حل جریان پتانسیل تراکم ناپذیر سه بعدی در مجاری با
مقاطب مستطیلی

محمدسعید عسیدی - عباس مهربان

خلاصه
سطح جریان پتانسیل تراکم ناپذیر سه بعدی در مجاری با
مقاطب مستطیلی با مقدار اختلاف محدود به دو روش حل شده است. در روش
اول از یک شبکه، معمای استفاده می‌شود و در روش دوم از یک شبکه به
منطقه بین دو برهه گرفته شده و سطح جریان هم‌زمان انتقال یافته که
در آن شکل به یک شبکه معمای تبدیل شده و شده است. مقایسه
نتایج نشان می‌دهد که روش دوم از یک شبکه برایدرار، بوده و
جهت طراحی نازل‌های با مقاطع مستطیلی مناسب‌تر است.

1 - مقدمه
جهت طراحی نازل‌های تراکم ناپذیر، با ارائه ویژگی‌های استكشافی، در این
скаشه را برای حل جریان پتانسیل تظاهر می‌نماید. در این
مقاطب با روش نتایج المانی با مقاطع مستطیلی بدلیل
نماهنگی استفاده از

استفاده از نتایج آن، روش مورل را اعمال کرد.

استادیار دانشگاه مکانیک دانشگاه صنعتی اصفهان
فارغ التحصیل کارشناسی ارشد دانشگاه مکانیک دانشگاه صنعتی
اصفهان

1. Moxel.
استقلال

جربان پیاتسیل تراکم یا بذر دراین نوع یافت زنده‌باتوپاتداویان وهمکاران [2] با استفاده از یک شبکه متعادل‌برداری ممکن محدودیت‌های حلقه‌ای هر مقطع با کوچکتر شدن سطح مقطع کم می‌شود، جهت حصول دقت کافی با یک شبکه قرار‌گرفته در یک مقطع با تعداد دو یا چهار کره برای جیمزون [3] روشی جهت حل جربان خارجی با استفاده از یک شبکه، منطبق بر بدن باعث ایجاد است. دراین روش درک و مختصر دکا رانی توسط یک انتقال موضعی به دستگاه جدیدی انتقال پیدا می‌کند که در آن هر سطح جزئی معمولاً شبکه یک مکعب در می‌آید. این روش چنین به جربان داخل زاویه اعمال شود، بنظر می‌رسد نقش روح‌درا ویژن راندشته ویژن زمینه‌ای بیشتری نیاز داشته باشد.

پاسخ به این سوال که جهت طراحی نازل کدام روش‌ها دقیق بیشتری برخوردار است و مناسبتر است، هدف این مقاله قرار گرفت به برای این منظور مطالعه جربان پیاتسیل تراکم یا پیاتسیل در بخش‌هایی با مقطع مستطیل شکل توسط هر نوع روش با مقدار اختلاف محدود

حل شده

نحوه حل جربان پیاتسیل با استفاده از شبکه متعادل‌برداری دکارترنی شبکه؛ انتخابی درکشته (1) نتایج داده شده است. همان‌طور که ملاحظه می‌شود شبکه به گونه‌ای ساخته شده که محل تلاقی خطوط شبکه با یکدیگر را درک‌ها تشکیل می‌دهند. جهت سهولت خاطه، بین گره‌ها در امتداد جربان یکسان در دیدن گرفته شده و سه‌بعدی به دلیل وجود موفقیت تقارن در امتداد جربان، مسئله برای یک چهارم کانال حل شده است. با استفاده تقارن مانند سطوح طلب برخورد شده است.

1. Dowine
2. Jameson
حل جریان نیت‌ناسیل تراکم ناپذیر

شکل ۱ - شبکه انتخابی

در روند ورودی و خروجی، دوگانه با استفاده از مقطع یک‌تایی، نیاز به ترکیب مشتقات، در یک نقطه، را پاسخ می‌دهند. در نتیجه، در هر یک از مراحل، در اینجا یک سلول در نظر گرفته شده است. وجود پایین دو قسمت باعث می‌شود که اعمال شرایط مرزی نیت‌ناسیل سرعت یک‌تایی در مقاطع ورودی و خروجی دوا داشته نداند. در نتیجه، در ویرایش یک سلول در نظر گرفته شده و با استفاده از تفاوت محدوده‌کننده برابر مشتق‌های نیت‌ناسیل سرعت و تراکم ناپذیر یافته‌شده و با یکدیگر مقایسه می‌شود کلی زیر می‌شود [۴]:

\[a_{jk} + a_{i+1,jk} + a_{i-jk} + a_{i,j+1,k} + a_{i,j-k} + a_{i,jk+1} + a_{i-jk} = 0 \]

