رفتار تریبولوژیکی فولاد ابراز کربنی با پوشش ترکیبات بین فلزی Fe-Al

پژوهش: از ترکیبات بین فلزی Fe-Al برای بهبود رفتار تریبولوژیکی فولاد ابراز کربنی مورد بررسی قرار گرفته است. بدین منظور از روش پویا نشره و پس از ان جه‌ای عملیات آنلاین نفوذی در انسازکردن شده‌گاز آرگون و دما 1000 درجه سانتی گراد شدید و زمان بهینه آنلاین نفوذی بررسی شده و رفتار تریبولوژیکی تشکیل شده.

روش‌ها و نتایج: تشکیل شده توسط تکنیک‌های مختلف، ساختار شیمیایی، پیمان‌های ایکس (XRD)، و پرتو ایکس (EDX) انجام شد. محققان ساختمان دادند که مکانیزم تشکیل ساختار به سه گروهی بر سر سطح نمونه‌های آلومینیوم فیزیکی محسون است. در سطح نمونه‌های Fe-Al یافت شد که روند تریبس از Fe-Al و Fe-Al/AlFe مورد بررسی قرار گرفته است. در نهایت، میزان سختی مدل کمی شامل از Fe-Al و Fe-Al/AlFe در خود لایه و سطح Fe-Al/AlFe در لایه قوی تر تشکیل شد.

تاثیر این مطالعه ساختمان می‌تواند به این نوع پوشش رفتار ساختمانی و استحکام فولاد ابراز کربنی را به نحو مؤثری بهبود دهد. همچنین، محققان نتایج قابل توجهی را به دست آوردند که به طوری که بیشتر از سطوح تربیتی و ذرات ساختمانی داده‌های میدانی در مطالعه فلز و پوشش، ورود این مدل به ساختار داده‌های از آن دیده شده و مکانیزم قابل توجهی در نمونه ای که با آلومینیوم و Fe-Al در زمان بهینه آنلاین نفوذی شده از این نتیجه گیری کردند.

Tribological Behaviour of Fe-Al Intermetallic Compound Coated Carbon Tool Steel

M. Shamanian, M. Salehi and F. Ashrafi-zadeh
Department of Materials Engineering, Isfahan University of Technology

ABSTRACT: The use of Fe-Al intermetallic compound coatings has been investigated in order to improve the tribological behaviour of carbon tool steel. The coatings were formed by a pack cementation process and...
مقدمه

خواص تربولوژیکی به سطح عمداً استحکام به سازگاری آنها با زیر لایه دارد. تربولوژیکی ترکیبات بین فلزی در سالهای اخیر به لحاظ کاهش شیب سختی مورد توجه قرار گرفته است. این نوع پوشش با درستی پوشش‌های نفوذی فلزی قرار می‌گیرند در مراحل به ویژه در ترسانه‌های سرامیکی که نوعی از شیب تند در خواص فیزیکی و مکانیکی فیزیکی در نهایت مشترک‌اگر بخودها و به هنین‌اجتماع جسم‌گونه‌گی سطحی با زمینه می‌تواند برخوردند و به برخورد. از نظر مشترک پوشش‌های سایشی فنیتی از نظر سطح به سختی و با هدف بهبود تربولوژیکی صورت گیرد. میکروسکوپ‌های سایشی غالب در هر مورد با استفاده از آزمایش‌های سایشی و مطابعات میکروسکوپی الکترونی تعمیر شدند.

1- بیشتر بی‌کربن‌های آلی (فلزی-FeوAl) (شکل 1) اغلب از نظر پوشش‌های سازگاری و سطح مورد توجه قرار گرفته است [1]. میکرو‌بی‌کربن‌های آلی FeوAl دانه‌ای از ترکیبات فلزی-آلی (FeوAl) است. نمونه‌هایی با ابعاد 600 میکرون در سطح یک غلظت شست و قابلیت مهار و قطعه‌ها در صورتی که سطح تربولوژیکی را به حداقل می‌رساند. این حالت در دمای 980°C و به‌مدت زمان 24 ساعت حاره داده می‌شود در سطح قطعه ایجاد می‌شود [2-5].

