استفاده از شبیه‌برداری ماتریس برای رنگ محدودیت در تعداد رنگ‌های کالریتری
به کار رفته در رنگ همانندی کالریتری

سیدحسن امیرشاهی
دانشکده مهندسی نساجی دانشگاه صنعتی اصفهان

چکیده - در این مقاله، الگوریتمی برای رنگ محدودیت در تعداد رنگ‌های شرکتی کننده در رنگ همانندی کالریتری ارائه شده است. روش ممکن استفاده از الگوریتم پیشنهادی آن است که اساس آن بر محیط رسمی بر مبنای رنگ‌های مکسوس پذیری است. این روش جدید استفاده از چهار رنگ در نظر گرفته و در نهایت شبیه‌برداری ماتریس است. در این روش، پیشنهاد شده است از نظر تعداد رنگ‌های کالریتری که بر مبنای به کار گیری شبیه‌برداری ماتریس است، ارزشی به مقیاس بدهد که در نهایت، تعداد رنگ‌هایی که بر مبنای پیشنهاد شده است، کاربرد روش پیشنهادی در یک رنگ همانندی کامپیوتری از آن است. استفاده

Using Pseudo-Inverse to Eliminate the Limitation of the Number of Colors in Colorimetric Match

S.H. Amirshahi
Department of Textile Engineering, Isfahan University of Technology

ABSTRACT- An algorithm is suggested for implementation of unlimited primaries in two-constants Kubelka-Munk color matching attempt. Allen's method for tristimulus color matching, which was limited to four colorants in two constant theory, dealt with irreversible matrices. By application of the pseudo-inverse, it is not necessary to limit the number of primary colors to four as Allen suggested. The suggested method is programmed to a color matching attempt with five pre-colored fibres.

روش‌های شبیه‌برداری رنگ همانندی محدودیت در روش اول، تقیی منحنی انکاسی نمونه‌های استاندارد، هدف رنگ همانندی است. از آنجا که گیپ کامل منحنی انکاسی استاندارد عمل ممکن نیست، جمع مربع انحرافات بین منحنی‌های انکاسی نمونه و استاندارد ویا تابعی از این منحنی‌ها به حداکثر رسانده می‌شود. بین ریاضی این هدف را به صورت زیر می‌توان نشان داد:

1 - مقدمه
در سالهای اخیر استفاده از روش‌های شبیه‌برداری بر مبنای نظریه کوبلکا - مانک [1] برای رنگ همانندی ایجاد در صنایع مختلف مستداول شده است. در روش مستقیم که رنگ همانندی اسپکترووفوتو متری و رنگ همانندی کالریتری نامیده می‌شوند، در

5 - استادیار

استقلال سال 14، شماره 2، اسفند 1374
در مقاله حاضر، با استفاده از شبه معکوس ماتریس، روشی برای حل ماتریس‌های تشکیل شده در شرایطی که کار رفت در رنگ همانندی کاریمیتر محدود به تعداد پیشنهادی در رو به آن نیست پیشنهاد شده است. به عبارتی، با استفاده از روش پیشنهادی محدودیت در تعداد اولیه‌هایی که کار رفت در رنگ همانندی کاریمیتر پیدا می‌شود (E, S, R۱, samp) این روش برای نظریه دو ثابتی کیویلکا-مانکی در رنگ همانندی کامپوزیت به صورت عملی آزمایش شده که نتایج حاصل در این مقاله نشان داده شده است. کاربرد این روش در نظریه دو ثابتی کیویلکا-مانکی موضوع پژوهش دیگری است که در حالت حاضر در دست انجام است.

2- نظریه‌های موجود در رنگ همانندی کاریمیتر

بر اساس پیشنهاد آلن، شرایط برای رنگ همانندی کاریمیتر را به صورت زیر می‌توان نشان داد:

\[T.E.R_1 = T.E.R_{samp} \] \hspace{1cm} (1)

به گونه‌ای که تابع رنگ همانندی E-انرژی نسبی منبع \(s_{amp} \) ابتکارات طبقه 10 و 1 نشان دهنده هدف 10 و میانگین نمونه ای است که همانندی شده است.

