Simulation of a Two Cards JIT Production System

M. Aghdasi, F. Mokhtab Rafiei and G. Moslehi

Department of Engineering, Tarbiat Modares University

Department of Industrial Engineering, Isfahan University of Technology

ABSTRACT- This paper presents a summary of the results from the simulation of a given two-stages production system which uses JIT. The system consists of an assembly line with two automated assembly cells and two assembly stock points and one manufacturing cell with three manufacturing stock points for storing reserved parts and one receiving stock. Carts with fixed capacity are used for handling the parts. A kanban is attached to each cart. The minimum number of kanbans required to operate the system without shortage in stock are estimated. The effects of changing the demand’s mean and its variation on the number of carts are also investigated. Finally, a different simulation model is developed for the same production system using conventional job shop discipline and some main characteristics have been compared to the results, from the first model.
هدف

همانطوری که کیمرو و تردا

۱۵- مقدمه

۱- مقدمه

یک سیستم تولیدی است که ابزاری کاربردی بسیار

است که در جهت حفظ تمام ادواتی در یک سیستم استفاده

می‌شود. این کار با شعار تولید به تعادل لازم در زمان‌های مناسب یا

"درست به موقع" ۱۶- انجام می‌گیرد.

سیستم‌های تولیدی انتخابی برای یکی تولید در سیستم‌های یوزین و در

دوره‌های تولیدی طولانی بنیان‌گذاری تولید به معنی تولید

انواع در دسته‌های کوچک و درست به موقع است، که یک راه‌ساز و

انعطاف پذیری بکار راهکار کاملاً جدیدی است [۱].

برای کاهش مونوژودی، با ید یک سیستم تولیدی عملیاتی پدن

ضایعات داشته باشند. چون در این صورت است که بدون نگرانی از

موجودی اضافی یا ایامه دادن تولید، می‌توان تولید را در مواقعی

که ضایعات ایجاد می‌شود، قطع کرد. اصل اساسی، تولید در

دسته‌های کوچک است. چون قطعات در این دسته‌ها کوچک هستند و

یک واحده حمل می‌شوند، بازتاب بین فاصله‌ها بسیار سریع است.

کارگران تولیدی، وظیفه بازرسی را نیز به عهده داشته و با ابتکار و

مستندی‌ها ثبوت جز در مواقع ضروری، جلوی بروز ضایعات را

می‌گیرند.

سیستم کانبان

کتابی از نظر لغوی به معنی کاری است. زبانی ها تولید در هر

مرحله را با دو کارت منتقل می‌کند که یک کارت مجزا دریافت

تعادل قطعه‌ای از کار و کارت دیگر مجزا برای تولید تعادل قطعه

است. در پیشرفت پیش از بزرگ، یک صورت نتایج انجام

مخصوصی است که تعادل مشابه و ترجیحاً از این که تعادل

را می‌تواند حمل کند. دو کارت برای یک کار در دو مرحله

به نام کتابی کاراربی تولید ۱۶- از قطعات پی‌گازی تولید

می‌شود با گزارش همراه است. و تولید یک کار گزارش کامل یا

تعاضایی از مرحله بعدی رعیت، کتابی کاراربی تولید از گزار

سیستم‌های تولیدی

همانطوری که کیمرو و تردا ۱۱- مقدمات، فراپایش‌های تولید

چندمحلاتی ۱۱- می‌توان به دو گروه تقسیم کرد: سیستم‌های هن

دنی و سیستم‌های کشیدنی ۱۱- پیشرفت سیستم‌های تولیدی در

آمریکا و اروپا و... از سیستم‌های سیستم‌های هن دانی استفاده می‌کنند در حالت

که سیستم Z-V بازی است که در سیستم کشیدنی (JIT) ۱۱- عملکرد

به دو کاراربی سیستم در این است که در سیستم کشیدنی (JIT)

مرحله بعدی ۱۱- تعادل واحدی مرکزی ناشی را از تولید قبلی

فقط بر طبق درخواست و زمانی که آن واحد را ضبط می‌کنند، بر می‌دارد.

استقلال، سال ۱۷، شماره ۱، شهریور ۱۳۷۷

۱۴
یک کتابن بیشتر است. بسیاری از اثرات این موضوع در طول تاریکی یک برنامه است. به این ترتیب، نادرستی‌های فاصله و زمانی است که بایستی بررسی شود. این مسئله می‌تواند با پیشرفت‌هایی در ساختار و ضرورتی در ساختار نهایی کتابن باشد.}

۱۸۷\ ۱۷۱۷ شماره، سال ۱۷
سینه انجام می‌شود. در بخش 7 نتیجه‌گیری ارائه شده است.