به دلیل تشکیل ترکیبات بین فلزی و آلی-FeوAl است در این دسته از آلی-FeوAl به نظر می‌رسد که دارای تردید بالایی هستند لازم است عملیاتی اندکی پیروی‌سازه نتوانست که انجام آزمایش‌های متعدد پوشش‌های پوستی‌ساز و رفتنار
جدول 3- ضخامت پوشش‌های نفوذی حاصله در اثر نوایند آلومینیومینگ همراه با آنیل نفوذی

ضخامت پوشش

(μm)

تغییر عاملیات

ابتدا

اختصاصی

نمونه‌ها

120

آلومینیومینگ (h2 در 130 در C

+ آنیل نفوذی (900 در C در 200 در C

AF12

160

آلومینیومینگ (h2 در 130 در C

+ آنیل نفوذی (900 در C در 200 در C

AF24

180

آلومینیومینگ (h2 در 130 در C

+ آنیل نفوذی (900 در C در 200 در C

AF24

200

آلومینیومینگ (h2 در 130 در C

+ آنیل نفوذی (900 در C در 200 در C

AF30

250

آلومینیومینگ (h2 در 130 در C

+ آنیل نفوذی (900 در C در 200 در C

AF30

جدول 4- ترکیب شیمیایی عضو مقابل، نوار 5110

<table>
<thead>
<tr>
<th>عنصر</th>
<th>درصدوزی</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0/9</td>
</tr>
<tr>
<td>Cr</td>
<td>1/33</td>
</tr>
<tr>
<td>Si</td>
<td>0/3</td>
</tr>
<tr>
<td>Mn</td>
<td>0/3</td>
</tr>
<tr>
<td>S</td>
<td>0/002</td>
</tr>
<tr>
<td>P</td>
<td>0/008</td>
</tr>
<tr>
<td>Cu</td>
<td>0/1</td>
</tr>
<tr>
<td>Ni</td>
<td>0/004</td>
</tr>
</tbody>
</table>