معادله عمومی بین مقادیر محکمانه سه گانه و ظل نگه‌یا

\[X_i = F_1(c_{i1}, c_{i2}, ..., c_{iN}) \]

\[Y_i = F_2(c_{i1}, c_{i2}, ..., c_{iN}) \]

\[Z_i = F_3(c_{i1}, c_{i2}, ..., c_{iN}) \] \hspace{1cm} (2)

که اختلاف بین مقادیر محکمانه سه گانه نمونه استندارداً، \(i = 1, 2, ..., N \) پیشتر در سطح نسبی کیویلکا-مانکی به سه رنگ در نظریه دو ثابتی کیویلکا-مانکی به چهار رنگ محدود می‌شوند. زیرا صرفاً خانه‌ی ماتریس‌های تشکیل شده می‌توانند مکوس شوند.
غلظت این رنگ‌ها را نشان می‌دهد. معمولاً با خاصیت "کردن" معمولاً به کار رفته و از نظر محاسبه نمود. ولی باید به استخراج که چنین عملی منجر به کاهش دقت نتایج حاصل خواهد شد. از این رو لازم است که دقت غلظتهای محاسبه شده با استفاده از فرمول تکرار اندازه داد. جدول روش پیشنهادی آلبر متغیرهای استفاده از چهار رنگ در نظر گرفته می‌شود. استخراج: شکل عمومی معادله ای که در جمله‌های زیرتکرار باید از طریق مقدار معادله زیر خواهد بود:

\[\Phi_k = \begin{bmatrix} S_{1,1}, & S_{1,2}, & \ldots & S_{1,r}, & \ldots \\ S_{2,1}, & S_{2,2}, & \ldots & S_{2,r}, & \ldots \\ \vdots & \vdots & & \vdots & \vdots \\ S_{r,1}, & S_{r,2}, & \ldots & S_{r,r}, & \ldots \\ \end{bmatrix}_{16 \times 16} \]

و

\[\begin{align*}
A_{(2 \times 2)} & = \Delta t_{(2 \times 2)} \\
B & = \begin{bmatrix} (\partial R/\partial K)_{11} & \ldots & (\partial R/\partial K)_{1,16} \\
\vdots & \ddots & \vdots \\
(\partial R/\partial K)_{16,1} & \ldots & (\partial R/\partial K)_{16,16} \\
\end{bmatrix}_{16 \times 16} \\
D_k & = \begin{bmatrix} (\partial R/\partial S)_{11} & \ldots & (\partial R/\partial S)_{1,16} \\
\vdots & \ddots & \vdots \\
(\partial R/\partial S)_{16,1} & \ldots & (\partial R/\partial S)_{16,16} \\
\end{bmatrix}_{16 \times 16} \\
E & = \begin{bmatrix} E_{11} & \ldots & E_{1,16} \\
\vdots & \ddots & \vdots \\
E_{16,1} & \ldots & E_{16,16} \\
\end{bmatrix}_{16 \times 16}
\end{align*} \]

\[A = T \cdot B \Phi_k + D_k (\Phi_k - K \Phi) \]

به گونه‌ای که با چنین محورپذیری، \(A \) یک ساتریس مربعی است و که از معادله زیر به دست می‌آید:

\[\begin{bmatrix} y_{11} & \ldots & y_{1,16} \\
\vdots & \ddots & \vdots \\
y_{16,1} & \ldots & y_{16,16} \\
\end{bmatrix}_{16 \times 16} \]

به گونه‌ای که

\[(\partial R/\partial K)_i = - \frac{\gamma R_i^2(t)}{S_i(t)(1 - R_i^2(t))} \quad (\partial R/\partial S)_i = R_i(t) \frac{1 - R_i(t)}{S_i(t)(1 + R_i(t))} \]

\[(\partial R/\partial K)_i = R_i(t) \frac{1 - R_i(t)}{S_i(t)(1 + R_i(t))} \]

