Local Buckling of Plates Using The Spline Finite Strip Method

M. Azhari and S. Hooshdar
Department of Civil Engineering, Isfahan University of Technology

ABSTRACT- The spline finite strip method (S.F.S.M.) for buckling analysis of plates and plate assemblies subjected to longitudinal compression and bending, transverse compression as well as shear is described. The method allows for the boundary conditions. Local buckling coefficients of plates with different boundary conditions under compression, bending and shear are calculated. Convergence studies with increasing number of section knots are described. The method is also applied to the study to the elastic local buckling interaction of bending and shear for plates with different aspect ratios.
1. مقدمه

با گسترش کاربرد صفحات نازک در اعضاي سازه‌ها، قوانین محدود وارد جنگ حوزه مسائل عملي مربوط به كماني مشخص می‌شود. از توجه به صفحات نازک در نوع مختلفی از توانایی حجاری پلها با دهانه‌های بزرگ است. نظريه‌ي هاي كماني كه معادلات ديفرنسيل آنها را مولودي شده مورد استفاده در مسائل پيشرفته، در نقشه‌اي بدون شINY مبانی مشخص به صورت سبتي قابل حل بودن. تئوري و همكارانش (11) در سال 1960 برای اولین بار، ماتريس هدستي را برای حل مسائل كماني مطرح كردند. آنها اين مفهوم را برای سازه‌هاي خاصي و همچنين صفحات با اجزاي مثلث تحت نش نشناري به كارگرفتند. پيشگامان بعدي برای تحليل عملي كماني صفحات به روش اجزای محدود، كلاگاگر (12) و پيزميتيكی (13) و زينكوفيچ و اندرسون (5) بودند. اجرای صفحات با اجزای محدود از قابلیت خوبی در حل پيدايري صفحات در بوردير است چون به دلیل حجم زياد عمليات، اين روش داده‌هاي هندستين براي برخورد به سازه‌هاي خاص که از صفحات مستوي تشكيك شدند روش نوار‌هاي محدود از قابلیت و كارايي بهتری بهره مند است.

متبوع روش نوار‌هاي محدود را مي‌توان کسی به استنتاج از ارائه 1. كاربردي روش در تحليل صفحات مورد توجه محققان قرار گرفت. پيزميتيكی (7) برای اولين بار با استفاده از روش نوار‌هاي
اشیالیان سه‌تایی برای درون‌پایی طولی نوارها در تحلیل صفحات استفاده می‌کنند. توآون اشیالیان بعداً نیز توسط یانگ و چنگ [116] و میزوروا [165] با کاربردهای مختلف دارد تا نوارها در تحلیل سازه‌ها به کار گرفته شوند. تفاوت اصلی بین روش نوارهای محدود اشیالیان با روش نوارهای محدود و عادی و نیز مختلط در وجود گره‌های مختلف در طول هر نوار است که در واقع روش نوارهای محدود اشیالیان را به روش اجرا می‌کند. روش نوارهای محدود اشیالیان توسط هنگو و لو [116] و نیز وان ارب و میکن [171] برای نیروی ارکم‌ساز صفحات به کار رفته است. این روش به عنوان داشتن گره‌های طولی در ایستاده یکنواخت نسبت به سایر روش‌های موجود نوارهای محدود است و بالاترین برای اطمینان کامپیوتری قرار دارد. نتایج بر روی روش نوارهای محدود اشیالیان در مدل کردن سازه‌های مشرایتی مختلط و نیز تعیین کامپیوتری صفحات با طولهای محدود از سه‌تایی یک‌ابعادی می‌باشد.

در این مقاله با استفاده از روش نوارهای محدود اشیالیان و پرطرفدار کردن هدف‌ریزی‌های شرایط مرزی به‌فارسی شده، یک نرم‌افزار کامپیوتری تهیه شده که بر اساس آن می‌توان کامپیوتری صفحات را تحت تغییرات و شرایط مرزی مختلفی تعیین کرد.

مثال‌هایی برای تعیین صفحات یک‌ابعادی و نیز بر روی صفحات با ابعاد مختلفی تعیین و به صورت نمودار نشان داده خواهند شد.

1- سنجش نظری

چنین هدف این مقاله بررسی کامپیوتری صفحات و مقاطع است که این بخش به تعیین نظری مربوط به این نوع کامپیوتری که دارای دوجای درجات آزادی خارجی صفحات است پرداخته خواهد شد. در این روش سازه‌های مشتق‌های درد و نوارهایی که دارای گره به فواصل درجه طولی هستند مطلق شکل (1) m+3 تکمیل می‌شوند.