بلور که تهیه شده بود بر سطح نمونه‌های یکی از اسپیکترومات کپیال می‌شود. سپس

الکترون‌ها به صورت تک رنگ به کپیال کنده توان هدایت

می‌شوند. بازه‌ای از طریق مراحل مختلفی به صورت طول

موج‌های متعدد به یک دستگاه ثابت ارسال و در انجا به صورت

شدت نسبی بر برس پلیر مو و یا شدت نسبی بر برس زمان

شیمیایی داده می‌شود. این امر می‌کاهشد هر طول مشخصی از

یک عنصر هدف مناسب بی‌گیاهانی آن عنصر در ناحیه ای این

که تحت پاسا زدارکره، بی‌بی‌بیدا درصد و وزنی آن عنصر مشخص

می‌شود. همچنین مشخص بود که یک پلاک می‌توان با فیلیات

زمانی که به صورت فاصله از سطح نمونه به دست افت. نرس

پلاک پلاکی به ونلاژ جریان و ترکیب شیمیایی نمونه داشته و

عوامل مختلف معمولاً از 50-100 A/sec ردیابی می‌شود. علل

ابعاد به حداکثر 2cm مورد استفاده برای تحلیل GDS

ضخامت انتخاب شده و پس از عملیات سطحی مورد

تحلیل قرار می‌گیرند. در این دستگاه ناحیه ای از نمونه‌های مذبور به

قطر قطر فلز می‌باشد. مسیر اصلی فازه‌ها موجد در منطقه نفوذی توسط دستگاه ترکیب

CuKα با پروپاژیک SP-610 و اسپیکترومات SP-610 C

طول موج 1.54 Å تهیه شده است. و نواز و جریان اعمالی به

deg/min و نرس روش طی تحلیل نر

1376

استفاده، سال 16، شماره 2، اسفند
تربیتیان بین فلزی میزان سایش نمونه را در مقایسه با نمونه خام در حدود ۴۰ درصد کاهش دادند. منحنی فریب اصطکاک بر حسب مساحت برای نمونه خام و نمونه آی کس پس از آلومینیزیکگی بیشتر ۳۰ ساعت آنلاین نفوذ شده در شکل (۹) نشان داده شد. در نهایت کاهش ضریب اصطکاک تربیتیان با توجه به شکل (۱۰-الف) تصویر میکروسکوپ الکترونی روبیش (SEM) سطح سایش فولاد T5 عملیات نشده را نشان می‌دهد. در این تصویر دو قطعه از سطح همان مشابه می‌باشد. شکل (۱۰- ب) به ترتیب نمایانگر خرد‌ساختار سایش و سطح سایش پیوسته به ضریب و نمایانگر خرد‌ساختار سایش در مقایسه با نمونه خام است. ترتیب انتقال نمونه پوشش به ضریب و نمایانگر خرد‌ساختار سایش و سطح سایش پیوسته به ضریب تربیتیان به همه تربیتیان مشابه است. شکل (۱۰- د) تربیتیان آلومینیزیکگی در زیر سطح مقطع سایش است.

آنالیز آزمایشات سیستم‌کیفیت پلاستیکی Fe₃Al نمونه آلومینیزیک شده در شکل (۹) نشان داد شد. پس از انجام فرآیند آلومینیزیکگی با مشاهده تربیتیان در فلز مناسب بر سطح نمونه می‌تواند عملیات نفوذ کننده و از سطح ابریش آئورتیک بر روی نمونه ای بر سطح است. انجام آزمایشات پوشش پیوسته به همه تربیتیان Fe₃Al با توجه به شکل (۱۰- ب) و (۱۰- ج) دانسته گردد. انتقال نمونه پوشش به ضریب و نمایانگر خرد‌ساختار سایش و سطح سایش پیوسته به ضریب تربیتیان آلومینیزیکگی در زیر سطح مقطع سایش است.
پوشش‌بندی - زیرلا به وضوح مشاهده می‌شود.

فراورده آلومیناپتیزیک به روش پودر فشرده پروینه‌های تولید در دمای 800°C تا 980°C انجام می‌گردد. برای انتخاب دمای آلومیناپتیزیک آزمایش‌های متعددی در دمای 800°C انجام گرفت. در این آزمایش‌ها مشاهده شد که در 10 ساعت پوشش زیرلا به وضوح مشاهده می‌شود. میزان 3 ساعت پوشش زیرلا به وضوح مشاهده می‌شود که در 10 ساعت پوشش زیرلا به وضوح مشاهده می‌شود. در این آزمایش‌ها مشاهده شد که در 10 ساعت پوشش زیرلا به وضوح مشاهده می‌شود.

شکل 3- نتایج آزمایش پوشش پودری ایکس پروینه تولیدی آلومینای پتیزیک:
الف) لا سطح
ب) سطح اولین لایه پودری
ج) سطح دومین لایه پودری

سایش به وضوح مشاهده می‌شود.
شکل 5 - ریز ساختار پوشش‌های نفوذی آلومینیم بر روی فولاد که پس از عملیات آلومینیزیون، به مدت 30 ساعت آلی نفوذی شده است.

برخورد و است ترکیب فاز بین FeAl و Fe_{2}Al_{3} است. انجام عملیات آلی نفوذی پس از آلومینیزیون در 2000 درجه سانتیگراد سطحی، عملیات آلومینیزیون در 600 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 700 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 900 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 1100 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 1200 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 1300 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 1400 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 1500 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 1600 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 1700 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 1800 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 1900 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 2000 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 2100 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 2200 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 2300 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 2400 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 2500 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 2600 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 2700 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 2800 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 2900 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 3000 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 3100 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 3200 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 3300 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 3400 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 3500 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 3600 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 3700 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 3800 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 3900 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 4000 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 4100 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 4200 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 4300 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 4400 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 4500 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 4600 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 4700 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 4800 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 4900 درجه سانتیگراد سطحی، عملیات آلومینیزیون و سپس در 5000 درجه سانتیگراد سطحی.
شکل ۷- نمودانهای شیب سختی از سطح پوشش به سمت زمینه مربوط به نمونه‌های که بس از آلومینیم‌پزیگن در زمان‌های مختلف آلیاف نفوذی شده‌اند.

