بررسی روشهای کاهش مصرف انرژی در یخچال‌های فریزری‌های خانگی

علي حیدری منفرد، سعید هاتفی پور و عباسعلی آهنگر
دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف
(درباره مقاله: 1375/11/28 - دیوان نشر: نهالی 083)

چکیده - در زمینه‌ی توانایی‌های پژوهشی قابل توجهی در رابطه با کاهش مصرف انرژی در سیستم‌های برق، بالایی در خصوص طراحی و ساخت مناسب بخاج - فریزری‌های خانگی انجام شده است. به‌طوری‌که، به‌عنوان یکی از جمله تحقیق‌های از این وسایل استفاده از مصرف‌های بالاتر از آن معمولاً وابسته به ارتباط با جایگزینی میلدردهای خاص‌تر از آن می‌باشد. پروانه‌های موثرانه و مشابه آن به تأمین اجراهای هدفمند دولت جمهوری اسلامی در خصوص اجرای طرح کاهش مصرف انرژی در این منطقه می‌باشد. با توجه به این نکته و در نظر گرفتن این شکلی که به‌عنوان یکی از امکانات اصلی انجام پایه‌گذاری و تهیه آزمون‌ها باید توجه کاربری برای این شکلی باشد. در این مقاله به اقدامات پژوهشی انجام‌یافته در ارتباط با مدل‌سازی تحلیلی و آزمون‌های تجربی انجام پایه‌گذاری برای تسهیل قابلیت طراحی بیشتر و بهبودی روش‌های طراحی یخچال - فریزری‌های خانگی که مصرف‌رسانی بالایی می‌پذیرد. با استفاده از نمونه‌های پایه‌گذاری شده، نتایج حاصل از انجام تحلیل پارامتریک و اجرای تکنیک ددهنه‌ی یک یخچال - فریزر نمونه‌اندازی داده‌ها در کاهش نیروی برق و انرژی بازدهی ارائه شده است. معمولاً تاثیر جایگزینی مبدل 12-R با مبدل گازینی 134a-R روی مصرف برق و مصرف نیروی برق در یخچال‌های فریزری‌های خانگی است. مورد بررسی قرار گرفته است.

Study on Reduction of Energy Consumption of Household Refrigerator-Freezers in IRAN

A. Heydari , S. Hafezi-Pour and A.A. Ahangar
Department of Mechanical Engineering, Sharif University of Technology

ABSTRACT- In the last quarter of the century, a substantial amount of research work has been conducted on optimization of energy consumption by refrigeration systems and on proper design and construction of

* استاد
** دانشجوی کارشناسی ارشد
*** دانشجوی کارشناسی ارشد

استقلال، سال 16، شماره 2، اسفند 1376
کاهش میزان مصرف انرژی در یخچال-فریزرهای خانگی آغاز گردید. از ابتدای ۶۰ میلیارد در کشورهای صنعتی شروع شده است. براساس گزارش تصویری مواد [۳] میزان مصرف انرژی برای یک یخچال در یک هفته (۱۸۷۲) در حدود ۵۰۰ kWh/year در سال ۱۹۸۲ به حدود ۵۰۰ kWh/year در سال ۱۹۷۸ خواهد رسید. شکل (۱) روند کاهش مصرف انرژی را نشان می‌دهد.

برای یک یخچال-فریزر خانگی در کشورهای صنعتی نشان می‌دهد.

![شکل ۱- تاریخچه مصرف انرژی برای یخچال-فریزر خانگی](image.png)