2- تابع اشیالیان

تابع اشیالیان، یک چندجمله‌ای از درجه سه است که در ریاضیات برای درون‌پایی استفاده می‌شود. چنین‌چه میانجی‌های جایگیری

3- تابع اشیالیان

تابع بجای اشیالیان یک چندجمله‌ای از درجه سه است که در ریاضیات برای درون‌پایی استفاده می‌شود. چنین‌چه میانجی‌های جایگیری
میدان جایی
میدان جایی خارج از صفحه، برای پیک نوار که در جهت طولی با توانایی اسپلین و در جهت عرضی با توانایی هرمیت درونیابی شده به صورت زیر است.

\[w = \left[N_j \right] \{ \delta \} \]

که در آن

\[N_1 = 1 - \eta \eta + \eta \]

\[N_2 = \eta(1 - \eta + \eta^2) \]

\[N_3 = \eta^2 - \eta \eta \]

\[N_4 = \eta(\eta - \eta) \]

\[\eta = \frac{y}{b} \]

ماتریس \(\{\psi\} \) مشکل بان بارداری معادلات دیفرانسیلی است که دارای عضوی به شرح زیر است.

\[\langle \Psi_j \rangle = \langle \Psi_0, \Psi_1, \ldots, \Psi_m \rangle \]

همچنین متغیرهای موجود در \(\{\delta\} \) بارداری سنتی هستند که برای پیک 2 عضو به شرح زیر دارند.

\[\begin{bmatrix} a_j \\ \vdots \\ a_m+1 \end{bmatrix} \]

دوران جایی قائم برای گره‌های مقطعی روى خط گره \(j \)

\[\begin{bmatrix} \beta_j \\ \vdots \\ \beta_m+1 \end{bmatrix} \]

دوران جایی قائم برای گره‌های مقطعی روى خط گره \(k \)

\[\begin{bmatrix} a_k \\ \vdots \\ a_m+1 \end{bmatrix} \]

دوران جایی قائم برای گره‌های مقطعی روى خط گره \(k \)

\[\begin{bmatrix} \beta_k \\ \vdots \\ \beta_m+1 \end{bmatrix} \]

سپاس و تشکر
ستدل، سال 16، شماره 2، استناد 1376
که در آن

\[\mathbf{D}_l = \frac{E_l}{1 - \nu_l^2} \begin{bmatrix} 1 & \nu_l & 0 \\ \nu_l & 1 & 0 \\ 0 & 0 & \frac{1 - \nu_l}{2} \end{bmatrix} \]

با اگزائاشت معادله‌های (12) و (15) در معادله (10) خواهیم داشت

\[\mathbf{U}_l = \frac{1}{V} \{ \delta_l \}^T \left[\mathbf{k}_l \right] \{ \delta_l \} \]

که در آن \(\mathbf{k}_l \) ماتریس سختی است که از معادله \(\delta_l \) بیان شده و

\[\left[\mathbf{k}_l \right] = \int_V \left[\mathbf{B}_l^T \right] \left[\mathbf{D}_l \right] \left[\mathbf{B}_l \right] dV \]

کار نیروهای خارجی در اثر اعمال تنش‌های فشاری برای خواهیم بود با

\[\mathbf{W}_l = -\frac{1}{V} \int_V \left[\alpha_x \frac{\partial \mathbf{w}}{\partial x} \right]^T \alpha_y \left(\frac{\partial \mathbf{w}}{\partial y} \right)^T + \gamma_l \frac{\partial \mathbf{w}}{\partial x} \frac{\partial \mathbf{w}}{\partial y} dV \]

با اگزائاشت معادله (23) برای جایی که و مشتق‌های مشتق‌های آن در معادله (19) خواهیم داشت

\[\mathbf{W}_l = -\frac{1}{V} \{ \delta_l \}^T \left[\mathbf{g}_l \right] \{ \delta_l \} \]

که در آن \(\left[\mathbf{g}_l \right] \) ماتریس پایداری نوار اسپلاین به صورت زیر خواهیم بود و برای است با

\[\left[\mathbf{g}_l \right] = \left[\mathbf{g}_{l_1} \right] + \left[\mathbf{g}_{l_2} \right] + \left[\mathbf{g}_{l_3} \right] \]

شکل 5- نوار نش در نوار اسپلاین

\[\{ \sigma_l \} = \left[\mathbf{B}_l \right] \{ \delta_l \} \]

شکل (5) نوار نش اعمالی روی یک نوار منتشر دارد. با استفاده از معادله

\[\mathbf{U}_l = \frac{1}{V} \int_V \{ \sigma_l \}^T \{ \epsilon_l \} dV \]