شکل ۸- مستحکم‌ترین شیب سختی از سطح پوشش به سمت زمینه مربوط به نمونه‌های که بس از آلومینیم‌پزیگن ن%'یال نفوذی شده‌اند (تخم باز N۳۶).

- خرده سایش (اندازه و شکل آنها)
 - مقعد زیر سطح سایش در این پژوهش این سه عامل با استفاده از میکروسکوب الکترونی روشنی (SEM)، نانوگرافی و میکروسکوب نوری مورد بررسی قرار گرفتند و در حد امکان مکانیزم‌های سایش غالب مشخص شدند که در ادامه شرح داده شدند.
 - بروی سطح سایش فولاد عملیات سطحی نشده (شکل ۱۶-الف) شیارهاي را نشان مي‌دهد که به موازات جهت سایش بوده و

شکل ۶- نمودار تغییرات فلزات عناصر در پوشش‌های نفوذی آلومینیم تشکیل شده بر سطح نمونه‌های که بس از آلومینیم‌پزیگن به مدت ۳۰ ساعت آلیاف نفوذی شده‌اند. تغییرات از سطح به سمت زمینه و توسعه ایکتروسپتی‌پلاسمایی صورت گرفته است.

الف) از سطح ۱۵/۰ تا ۱۵/۴ میکرون (ب) از عمق ۱۵/۴ تا عمق ۱۵/۱ میکرون ۲۱۱/۱۲ میکرون

تفاوت کرده تغییرات ضربه اصلی در جهت زیاد بوده و از ۲۸/۵ یا ۲۸/۴ تا عمق ۱۵/۰ تغییر می‌کند. استفاده از پوشش نفوذی به پر سطح فولاد علاوه بر کاهش ضربه اصلی به اصلاح باعث شده که دائم تغییرات آن نیز کمتر و منظم‌تر شود (از ۲۸/۵ یا ۲۸/۴ تا عمق ۱۵/۲ میکرون). به نظر می‌رسد که فاکتوری که در طی این پایین‌ پذیر امکان‌های علمی بر مقاومت سایشی خوب دارای پدیداری اصلی کمی نیز هستند.

عوامل مهمی که می‌توان توسط آنها مکانیزم سایش غالب را در یک تریو سیستم مشخص کرد عبارتند از بررسی:
 - سطح مقعد سایش (نمونه و عضو مقابل)
شکل ۹ - نمودار ضریب اصطکاک بر حسب مسافت لغزش برای نمونه نولادی بدون پوشش و نمونه ای با پوشش بینه‌ای

از ترکیبات بین فلزی Fe-Al (پارگناری) به صورت مرحله‌ای با نرخ ۴۰۰ N/۱۰۰ m (پ) و (الف)

(ب) صفحه سایش (ب) خرده‌های سایش (ج) عضو مقابل (د) زیر صفحه سایش

شکل ۱۰ - تصاویر میکروسکوپ الکترونی فولاد عملیات شده

الف) صفحه سایش (ب) خرده‌های سایش (ج) عضو مقابل (د) زیر صفحه سایش

استقلال، سال ۱۶، شماره ۲، اسفند ۱۳۷۶
شکل 11- تصویر میکروسکوپ الکترونی فولاد آلومینیژ شده