1 مقدمه

تعداد یخچال-فریزرهای موجود در کشور در سال ۱۳۷۵ در حدود ۱۶ میلیون بوده است. ورود یخچال به سطح پایدار در سال ۵۷ میلیارد در کشور ما کاهش میزان مصرف انرژی یخچال-فریزر به صورت قانونی در آمده است. در این مقاله سعی شده تا ارائه روش‌های برای کاهش مصرف انرژی در یخچال-فریزرهای خانگی پرداته شود. این تحقیق به هزینه هنگام مورد بررسی قرار گرفته است. به‌طور کلی، و یا به شکلی که به پایان مصرف نهایی و سیستم مصرف خانگی را آشکار داده شده است. از طریق با توجه به اهمیت حفاظت از زیان‌ها و اثر تخریبی مصرف‌های روی از این نیاز به اینکه کشور ما از جمله اعضای کنگره ورودی می‌باشد، بررسی اثر یک یخچال-فریزر به یک مصرف انرژی یخچال-فریزرهای حائز اهمیت است. برای نیاز به هدف‌بندی، اقدامات به صورت تجربی - تحیطی به برای یک یخچال، تولید داخل کشور، به عنوان مدل نمونه انتخاب شده انجام یافته است. نتایج حاصل از مدل عصبی با داده‌های حاصل از آزمون استاندارد یخچال در حالی مبنای مستقل و منطقی شده، سه‌پایه تأثیر اجرای طرح‌های مختلف و همچنین استفاده از مبنا یا یک یخچال-فریزر به نمونه انتخاب مورد ارزیابی قرار گرفته. به دنبال هر یک از این قسمت‌ها به تفصیل آمده است.
کلیه آزمایش‌ها در آزمایشگاه تحقیقاتی سیستم‌های حرارتی و برودی دانشکده مهندسی مکانیک دانشگاه صنعتی شریف انجام شد. این آزمایشگاه مجهز به اتاق و سکوی آزمون برای انجام ISO-8187 و سیستم داده برداری و دیگر امکانات آزمایشگاهی است. شکل (۲۷) اتاق آزمون استاندارد به همراه سکوی آزمون داخل آن نشان می‌دهد. اتاق آزمون برای ایجاد و کنترل شرایط محیطی آزمون پذیرفته‌ایزده، از جمله دمای محیط، رطوبت نسبی و نرخ ویژن غردد حاوی ساخته شده. به لحاظ الگویی در زمن انجام آزمون استاندارد بیشتر بوده و در اطراف آن کناره‌ها و دیگر اشکالات نیز پذیرفته‌ایزده، از جمله نماینده، و به این ترتیب در دو سطح از ورودی دیوار دیواره‌ای به سه شکل به خاک دقیقه دو ثانیه از سطح اتاق آزمون به دیواری که در داخل اتاق شما متصلاست، در صورت نجوم می‌توان هوای گرم و یا سرد جاری بین اتاق خارجی و اتاق آزمون داخلی را با جایگزین کرد. دستگاه تولید رطوبت به گوناگونی نصب شده که رطوبت نسبی مورد نیاز را برای ایجاد شرایط محیطی مختلف در داخل اتاق ایجاد کند.

۱-۳ انتزاع گیرنده‌ی دما
این دستگاه شامل دمای مبتنی سیستم‌های ثابت و تنبل یک‌طرفه، دمای داخل کابینت، دمای هوای مجازی و همچنین دمای محیط گرماب آزمون توسط ترمومترهایی از نوع ۲، K استاندارد. ترمومترهای این دستگاه کمی با استفاده از چسب آلومینومی به محلول‌های آبی دمای سطح آن‌ها گرمی می‌شوند (روشن کم‌سپر، کم‌سپر، اپرایور، لوله‌های کمی و مکش، بندن‌های یخچال ... جنبه‌های می‌شوند. دما هوا آنی نیز با اتصال
جدول 1 - مقایسه نتایج آزمون استاندارد و مدل عجیب بر روی یخچال نمونه (پربه 12-R)

<table>
<thead>
<tr>
<th>مدلی میکروترمی</th>
<th>دمای داخل یخچال</th>
<th>دمای کنترلر</th>
<th>دمای اوتوماتر</th>
<th>مصرف برق</th>
<th>نتایج تحقیلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>56°C</td>
<td>57°C</td>
<td>25/30°C</td>
<td>23/28°C</td>
<td>0/95kW/h</td>
<td>تجربه تمرکزیی از نوع T از طریق سیم‌های ارتقا مسی به سیستم استاندارد و افزایش دهندگی داده‌ها وارد شده، سبب افزایش کارایی آزمون استاندارد می‌شود.</td>
</tr>
</tbody>
</table>
ورود گمبو به داخل کاپیت است. نرخ انتقال آن از محتوای اطراف و از طریق واشر به داخل کاپیت به صورت ورودی به برنامه داده می‌شود.