که در آن \(V \) حجم نوار و

\[\{ \sigma_l \} = \left[\mathbf{M}_x, \mathbf{M}_y, \mathbf{M}_{xy} \right]^T \]

\[\{ \epsilon_l \} = \left[\rho_x, \rho_y, \rho_{xy} \right]^T \]

\[\rho_x = \frac{\partial^2 w}{\partial x^2}, \rho_y = \frac{\partial^2 w}{\partial y^2}, \rho_{xy} = -\frac{\partial^2 w}{\partial y \partial x} \]

با مشتق‌گیری از معادله (23) بردار کرنش به صورت زیر خواهیم شد

\[\{ \epsilon_l \} = \left[\mathbf{B}_l \right] \{ \delta_l \} \]
جدول ۱- ضریب کمانش موضعی ورق مربوط تحت نشار

<table>
<thead>
<tr>
<th>ضریب کمانش موضعی (k)</th>
<th>شرایط مزای ورق</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>روش نوارهای</td>
</tr>
<tr>
<td></td>
<td>محدودیت اسیب‌دان</td>
</tr>
<tr>
<td>۱/۰۰۰</td>
<td>۱/۰۰۰۵</td>
</tr>
<tr>
<td>۱/۲/۷۵۴</td>
<td>۱/۷۱۵</td>
</tr>
<tr>
<td>۱/۵/۴۰</td>
<td>۱/۷/۴۹</td>
</tr>
<tr>
<td>۱/۵/۸۰</td>
<td>۱/۸/۰۸</td>
</tr>
</tbody>
</table>

۲- ضریب کمانش موضعی ورق مستطیل تحت نشار

<table>
<thead>
<tr>
<th>ضریب کمانش موضعی (k)</th>
<th>شرایط مزای ورق</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>روش نوارهای</td>
</tr>
<tr>
<td></td>
<td>محدودیت اسیب‌دان</td>
</tr>
<tr>
<td>۱/۰۰۰</td>
<td>۱/۰۰۰۵</td>
</tr>
<tr>
<td>۱/۲/۷۵۴</td>
<td>۱/۷۱۵</td>
</tr>
<tr>
<td>۱/۵/۴۰</td>
<td>۱/۷/۴۹</td>
</tr>
<tr>
<td>۱/۵/۸۰</td>
<td>۱/۸/۰۸</td>
</tr>
</tbody>
</table>

که اجزای آن به ترتیب زیر است

\[
[H_x] = \int_\gamma \left(\frac{\partial \psi}{\partial x} \right) \left(\frac{\partial N_x}{\partial x} \right) dV
\]

\[
[G_y] = \int_\gamma \left(\frac{\partial \psi}{\partial y} \right) \left(\frac{\partial N_y}{\partial y} \right) dV
\]

\[
[K_z] = \int_\gamma \left(\frac{\partial \psi}{\partial z} \right) \left(\frac{\partial N_z}{\partial z} \right) dV
\]

\[
[A] \{K_r\} - \lambda \{G_r\} = 0
\]

۶- مطالعه‌های موردی

کلیات: براساس نظریه ارائه شده، یک برنامه کامپیوتری به نام SPLN3DL برای تغییر بار کمانش صفحات و مقاطع با شرایط مستطیل مزای ورنگارهای مختلف تدوین شد است. با استفاده از برنامه، نوارهای برای هر مورد یک ماتریس یافته شد که توسط مدل سازی در نرم‌افزار ماتریسی با توالی و برای صفحات ناپایدار از تست‌های غلیظ را برای صفحات و صفحات ناشده محاسبه کنند. برای حل مسئله مقدار ویژه از برنامه مؤثر می‌باشد. این استفاده می‌شود که به صورت مناسب با برنامه فوق ارتباط پیدا می‌کند.

۷- ورق تحت تأثیر تنش‌های فشاری

تشیع حرکات صفحات در محدوده کشسان از معادله زیر تعیین می‌شود [۲۰]:

\[
\sigma_{cr} = \frac{\pi^2 E_k h^3}{12(1-\nu)bh^2}
\]