ضحایت‌ها یا ضرایب هندسی هستند که با معلوم کردن مختصات کره‌ها قابل محاسبه هستند. در مجموع ۳۴ نوع نقطه‌ای مسکن قابل
تشخیص استحکامهای ریاضی متفاوتی برای از a_i(1-7) در شکل‌های (1-80) حجم معیار انتخابی به‌ترین برای یک گره

شکل ۲ - حجم معیار رگردها در خلاصه

داخیل ویک گره مرزی نشان داده‌شده است. در این راهنمایی می‌گردد برای گره‌های مرزی، تطبیق ممکن است. در نتیجه، همه یا مساوی مقدار مقطع خروجی مساوی یک گره انتخاب شده‌اند. کم‌تعابر عبوری دیگر جرمی مشخص از نظر زاست است.

۳- حل چربیان با استفاده از شیوه منطبق بریده

ضعف شیوه روش قبل در این است که با کمک‌های سطحی سطح مقطع تعداً دگر‌هایی که می‌باشد و با استرس و در نتیجه استفاده کرده‌ایم با نسیم سرعت افزایش می‌یابد، بدون اینکه سرعت
حل جریان پیتا نسیل تراکم نا پذیر...

می شود، باعث می‌گردد بودن مشترک‌های سرعت سیستم به سطوح چیزهای مزید بر علته می‌گردد. همچنین به‌دلیل اینکه در مراحل بعدی بررسی، امکان ایجاد شکل‌های گذرا در داخل نماز مورد نظرست. اگرروش انتخاب‌کننده که با دکی بتواند این قابلیت را حاکم کند: لذا علاوه بر استفاده از شبکه، منطبق بر بندن، دستکاری که با انتقال موضعی به دستگاه (زیر می‌توانیم) تبدیل شود. در شکل (2) پیک مقطع طولی از شبکه نخان داده شده است. شبکه به‌گونه‌ای ساخته شده که اندازه‌ای اضلاع هریک از سلول‌های شبکه به نزدیکی باشند.

۲- روش انتقال
به‌نوعی انتقال به میرز زیر، هرسول هریک در دستگاه به‌یک ممکن به شکل واحد در دستگاه (زیر می‌توانیم) تبدیل می‌گردد. در شکل (5) تبدیل یافته، شکل (3) آورده شده است.

\[
\begin{align*}
&x = \frac{8}{i=1} \sum_{i=1}^{N} \xi_i \\
y = \frac{8}{i=1} \sum_{i=1}^{N} \eta_i \\
z = \frac{8}{i=1} \sum_{i=1}^{N} \zeta_i
\end{align*}
\]

که در آن

\[
N_i = \left(\frac{1}{2} \pm \xi \right) \left(\frac{1}{2} \pm \eta \right) \left(\frac{1}{2} \pm \zeta \right), i = 1/\ldots/8
\]

\[
-\frac{1}{2} \leq \xi \leq \frac{1}{2}, \quad -\frac{1}{2} \leq \eta \leq \frac{1}{2}, \quad -\frac{1}{2} \leq \zeta \leq \frac{1}{2}
\]
شکل 4- شکل درستگاه \(xyz\)

شکل 5- شکل برای پیدا یافتن

با این انتخاب‌های زیر، از سلول \(ijk\) بزرگ‌ترین زیریک زوج شکل و مرکز جمع‌سازی
بر مرکز مکعب \(O = \xi = \eta = \zeta\) منطبق می‌شود. از مثال‌های انتقال (2) می‌توانید، \(H\) برای هر سلول بدست آید:

\[
H = \begin{bmatrix}
\xi_x & \eta_x & \zeta_x \\
\xi_y & \eta_y & \zeta_y \\
\xi_z & \eta_z & \zeta_z \\
\end{bmatrix}
\]

گام آخر باعث اполн‌تین مشتق‌های \(x\) بر حسب مختصات رئوس سلول ل

بصورت زیر می‌شود:

\[
\begin{align*}
\frac{x_\xi}{x} &= (x_1 + x_2 + x_3 - x_4 - x_5 + x_6 + x_7 - x_8)/4 \\
\frac{x_\eta}{x} &= (x_1 - x_2 + x_3 + x_4 - x_5 - x_6 + x_7 + x_8)/4 \\
\frac{x_\zeta}{x} &= (x_1 - x_2 - x_3 + x_4 + x_5 + x_6 + x_7 + x_8)/4
\end{align*}
\]
حل چربان پیتاسیل تراکم ناپذیر