همان گونه که گفتگه شد، \(T \) ناماآور رنگ همانندی (X) نتیجه انجام شده توزیع آنرژی نسبی طیفی منبع را نشان می‌دهد.

\[\Phi_k = \begin{bmatrix} K_{1,1} & K_{1,2} & \ldots & K_{1,r} \\
K_{2,1} & K_{2,2} & \ldots & K_{2,r} \\
\vdots & \vdots & & \vdots \\
K_{r,1} & K_{r,2} & \ldots & K_{r,r} \\
\end{bmatrix}_{16 \times 16} \]

استقرار، سال 14، شماره 2، اسفند 1374
در رنگ‌های نانویی کالریمتی روی آن بر مبنای کمبود ماتریس‌های محکوم دیده شده است. از این رو ضروري است که تعداد رنگ‌ها در نظام به ترتیب به کمک و سپس به ترتیب به چهار محدود شود. توجهی ریاضی مشکل ایجاد شده این است که در صورت رعایت نکردن محدودیت فوق، به دلیل اینکه ماتریس

\[A^{*} = \begin{bmatrix} A_{1} \end{bmatrix} \]

در معادله ۸ به دست می‌آید. جبرانکی ماتریس گسترشی A به دلیل كه معکوس تدریج حالت می‌شود محکوم است. در این صورت تقلید مجهول c به ماتریس داده می‌شود. در این صورت تقلید مجهول c به ماتریس داده می‌شود.

\[c = A^{+} \cdot t \]

(۱۹)

شناشده‌ی هر ماتریس محکوم A به یک ماتریس محکوم A* و A به این معنی است. به‌همین‌نوبه‌که در صورت می‌شود محکوم A این ماتریس محکوم پذیر است و شبه معکوس آن با معکوس پایدار

\[A^{-1} = A^{*} \cdot t \]

(۲۰)

از آنجا که ریشه‌ی دکارتی روش آن در حصول ماتریس محکوم پذیر است، با چنین راه حلی، محکومیتی که در روش پیشنهادی آلی در این تعداد اولیه‌ی وجود دارد از بین می‌روید و معادله (۵) که در مرحله پیشنهادی جواب در حل‌های تکرار ظاهر می‌شود کلی زیر را خواهد یافت:

\[A_{(2 \times N)} \cdot \Delta c_{(N \times 1)} = \Delta t \cdot (2 \times 1) \]

(۲۱)

در این معادله N شناشده‌ی تعداد رنگ‌های کاندیدا برای رنگ‌های نانویی است و معادله (۶) به صورت کلی زیر در معادله (۱۱) و (۱۲) هستند و بیان ماتریس‌ها به

\[A = T \cdot E[D_{K} \cdot (\Phi_{K} - K_{N} \cdot u)] + D_{S} \cdot (\Phi_{S} - S_{N} \cdot u)] \]

(۲۲)

در معادله (۱۱) ماتریس‌های \(\Phi_{K} \) به ترتیب همان ماتریس‌های شماره (۶)، (۷) و (۱۲) هستند و بیان ماتریس‌ها به

\[S_{T} = \begin{bmatrix} S_{T,1} \quad \cdots \quad S_{T,2} \end{bmatrix} \cdot (2 \times 1) \quad (16) \]

\[u = \begin{bmatrix} 1 \quad 1 \quad \cdots \quad 1 \end{bmatrix} \cdot (1 \times 1) \quad (17) \]

\[S_{S} \quad \text{شبیه‌ی جذب و انتشار کیفیتی - مانکر باید رنگ چهارم هستند.} \]
چون اصول تمامی پرده‌های شکنامه‌های رنگ همانندی بر مبنای استفاده از "مانی" تعریف نمی‌شود و برای اندازه‌گیری خودکار به صورت تصفیه شده است.