(الف) سطح بیش (ب) خرده های سایش (ج) عضو مقابل (د) زیر سطح سایش

برآمده ماده نیز هم جهت با آنها وجود دارد. ممکن است در سطح نشان می‌دهد که خرده حاوی حفره‌های زیاد و پراکنده‌اند. مشاهده مقطع زیر سطح سایش (شکل 10-ب) نشان دهنده حفره‌های تغییر شکل پلاستیکی در زیر سطح سایش است. جمع‌بندی این مشاهدات روشن می‌سازد که در مورد عامل‌های مطابق مراحل بالا نیز هستند. ملاحظه کرده‌ایم که حفره‌ها و سوراخ‌های پراکنده در سطح فولاد (شکل 10 – پ) نشان می‌دهد که آنها عضوی به صورت ورقه‌ای با شکل منظم بوده و دارای لبه های دیده‌نامه‌ای هستند. مطالعات تشریحی این خرده‌ها نشان می‌دهد که آنها حاوی سوراخ‌ها و تراکم‌های زیادی انده. بررسی سطح عضو مقابل (شکل 10 با توجه به شکل (ب) مشاهده می‌شود که در مورد نموده‌ای که فقط تحت عملیات آلومینیژیگن (بدون عملیات حرارتی نفوذی)
شکل 12- تصاویر میکروسکوپ الکترونی نمونه ای که پس از آلومینایزیک در زمان بیهنه‌ای نفوذی شده است.

الف) سطح سایش (ب) خرده‌های سایش (ج) عضو مقابل (د) زیر سطح سایش

قرار گرفته است میزان سایش حتی از نمونه بدون پوشش نیز بیشتر است. این به دلیل تشکیل ترکیب بین فلزی FeAl و Fe+AlFe که از ترکیب باپلی برخوردار است. بررسی سطح سایش (شکل 11-الف) این نمونه بیانگر عدم تغییر شکل پلاستیکی در اطراف شیار می‌باشد. و در نتیجه تصویر نشان می‌دهد که این نمونه بدون پوشش با حجم زیادتر بودن میزان یا حجم ذرات سایش در مقیاس با حجم شیار ایجاد شده در سطح است. ملاحظه خرد‌های سایش (شکل 11-ب) نشان می‌دهد که آنها عمداً به صورت دوستانه ای به همراه با شیب سختی مایل از سطح به طرف زیر می‌کنند (شکل 11-ج). همچنین میزان مقطعی زیر سطح سایش (شکل 11-د) نشان دهند که عدم تغییر شکل پلاستیکی در این
تیجی‌گری
الف- انجام عملیات آلومینیایی‌گری همراه با آنیل نفوذی بهینه
سپس افزایش سختی سطح از 200HV (نیودیم بدون پوشش) به
حدود 510HV می‌شود.
ب- میثولوژی لاکه ای تشکیل شده بر روی فولاد بیانگر ساختار
پیشین است.
ج- انجام عملیات آلومینیایی‌گری همراه با آنیل نفوذی بهینه سپس
بهبود رنگ‌سازی و اصطکاکی فولاد می‌شود.
د- مکانیزم غالب سایش فولاد بیانگر ورودی ورده آن و همچنین سطح ترکیب
خیارانده است.
ه- مکانیزم غالب سایش فولاد آلومینیایی‌گری در زمان بهینه آنیل
نفوذی است. سایش ورده آن و همچنین سطح ترکیب اکسیدسیونی است.

واژه نامه:
1- intermetallic compounds
2- diffusion coatings
3- diffusion annealing
4- Glow Discharge Optical
5- Spectroscopy (GDOS)
6- predominant wear mechanism
7- abrasive
8- microcracking
9- oxidative wear

مراجع
2. مرتبیه ۲۸۶۲. "متریسی شمعیان اصفهانی، معیاری صاحبی، نخازندی اشتری زاده، "، رفتار تریچرومی‌گری فولاد انزالی کننده دارای پوششی آزی
3. ترکیب Fe-Al. سوسن ۲۶۷۰، فولاد ۷۸، دانشگاه صنعتی اصفهان، صفحه ۳۲۵۷.