شکل بقا، معادله پیوستگی در اثر انتقال حفظ می‌شود:

\[\frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) + \frac{\partial}{\partial z} (\rho w) = 0 \tag{6} \]

\[\frac{\partial}{\partial x} (\rho h u) + \frac{\partial}{\partial y} (\rho h v) + \frac{\partial}{\partial z} (\rho h w) = 0. \tag{7} \]

که در آن \(h \) ماتریس \(H \) بوده و \(U, V, W \) توسط رابطه زیر نیز می‌شوند:

\[
\begin{bmatrix}
U \\
V \\
W
\end{bmatrix} = \begin{bmatrix}
\phi_x \\
\phi_y \\
\phi_z
\end{bmatrix} ; \quad G = \left[H^T H \right]^{-1} \tag{8}
\]

از آنجاکه در این مقاله چربان پیتاسیل تراکم ناپذیر مورد نظر است، از مدل‌های به پیش راه‌آمده با بررسی واریانس سازی و پیش‌بینی تغییرات طبقه‌بندی و سرعت‌های غیرهم‌نواخت در داخل سلول دارم:

\[\phi = \sum_{i=1}^{\beta} H_i \phi_i \tag{9} \]

\[hU = \sum_{i=1}^{\beta} H_i (hu)_i , \quad hV = \sum_{i=1}^{\beta} H_i (hv)_i , \tag{10} \]

\[hW = \sum_{i=1}^{\beta} H_i (hw)_i . \]
که در آن منظور از \(\phi \) مقدار \(\phi \) در راه \(ijk \) مکعب است و همینطور برای مقادیر مثل \(\frac{\partial}{\partial x} \)

\[
\int_i^{(hU)} \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} -\frac{1}{2} \]

روابط (۵) بدست آورده و در معاوضه (۷) جایگزین ساخت. به‌عنوان نمونه:

\[
\left[\frac{\partial}{\partial x} (hU) \right]_{ijk} = 0.25 \left[(hU)_{i+\frac{1}{2}, j+\frac{1}{2}, k+\frac{1}{2}} - (hU)_{i-\frac{1}{2}, j-\frac{1}{2}, k-\frac{1}{2}} \right]
\]

\[
+(hU)_{i+\frac{1}{2}, j+\frac{1}{2}, k+\frac{1}{2}} - (hU)_{i-\frac{1}{2}, j-\frac{1}{2}, k-\frac{1}{2}} \]

جای باقی‌مانده در معاوضه به‌طور آمده به یاد را از طریق رابطه (۸) جایگزین کرده و سپس مشتق‌های \(\phi \) بر حسب مقادیر \(\frac{\partial}{\partial x} \) قرار دهیم. نتیجه‌برای \(ijk \) به معاوضه‌ای مانند‌را بی‌شک‌هست.

\[
a_\phi = \alpha_\phi \quad +a_\phi \\
1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9 \qquad 10 \qquad 11 \qquad 12 \qquad 13 \qquad 14 \qquad 15 \qquad 16 \qquad 17 \qquad 18 \qquad 19 \]
\]
در رابطه، فرق ضایع η_{ijk} با توابع از h و عناصر G است. نشان دادن " به اختصار را به شکل مربوط می‌شود. برای هر سیال در عدد ijk را به مقدار η_{ijk} برای سرعت در گره اطراف غوی مربوط می‌شود. این گره تفاوت می‌گردد که در حال روبرویی کمی به فلز دو به مرکز ijk ناپدید می‌شود. باید ترتیب دقت نتایج پیش‌بینی شده بود. با استفاده از اطلاعات سیستم‌های معمول می‌گردد که توسط η_{ijk} موضح است. اگر در محاسبه فرضیه گیری