۲-۱۱-۳ ورودی‌های مربوط به سیکل یک ترین نم افزار مدل‌سازی قرار است انواع سیکل‌های بزرگ اعم از سیکل استاندارد با یک کمپرسور و یک اوتور این و یک اوتور را مورد ارزیابی قرار دهد.

در خصوص یخچال بررسی شده، از سیکل استاندارد به همراه یک کمپرسور و یک اوتور استفاده می‌شود.

۲-۱۱-۲ نوع مورد این برنامه قرار بدهد مدل‌سازی استفاده از ۳۸ نوع مورد خالص و همه‌شماره دیواره در سیکل قبیل بررسی یخچال-فریزریست. می‌تواند بررسی شده گاز فریون-۱۲ است.

۲-۱۱-۳ نوع اوتور: اطلاعات دقیق اوتور از قبل نوع و ابعاد دریافتی مورد نیاز نرم افزار است. یخچال تهیه مورد نیاز است. یخچال نمونه بررسی شده دارای اوتور رول باند از نوع جایگزین آزاد است.

۲-۱۱-۴ نوع گردش‌های اطلاعات کنترل‌بندی از قبل نوع و ابعاد نرمال مدل‌سازی و یخچال‌بندی است. این یخچال‌های کنترل‌بندی نوع و مقدار که از طریق جایگزین آزاد با محیط اندازه‌گیری می‌گردد استفاده می‌کند.

۲-۱۱-۵ نوع کمپرسور: مدل‌سازی کمپرسور از سه طریق:

۱) استفاده از منحنی عملکرد
۲) استفاده از روش بازدهی گرمایی و طرفت تدرویج
۲) استفاده از روش بازدهی گرمایی انجام پذیر است.

مدل‌سازی بایکی چندین مورد استفاده از منحنی عملکرد انجام پذیرفت.

جدول (۱) داده‌های مربوط به منحنی عملکرد کمپرسور استفاده کننده از مدل ۱۲ و همچنین کمپرسور نوع R-1۳۴a را که توسط تولید کننده این نوع کمپرسور تهیه شده است را نشان می‌دهد. اطلاعات داده شده در جدول زیر شامل میزان مصرف برق (برحسب کالری/ساعت) و حجم تبرید (برحسب Kcal/hr) استفاده می‌شود.

۲-۱۱-۶ حالت‌ها: اختراع دو مورد بین کاپیت و هوای اطراف باست. نشتن گرم‌ها از محیط به داخل یک باند می‌شود. دما داخل کاپیت محیط اطراف و هوای اطراف کمپرسور برای تعیین میزان نفوذ گرم به داخل کاپیت به ضریب ورودی به برنامه داده می‌شود.

۳-۱-۱۳,

شماره ۲، اسفند ۱۳۷۶

استقلال، سال ۱۶
جدول ۲- عملکرد کالریمتریک کمپرسورهای نوع R-12 و R-134a

<table>
<thead>
<tr>
<th>R-134a</th>
<th>R-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>-۳۳/۰۴°C -۳۳/۰۴°C</td>
<td>-۲۵°C -۲۵°C</td>
</tr>
<tr>
<td>۴۳/۰۵°C</td>
<td>۲۱۹</td>
</tr>
<tr>
<td>۱۲۹</td>
<td>۱۳۱</td>
</tr>
<tr>
<td>۱۳۴</td>
<td>۱۴۷</td>
</tr>
<tr>
<td>۱۴۵</td>
<td>۱۷۲</td>
</tr>
<tr>
<td>۱۵۳</td>
<td>۱۷۵</td>
</tr>
</tbody>
</table>

توان مصرفی (وات)

حجم برونتی (کیلو کالری/ساعت)

دمای اواپارتو و کندانسور و در شرایط آزمون استاندارد کمپرسور یخچالهای خانگی برای مورد R-12 و R-134a داده شده است. لازم به ذکر است که تغییر مردغ R-12 به دلیل تغییر بودن تأثیر ضریب انتقال گرمایه جابجایی اجباری این دو سیال در مبدل‌های گرمایی، صرفه‌های عملکرد کمپرسور نیز می‌شود.