\[\Phi_k = \begin{bmatrix} K_{1,1} & \ldots & K_{1,N-1} & K_{1,N} \\ \vdots & \ddots & \vdots & \vdots \\ K_{N,1} & \ldots & K_{N,N-1} & K_{N,N} \end{bmatrix}_{16 \times (N-1)} \]

\[\Phi_s = \begin{bmatrix} S_{1,1} & \ldots & S_{1,N-1} & S_{1,N} \\ \vdots & \ddots & \vdots & \vdots \\ S_{N,1} & \ldots & S_{N,N-1} & S_{N,N} \end{bmatrix}_{16 \times (N-1)} \]

\[K_N = \begin{bmatrix} K_{N,1} \\ K_{N,2} \\ \vdots \\ K_{N,N} \end{bmatrix}_{1 \times 16} \]

\[S_N = \begin{bmatrix} S_{N,1} \\ S_{N,2} \\ \vdots \\ S_{N,N} \end{bmatrix}_{1 \times 16} \]

\[u = \left[\begin{array}{c} 1 \\ \vdots \\ (N - 1) \end{array} \right] \left(\begin{array}{c} (N - 1) \\ \vdots \\ 1 \end{array} \right) \]

در چنین حالتی، معادله زیر با توجه به معادله (25) در تغییر مقدار \(\Delta c \) در حداقلی تکرار در شکنامه‌ای می‌تواند استفاده شود.

\[\Delta c_{(N \times 1)} = A_{(1 \times N)} \Delta t_{(1 \times 1)} \]
جدول ۱ - مشخصات پنجمومه رنگ در سیستم CIELAB که به عنوان استاندارد هدف انتخاب شده‌اند

<table>
<thead>
<tr>
<th>شماره</th>
<th>a*</th>
<th>L*</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۶/۸۹</td>
<td>۲۵/۸۹</td>
</tr>
<tr>
<td>۲</td>
<td>۹/۴۰</td>
<td>۳۷/۴۰</td>
</tr>
<tr>
<td>۳</td>
<td>۹/۸۸</td>
<td>۳۳/۸۸</td>
</tr>
<tr>
<td>۲</td>
<td>۲۲/۷۷</td>
<td>۲۷/۷۷</td>
</tr>
<tr>
<td>۴</td>
<td>۳۷/۸۸</td>
<td>۲۷/۸۸</td>
</tr>
<tr>
<td>۵</td>
<td>۴۱/۷۷</td>
<td>۴۱/۷۷</td>
</tr>
</tbody>
</table>

اختلاف رنگ بیان‌کننده از استاندارد تری‌وی به عنوان هدف این رنگ همانندی کاستامیتری انتخاب شده (۰ = ۰)، بنابراین نمادی که به عنوان احساسات رنگ همانندی انتخاب شده است، با اختلاف تصادفی این بین دو رنگ اینکه به عنوان اولیه در کار رفته‌اند به سمت CIELAB استاندارد نوری \(D_65 \) و مشابه‌کننده استاندارد ۶۰و CIE (۱۹۶۴) در جدول (۲) نشان داده شده‌اند. در جدول (۱) نشان داده شده‌اند. همان‌گونه که جدول‌های (۲) و (۷) نشان می‌دهند به کار بردن رنگ جنگلی باعث کاهش مقدار \(AE \) بهینه مقدار احساسات رنگ همانندی کاربردی شده و به‌ویژه افزایش احداث رنگ‌های اولیه مشابه به همان‌گونه که در رنگ‌های کاستامیتری انتخاب شده مقدار داده شده‌اند. به‌طور کلی نمودار مشابهی به‌ویژه در رنگ‌های کاستامیتری انتخاب شده مقدار داده شده‌اند. به‌طور کلی نمودار مشابهی به‌ویژه در رنگ‌های کاستامیتری انتخاب شده مقدار داده شده‌اند. به‌طور کلی نمودار مشابهی به‌ویژه در رنگ‌های کاستامیتری انتخاب شده مقدار داده شده‌اند. به‌طور کلی نمودار مشابهی به‌ویژه در

| جدول ۲ - مقدار اختلاف رنگ‌های یکدیومنه پهلوهای تری‌وی تری‌وی (هدف) و نمونه‌های تخمینی زده شده