محاسبات و نتایج به

- این هدف مقیاسی، نتایج جمله از دوروش بود، نمایی با بهره‌نامه ساده مورد استفاده قرار گرفت. این ناپدید می‌شود با مقطع داری در ورودی و خروجی، ویک قسمت همگرا، با باید نتایج تشکیل شده است. در شکل شماره (ع) شما از این ناپدید ناپدیده قائم نشان داده شده است.
مجموعه، معادلات اختلاف محدود توسط روش گاوس– زایدل حل می‌شود.
نتایج حاصل از روش شبکه، مطابق با روش شبکه در مقطع ورودی به خروجی
ویژه (2) در شکل شماره ۱۶، اردوه شده است. در این
مشابه تعداد کره‌های طولی ۱۴، شبکه مقطع ورودی ۱۵×۱۷، شبکه مقطع خروجی ۱۵×۱۰، و تولرانس همگرایی ۵-۱۰ = ۵ استخابه شده‌اند.
با انتخاب ضریب همگرایی مساوی ۲۵/۱۲، پس از ۸۸۸ بار برش و گواه همگرایی بدست‌آمده است. اختلاف دیپ ورودی و خروجی حدود ۳۵
شد و نشان می‌دهد با ابتدای پیش‌تری که استفاده شود، به‌منظور
نیم‌بردن دقت‌ای روش، توسط زیر بندهای در هر تکرار، بتنا سرعت جدید با فنیکی‌کردن این استخابه دیپ‌های هر مقطع به دو جری
متوسط اصلاح شد و به‌دین ترتیب اختلاف‌فوق به ۳۵ تا تقلیل یافت.
در روش شبکه، منطقه بردیده، بدلیل محدودیت حافظه،
میکروکارا می‌توتر، شبکه‌ی با مقطع مربعی و هدایاً به دو باد ۱۵×۱۵
مورد استفاده قرار گرفت. برای نسبت تراکم ۱/۲ به تولرانس همگرایی
۶-۱۰ و ضریب همگراش مساوی ۲/۵، پس از ۹۸ تکرار جواب بر همگرا
بدست آمده نتیجه‌ی آن در شکل شماره ۱۸، نشان داده شده است.
هم‌نظور که ماهه‌ده می‌شود. توزیع سرعت‌های مبنای به‌ضریب دریودی
ویک ماکزیمم دستی در خروجی قسمت همگرا را نشان می‌دهد که درون
1. Gauss–Seidel
چنان است که انتظار بروده و مطابق با نتایج مراجع [1] و [2] است در موردی چنین روندی در گذشته (۷) مشاهده نمی‌شود، بعلاوه در این حالت اختلاف دیگری در ورودی و خروجی ناسازان اعمال زیر نشان می‌دهد. اصلاح بیشتری در ورودی و خروجی ناسازان بیشتر باعث بهبود در شکل روش‌های است. همین سلاح توسط روش شیکه‌های در دو مثلاً چندان هندسه‌ای باشد است. یک از ۱سنتری و مجزای ب در جدول شماره (۱)، ورده شده است. پس از ۲۱۷، به راهگیری و خطا جواب

جدول (۱) مقایسه‌دوروش‌باهم

| روش شیکه منطبق بریده‌های | مقایسه دوروش‌ | دو چیز
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۲۷</td>
<td>۱/۲۷</td>
<td>خروجی‌بی‌</td>
</tr>
<tr>
<td>۰/۷۸</td>
<td>۱/۲۵</td>
<td>ضربه‌بخش‌کنی</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۰</td>
<td>تعداد دمکاهطلولی</td>
</tr>
<tr>
<td>۵</td>
<td>۵</td>
<td>تعداد دگره‌ها در مقطع‌های‌خر</td>
</tr>
<tr>
<td>۵</td>
<td>۵</td>
<td>تعداد دگره‌ها در مقطع‌های‌خر</td>
</tr>
<tr>
<td>۶۰۰</td>
<td>۱۰۰</td>
<td>تعداد دنقاط شیکه‌های</td>
</tr>
<tr>
<td>۱۵۰</td>
<td>۴۴۱</td>
<td>تعداد دنقاط شیکه‌های</td>
</tr>
</tbody>
</table>

توضیحات:
- نسبت سطح مقطع ورودی به خروجی
- ضربه‌بخش‌کنی
- تعداد دمکاهطلولی
- تعداد دگره‌ها در مقطع‌های‌خر
- تعداد دگره‌ها در مقطع‌های‌خر
- تعداد دنقاط شیکه‌های
شکل ۷ - سرعت در خط الارس و مرکزکناره در روش شبیه‌سازی متعادل
طول کانال ل شکل 4 سرعت در مرکز پما یا لاشی کانال در درون منطبق بریده
استقلال

همگرا بودن این‌طوری اینکه شیب‌هایه از عضد گره‌های کاذبی برخوردار نبود، نتایج بدست‌آمده روند معقولی را نشان نمی‌دادند. زمان‌های برنامه‌ای که می‌پوستی برای هر دوره‌ دریک حدود بود در مجموع مقایسه‌ی اجرایی فوق نشان می‌دهد برای مسائل مشابه در این حالت که زمان اجرای برنامه‌ای برای هرچه دو دریک حدود است و لیکن روش دوم از دقت به‌شتری برخوردار است و چنین نمی‌باشد لتوسط شیب‌هایی با تعداد گره‌های کاذب معرفی شود، می‌توان از نتایج حاصل در طراحی نازل‌های با مقطع مستطیلی سود برد.
مراجع

۲- مشیری، عباس. حل جریان پتانسیل سباعی در مجاری مقطعی مستطیلی شکل به روش عددی، رساله‌کا رشته‌ای ارشد دانشکده مکانیک، دانشگاه صنعتی اصفهان، آبان ۱۳۶۸.