۴۴
شکل ۶- منحني تغییرات ضریب k بر حسب m برای ورق چهار طرف مفصل تحت نشار

شکل ۷- منحني تغییرات ضریب k بر حسب m برای ورق چهار طرف گردیار تحت نشار

نوارها در جهت عرضی را تغییر داد. نمودارهای (۴) و (۷) برای دو نمودار ورق با شرایط هندسی و مزی مختلف و تحت تأثیر تنش‌های فشاری، منحني تغییرات ضریب k بر حسب m را نشان می‌دهند. همان گونه که نمودارها نشان می‌دهند همگرایی جواب‌ها حساسیت زیادی به تقسیم‌بندی در جهت طولی ندارد. بررسی همگرایی صفحات با شرایط هندسی و مزی ویژگی‌های گوناگون تحت تأثیر خمش و برخی در شکل‌های (۸) تا (۱۰) نشان داده شده‌است. برخلاف وقتی تحت فشارکناتخ، همگرایی تابی به تعداد تقسیم‌بندی در جهات طولی دارد در حالی که افزایش تعداد نوارها در جهت عرضی اثر قابل توجهی برهمگرایی و رسیدن به جواب‌ها دقیق ندارد.

مقدار محاسباتی با مقدار دقیق از مراجع مربوط به مقادیر شده و نتایج حاصله از روی نوارهای محدود اسپلاین دارای دقت بسیار خوبی در مقایسه با نتایج حاصله از روی نوارهای دیگر است. در کلیه حالات باید تقسیمات طولی عدد ۴ و تعداد m باید تقسیمات در جهت طولی عدد ۴ در نظر گرفته شده‌اند.

نوارها با رعایت تقارن در جهت عرض ۲ در نظر گرفته شده‌اند.

8- تأثیرات تقسیم‌بندی‌های طولی در همگرایی برای همگرایی شدن نتایج در روی نوارهای محدود اسپلاین m (تعداد تقسیمات در جهت طولی) و تعداد m توان دو پارامتر است.
از نشان (به عنوان مثال نشان خمشی) متریس سختی سازه و برای این درصد نشان تصمیم کرد. در این حالت سختی ورق با اعمال لین درصد نشان کاهش حداکثر یافته نمی‌باشد. سپس با حل یک مسئله مقدار ویژه نسبت به تغییر نشان برخی از (به عنوان مثال نشان برخی) اقدام کرد. این کار با می‌توان برای درصد‌های مختلی از هر کدام از نشان انجام داد. منحنی‌های (11) و (12) اندرکنش بین خمش و برخی را برای صفحات با شرایط سرحدی منصفانه و نیز با ابعاد خاص به دست آورد. سپس با اعمال درصدی از نشان برخی یکی
شکل 10- منحنی تغییرات ضریب k بر حسب m برای ورق تحت برخ

$\frac{K_r}{K_p}$

$\frac{K_s}{K_p}$

شکل 11- اندکنش خمش و برخ برای ورق مستطیلی

$10-1$- تغییرهای گیری با توسعه روش نوارهای محدود اسپلین با به حساب آوردن شرایط مرزی مختلف و تدوین یک برنامه کامپیوتری، صفحات مختلفی از ابعاد و شرایط پارک‌گذاری و سرحدی گوناگون مورد بررسی توانایی و شرایط جریان مورد گرفتن دارای حاصل دارای هم‌خوانی بسیار مناسبی با مقدار نظری در حالات موجود بود. تغییر شرایط هندسی متفاوت شناسایی شدند. منحنی اثر متقابل برخ و خمش در صفحات طولی به شکل دایره‌ای و ساختار سیستم پس از اعمال درصدی بالاتری از تنض (حدود 80 درصد) به طور تاکیدی کاهش می‌یابد در حالی که منحنی اندکنش در صفحات مرکبی شکل به صورت سهمی بوده و به صورت تدریجی سختی صفحه با اعمال تنشها کاهش پیدا می‌کند.
شکل 12- اندکنش خمش و برخ برای ورق مربعی

سیرحدی در له های پارکرایی شده صفحات تغییر محسوسی در تیمین برخ کمیک صفحات طولی نداشته در حالی که برای صفحات کوتاه این تأثیر قابل ملاحظه بود. با در نظر گرفتن در نوار طولی در حالات منقرض و چهار نوار طولی در حالات نامناسب، همگرایی مناسبی حاصل می شد در حالی که تقسیم بهای طولی نوار اسپلاین، این اثر را ناجی برای صفحات تحت فشار، برای

واژه نامه:

1- spline finite strip
2- lateral buckling
3- distortional buckling
4- complex finite strip
5- interaction
6- local buckling
7- out-of-plane degrees of freedom
8- piecewise
9- mathematica

مراجع

استقلال، سال 16، شماره 4، اسفند 1376

48
18. هوشنگر، سینا، کاندیدای مهندسی ورقه‌ای تا شهه به کمک روش‌های محدود اسپلاین، تکنیک‌شناسی ارشد، دانشگاه مهندسی عمران، دانشگاه صنعتی اصفهان، ۱۳۷۵.