دب لایه‌های خراش کاهش طراحی انجام می‌شود. اجرای مصرف ضخامت فلزی و کنترل مصرف برق زیر آن ضخامت مصرف برق است. تأخیر آزمایش ضخامت عایق بدن و در برش عایق عایق عایق دوباره و ۱۲۳/۴/۹۹ مم. ۱۲۳/۴/۹۹ مم. نسبت به حالت می‌شود.

جدول ۳- مقایسه نتایج حاصل از اجرای برترنده مدالیزی را با داده‌های تجربی در شرایط محیطی دمای ۲۵°C و رطوبت نسبی ۷۵% و همچنین دمای ۲۵°C و رطوبت نسبی ۷۵% نسبت به داده‌های تجربی با نتایج حاصل از اجرای نرم افزار مدالیزی خطای کمتر از ۵٪ را در مصرف برق می‌داند.

۳-۳- طرح‌های انتخابی

پس از حصول اطمینان از دقت مدل عدیدی در شبیه سازی مدل می‌باشد به اعمال بعضی انتخاب‌های طراحی روز مدل می‌باید پردازش.
جدول ۳- اطلاعات ورودی کاینت و سیکل تیرید یخبندان نمونه برای مدلسازی

<table>
<thead>
<tr>
<th>اطلاعات سیکل</th>
<th>اطلاعات کاینت</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-12</td>
<td>150 cm</td>
</tr>
<tr>
<td>نوع میرد:</td>
<td>150 cm</td>
</tr>
<tr>
<td>نوع اوایل‌تراتور:</td>
<td>42/50 cm</td>
</tr>
<tr>
<td>سطح اوایل‌تراتور:</td>
<td>63/30 cm</td>
</tr>
<tr>
<td>طول لوله اوایل‌تراتور:</td>
<td>عمق کاینت:</td>
</tr>
<tr>
<td>۳/۰۰ م</td>
<td>1/90 cm</td>
</tr>
<tr>
<td>قطر خارجی لوله اوایل‌تراتور:</td>
<td>ضخامت لبه درب:</td>
</tr>
<tr>
<td>۵/۰۰ م</td>
<td>۳/۰ cm</td>
</tr>
<tr>
<td>ضخامت صفحه اوایل‌تراتور:</td>
<td>۰/۷۰ cm</td>
</tr>
<tr>
<td>لوله و مقدون:</td>
<td>ضخامت ورق برونی:</td>
</tr>
<tr>
<td>نوع کنترسون:</td>
<td>ضربه هدایت ورق برونی:</td>
</tr>
<tr>
<td>۱۰/۸۰ م</td>
<td>۴۱ W/m-C</td>
</tr>
<tr>
<td>سطح کنترسون:</td>
<td>ضربه هدایت ورق داخلی:</td>
</tr>
<tr>
<td>طول لوله کنترسون:</td>
<td>۰/۷۰ cm</td>
</tr>
<tr>
<td>۱۲/۲۲ م</td>
<td>ضخامت ورق داخلی:</td>
</tr>
<tr>
<td>عرض ریسف لوله:</td>
<td>ضربه هدایت ورق داخلی:</td>
</tr>
<tr>
<td>۱/۶۰۰ م</td>
<td>ضخامت ورق داخلی:</td>
</tr>
<tr>
<td>قطر خارجی لوله کنترسون:</td>
<td>ضخامت داخلی سقف:</td>
</tr>
<tr>
<td>۶/۰۰ م</td>
<td>۴/۰۰ cm</td>
</tr>
<tr>
<td>ضخامت لوله کنترسون:</td>
<td>ضخامت داخلی چسب:</td>
</tr>
<tr>
<td>تعداد مقدونها:</td>
<td>۴/۰۰ cm</td>
</tr>
<tr>
<td>۱۰۲ عقد</td>
<td>ضخامت داخلی پشت:</td>
</tr>
<tr>
<td>قطر مقدونها:</td>
<td>۵/۰۰ cm</td>
</tr>
<tr>
<td>طول مقدونها:</td>
<td>ضخامت داخلی کفس:</td>
</tr>
<tr>
<td>۷/۸/۵۰ م</td>
<td>۳/۰۰ cm</td>
</tr>
<tr>
<td>رفت و برگشت</td>
<td>ضربه مشار درب:</td>
</tr>
<tr>
<td>منحنی عملکرد (جدول (۲))</td>
<td>۳/۰۰ cm</td>
</tr>
<tr>
<td>ضربه تأثیر لوله مودایی:</td>
<td>ضربه مشار درب:</td>
</tr>
</tbody>
</table>