<table>
<thead>
<tr>
<th>شماره</th>
<th>سفید</th>
<th>MS</th>
<th>ایبی</th>
<th>قرمز</th>
<th>گردو</th>
<th>Zرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۲/۸۳</td>
<td>۳۷/۸۹</td>
<td>۳۵/۸۹</td>
<td>۱۸/۸۷</td>
<td>۸/۳۶</td>
<td>۱۳/۱۲</td>
</tr>
<tr>
<td>۲</td>
<td>۳۷/۸۹</td>
<td>۳۷/۸۹</td>
<td>۳۷/۸۹</td>
<td>۱۸/۸۷</td>
<td>۸/۳۶</td>
<td>۱۳/۱۲</td>
</tr>
<tr>
<td>۳</td>
<td>۱۵/۷۷</td>
<td>۱۵/۷۷</td>
<td>۱۵/۷۷</td>
<td>۱۸/۸۷</td>
<td>۸/۳۶</td>
<td>۱۳/۱۲</td>
</tr>
<tr>
<td>۴</td>
<td>۱۱/۷۹</td>
<td>۱۱/۷۹</td>
<td>۱۱/۷۹</td>
<td>۱۸/۸۷</td>
<td>۸/۳۶</td>
<td>۱۳/۱۲</td>
</tr>
</tbody>
</table>
جدول ۴ - مقدار اختلاف رنگ‌گذاری یک‌نمونه‌سازی در کنار (عدد) و نمونه‌های تخمین زده شده

<table>
<thead>
<tr>
<th>ΔE</th>
<th>A</th>
<th>D₀₀</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/2</td>
<td>0</td>
<td>۴</td>
</tr>
<tr>
<td></td>
<td>6/7</td>
<td>0</td>
<td>۴</td>
</tr>
</tbody>
</table>

جدول ۵ - مقدار اختلاف رنگ‌گذاری یک‌نمونه‌سازی در کنار (عدد) و نمونه‌های تخمین زده شده

<table>
<thead>
<tr>
<th>ΔE</th>
<th>A</th>
<th>D₀₀</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/3</td>
<td>6</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>1/56</td>
<td>0</td>
<td>۳</td>
</tr>
<tr>
<td></td>
<td>1/04</td>
<td>0</td>
<td>۴</td>
</tr>
</tbody>
</table>

جدول ۶ - مقدار اختلاف رنگ‌گذاری یک‌نمونه‌سازی در کنار (عدد) و نمونه‌های تخمین زده شده

<table>
<thead>
<tr>
<th>ΔE</th>
<th>A</th>
<th>D₀₀</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/72</td>
<td>3/12</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>6/12</td>
<td>0</td>
<td>۲</td>
</tr>
<tr>
<td></td>
<td>6/04</td>
<td>0</td>
<td>۴</td>
</tr>
</tbody>
</table>

جدول ۷ - مقدار اختلاف رنگ‌گذاری یک‌نمونه‌سازی در کنار (عدد) و نمونه‌های تخمین زده شده

<table>
<thead>
<tr>
<th>ΔE</th>
<th>A</th>
<th>D₀₀</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8/77</td>
<td>25/12</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>6/38</td>
<td>57/74</td>
<td>۰</td>
</tr>
<tr>
<td></td>
<td>20/39</td>
<td>78/07</td>
<td>۰</td>
</tr>
</tbody>
</table>

استلال، سال ۱۴، شماره ۲، اسفند ۱۳۹۴
1. colorimetric color matching
2. Allen
3. Inversive matrix
4. Two constant Kubelka-Munk theory
5. Matrix pseudo-inverse
6. Spectrophotometric color matching
7. Tristimulus values
8. Metamerism
9. Color matching function
10. Relative spectral power of the light
11. Spectral reflectance
12. Target
13. Nonlinear function of colorant concentrations
14. Linearisation
15. Iteration
16. Kubelka-Munk absorption coefficient
17. Kubelka-Munk scattering coefficient
18. Gaussian elimination
19. Fit
20. Least-squares technique
21. Singular
22. Matlab
23. Standard illuminant
24. Standard observer
25. Degree of freedom