کریک، کرد این، کرد این و کرد این

مطابق قوی (فشاره) 2/3 و 4 و نهایاً کل سیستم

است. اینک جدولهای 3 و 4 را مشابه جدولهای مرتبه برای

سیکل ترکیبی معیار جدولهای (1) و (2) تشکیل می‌دهیم. از

بررسی نتایج جدول (3) مشخص است که بالاترین نسبت

انهدام اکسپزی بر دیگ بخار (بیوئر) مرتبه است

(6/4988 درصد) که در این بیوئر مقدار اندام اکسپزی

33/4 (مگاوات بود و نتایج جدول 4) هم از نقطه نظر اقتصادی

همین امر را تأیید می‌کند که بالاترین نسبت اندام اکسپزی

26/80 می‌توان دیگ بخار است و مجدداً این امر

نشان دهنده مشکل مرتبه به پیدا شدن احراز است که در دیگر

تخصیص خود را می‌طلبد و نیاز به تحقیقات نظری و تجربی

در جویی به هنگام انجام احراز دارد. اختلاف هزینه‌ها

50/1 درصد برای این احراز محتماً ناکام است بودن

نسبه یدیده احراز است. مجموعه مورد بخار از طریق بازیابی

گازهای احراز پس از این احراز در مرحله دوم قرار

دارد که ناشی از ضایع بودن نسبه عملکرد میدلهای حرارتی است.
جدول 4 - هزینه‌ها و ضرایب اقتصادی برای سیکل معنولی

<table>
<thead>
<tr>
<th>Unit</th>
<th>C_f (س/س)</th>
<th>C_p (س/س)</th>
<th>C_f (س/س/ژ)</th>
<th>C_p (س/س/ژ)</th>
<th>C_{D} (س/س)</th>
<th>y (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.P. Turbine</td>
<td>442.77</td>
<td>470.72</td>
<td>3/3</td>
<td>1/1</td>
<td>1/1</td>
<td>1/9</td>
</tr>
<tr>
<td>L.P. Turbine</td>
<td>1339.69</td>
<td>1360.77</td>
<td>3/3</td>
<td>3/3</td>
<td>3/3</td>
<td>1/28</td>
</tr>
<tr>
<td>Generator</td>
<td>1547.62</td>
<td>1574.72</td>
<td>5/1</td>
<td>5/1</td>
<td>1/1</td>
<td>1/99</td>
</tr>
<tr>
<td>Boiler</td>
<td>9919.17</td>
<td>9991.17</td>
<td>8/8</td>
<td>8/8</td>
<td>8/8</td>
<td>1/28</td>
</tr>
<tr>
<td>Preheater1+cond.</td>
<td>220.49</td>
<td>225.49</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>0/04</td>
</tr>
<tr>
<td>Preheater2</td>
<td>102.67</td>
<td>107.67</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>0/12</td>
</tr>
<tr>
<td>Preheater3</td>
<td>57.67</td>
<td>62.67</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>0/28</td>
</tr>
<tr>
<td>Preheater4</td>
<td>112.43</td>
<td>117.43</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>0/28</td>
</tr>
</tbody>
</table>

حرارتی هفته‌نامه و دیگر مشخصات نشان داده شده در شکل (1) مقدار 20 مگاوات از یک آنزیم را باید بدین‌کنیم. در سیکل بخار ساده عملاً چندین امکان وجود دارد و از 398/2/2 مگاوات اکثریت تولیدی پروپ مقدار 2319/15 مگاوات آن به صورت قدرت الکتریکی خارج شده و بقیه آن به عنی حدود 80، می‌توان نشان داد که 355/4 مگاوات تلفات خود بیشتر است که در جدول (2) نشان داده شده است.

10- جمعندا و نتیجه‌گیری

در این مقاله پس از معرفی تحلیل اکسترژی و مباحث ترمو- اقتصادی، آنها را در سیکل قدرت مختلف اعمال کردند و پس از حل دستگاه معادلات حاکم و محاسبه قیمت محصول

مراجع

4. Jan Szargut, D.R. Morris, F.R. Steward, Exergy Analysis of Thermal, Chemical and Metallurgical

استقلال، سال 24، شماره 1، جلد دوم، شهريور 1382

423

15. معاونت فنی نیروگاه اصفهان.