کمپرسورهایی با پاداش بالاتر در عملکرد سیستم و کاهش مصرف انرژی آن را نشان می‌دهند. ضریب بار انتزاب کمپرسور استفاده شده برای استفاده EER از ۳ به ۴ با ثبت ۴۰/۰ کاهش مصرف برای یخبندان با میرد R-۱۲ و یا A-۱۳۴a نسبت به حالت مینا می‌شود.

تحقیقات انجام شده نشان می‌دهد که انتظار سطح وایپراتور باعث افزایش قدرت کمپرسور سیکل تیرید یخبندان-فریزر خانگی می‌شود. این افزایش سطح تا حد معمول باعث افزایش پایداری گرمایی سیکل تیرید می‌شود. شکل (۳) نشان دهنده افزایش سطح گرمایی اواپراتور را روی مصرف انرژی یخبندان نمونه نشان می‌دهد.

۱۳۷۶

۳۵
درصد افزایش سطح کننده

شکل ۴- تأثیر افزایش ضخامت گرفت و درب روي مصرف برق
ارزان پیچ و نیمه

شکل ۵- تأثیر استفاده از کمپرسورهای بازاره باالر روي مصرف برق
پیچ و نیمه نموده

شکل ۶- تأثیر افزایش سطح گرفت و درب روي مصرف برق
پیچ و نیمه نموده

شکل ۷- تأثیر افزایش سطح گرفت و درب روي مصرف برق
پیچ و نیمه نموده

درصد کاهش سطح کننده

می شود. عایقندی بی‌درد و خیلی به‌طور کیفیت داشته، با به‌کار
برده شده است. افزایش بازه و کاهش مصرف برق می‌شود. شکل
(۸) تایید ۲۵٪ و ۵۰٪ کاهش اندازه گرفته از دور نیست که با استفاده از
ویژگی‌های دارای قابلیت آب‌بندی بی‌خاطره را نشان می‌دهد. بر اساس
محاسبات انجام شده، کاهش ۵۰٪ اندازه گرفته از طریق گاسکت، تا
۸۰٪ کاهش مصرف برق پیچ و نیمه با مقره ۱۲ و ۱۳۴ از R-134a را نسبت
به حالت مبنا به همراه می‌دارد.

تأثیر تعادل فناوری بی‌خاطره و برای کاهش درب تا
تایید تعادل اندازه‌گیری بی‌خاطره و برای کاهش درب تا
تایید تعادل اندازه‌گیری بی‌خاطره و برای کاهش درب

استقلال، سال ۱۶، شماره ۲، اسفند ۱۳۷۶
شکل 9 - تاثیر تعداد دفعات بز و مستر کردن درب روی مصرف انرژی بخجال نمونه

اینجا شبکه آزمون استاندارد مصرف انرژی در شرایط درب مستر بسته انجام گرفته است. لیکن در عمل، استفاده از این جهالا به همه بزار و مستر شدید درب و در هم زمان مهاره بازار نگه داشتن آن برای مدت زمان مشخصی است. شکل 9(1) این نمونه مصرف برق به دلیل بزار و مستر شدید درب در شرایط محیطی دما و رطوبت نسبی 25 درجه سانتی‌گراد و همچنین 37 درجه سانتی‌گراد را نشان می‌دهد. همان‌گونه که در شکل مشاهده می‌شود، بزار و مستر کردن درب، بالا بردن دما و رطوبت با تاثیر قابل توجهی در مصرف برق بخجال-فریزر نمونه دارد.

شکل 10 - تاثیر اجرای طرح‌های انتخابی روی مصرف برق بخجال

نمونه (دما محیطی 25 درجه سانتی‌گراد و رطوبت نسبی 75 درجه سانتی‌گراد)

مصروف انرژی از دهه 70 میلیاردی تاکنون را تا 80 درصد کاهش دارند، نشان می‌دهد.

توجه شده است.

شکل 11 - تاثیر اجرای طرح‌های انتخابی روی مصرف برق بخجال

نمونه (دما محیطی 30 درجه سانتی‌گراد و رطوبت نسبی 75 درجه سانتی‌گراد)

4- اجرای طرح‌های انتخابی

نتایج حاصل از اجرای طرح‌های انتخابی در مصرف انرژی در شکل‌های (1) و (2) نشان داده شده است. این شکل‌ها نتایج حاصل از اجرای 8 طرح شامل انواعی شامل:

- افزایش سطح کنترل و از راه‌های راهبرد و شرایط محیطی 25 درجه سانتی‌گراد و همچنین 37 درجه سانتی‌گراد و 75 درجه سانتی‌گراد.

به‌طور کل، میزان مصرف برق در محدوده متوسطی است. این میزان مصرف برق نسبت به حالت میانی انتخاب مشابه است.

نتایج اجرای این طرح‌های این میزان مصرف برق در محدوده متوسطی است. این میزان مصرف برق نسبت به حالت میانی انتخاب مشابه است.

نتایج اجرای این طرح‌های انتخابی در مصرف انرژی بخجال-فریزر در ایران با توجه به اینکه طراحی و تکنولوژی‌های داخلی متناسب با دهه 70 میلیاردی است و شکل (1) که میزان کاهش
حدود 95/500/600 پخشال-فریزر تولید و وارد بازار شده، با توجه به اعمال انتخابی طراحی قوی دزک، مقدار 40/60 گیگابایت ساعت انرژی‌ها، با ازای تولید بکسل پخشال-فریزر در کشور کاهش می‌یابد. این مقدار صرفه جویی انرژی‌ناهی از بهینه‌سازی پخشال-فریزرهای تولیدی در بکسل معادل 21/500/600 میلیون دلار خواهد بود. با فرض ناتوان ماندن هزینه تولید بر طول عمر کاری این محصولات (15 سال)، میلار ارزی صرفه جویی شده در پایان این دور حداکثر 425/500/600 میلیون دلار برآورد می‌شود (تنها برای 1375/500/600 کشور ایران). تولید اضافه‌شده در این میزان افزایش مصرف نیروگاه‌ها بوده و جزء هزینه احداث و سرمایه‌گذاری اولیه نمی‌باشد. از مرحله دیگر همان‌گونه که ملاحظه می‌شود اعمال این انتخابی‌های طراحی صرفه‌جویی پخشال منسوخ 75/80/79 کاهش می‌دهد. به طوری که در مورد تولید مصرفی قادر به کاهش مقدار دزک 56/90/79 می‌باشد. این میزان کاهش مصرف، معادل کاهش 80/500/600 میلیون دلار به 145/500/600 میلیون دلار در سال می‌باشد. از طرفی با توجه به اینکه در سال مطالعه این طرح (سال 1375) مراجع

3. حیدری، ع. "تعداد استاندارد مصرف انرژی در تولید پخشال، پخشال-فریزر و فریزر هانگی،" پایان‌نامه کارشناسی ارشد دانشکده مهندسی مکانیک دانشگاه صنعتی شریف، تهران، 1375.
4. آبی‌نما نامه ابزاری رنگ 1 بند "تحریر" (19) قانون برنامه‌ریزی توسعه اقتصادی اجتماعی فرهنگی جمهوری اسلامی ایران.
6. ایرانیان، ر. و حیدری، ع. "شبه سازی کارپوریت پخشال،" پایان‌نامه کارشناسی ارشد دانشکده مهندسی مکانیک دانشگاه صنعتی شریف، تهران، 1376.