۲ مورخی بر تحقیقات موجود

تحقیقات نسبتاً زیادی در زمینه برنامه‌ریزی و کنترل عملیات در انجام شده که به‌صورت مقایسه‌ای عمدی به چاپ رسیده‌اند. از بین آن‌ها نظریه سیستم‌های موجود می‌تواند قارچ‌گونه و در بعضی نیز تحلیل بررسی مدل‌های شبیه‌سازی و رفتار سیستم انجام شده است. در این موارد امکانی برای تحقیقات انجام شده به‌پایه‌ی مدلهای شبیه‌سازی در این زمینه‌ای می‌شورد.

۴ چندین مطالعه بودینه دو گروه تحقیقی کرد

۱. دسته‌بندی مقایسه‌ای از سیستم‌های شبیه‌سازی

۲. تحلیل تحلیل‌های معیاری دو سیستم بر مبنای مقایسه‌ای مدل‌های سیستم‌ها تحت دو سیستم با استفاده و تحلیل‌های معیاری دو روش بررسی گردیده‌اند.

کاتیان با شرایط متفاوت محوری هستند. مقایسه‌ای بررسی شده نیز بر همین منوی در جدول ۵ گروه دیده شدند.

اثرات تغییر در زمان‌های پردازش و بررخی اصلی تولید (تفاوت‌های در تقاضا) و توانایی و توانایی در تولید عملیات ۸۳ ایستگاه‌های تأمین کالا به‌صورتی که یک گروه-n یک دستگاه اضافه شده و ریز و مهتر کار در حالی که زمان‌های پردازش اضافی اندازه‌گیری می‌شود که به‌عنوان

۱. مدیریت سیستم تولیدی دو مرحله‌ای

سیستم تولیدی دو مرحله‌ای شکل ۱ حلقه‌کنیان پرداخته دارد.

۲. مدیریت سیستم تولیدی دو مرحله‌ای

سیستم تولیدی دو مرحله‌ای شکل ۱ حلقه‌کنیان پرداخته دارد.
جدول 1 - گروه‌نیم مقاله‌ها

<table>
<thead>
<tr>
<th>نویسنده (نویسنده)</th>
<th>مستقل</th>
<th>میلیسای</th>
<th>کی میوزیک، تردا (1981)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>دانگ، ریز، تیلور III (1983)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>اسکور (1984)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ابراهیم‌پور، فاطمی (1985)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>فالون، پراون (1987)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>کیاکوسبیکی، کینگ، زیمن، ونگ (1987)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>لی (1987)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>فیلیپون، ریز، تیلور III، دانگ (1987)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>گارسین، پرنس (1988)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>سارکر، هارس (1988)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ونیدا، دوک، اسپیت (1988)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>گریتک، گوپنا (1989)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>لی (1989)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ریز، دانگ، تیلور III (1989)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>سارکر، الیسون (1989)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>اندریانس، کلارک (1991)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>پرکای، کریان (1991)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>چاتوریدا، گلوپ (1992)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>سامی، کرست، راسل، تیلور III (1992)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[20]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>یاو و ساتر (1995)</td>
</tr>
</tbody>
</table>

حلقه A - گاری‌ها بین اینبار مونتوان و اینبار سالون 27 ساخت کرده و به اینبار سالون ساخت پرمی گردنده. قطعات وارده E در سالون به یکی از دو قطعه a و یا قطعه b تبدیل می‌شوند.

حلقه B - گاری‌ها بین اینبار مونتوان و اینبار سالون ساخت کرخت B کرده و به اینبار مونتوان B پرمی گردنده.
قرارداد کانیان سفارش تولید در محل نگهداری آن در سال
ساخت علائم برای تولید قطعات برای است. بعد از ابتکار گزاراً
قطعات پر یک در این ساخت باید که کانیان سفارش
تولید به آن متعلق است. قرار می‌گیرد.

برای ساخت قطعه

باید با نازایه قطعه

استفاده شود. کانیان برداشت از گزاراً پر شده آن قطعه جدا و
در محل نگهداری مختص قرار داده می‌شود. سپس قطعه

مورد استفاده قرار می‌گیرد.

اگر یک گزاراً خالی

در دسترس باشد، یک کانیان برداشت به آن
مختص شده و به محل ابتکار دریافت می‌شود. در نتیجه ارسال،
کانیان برداشت از گزاراً جدا می‌شود. اگر یک گزاراً پر

در دسترس باشد، کانیان برداشت به آن مختص شده و گزاراً پر

به دست می‌رسد. در صورت نبود گزاراً پر گزاراً در محل ابتکار
دریافت می‌شود و در موقع مناسب می‌شود. در دو راه با ثبت

محل عرضه کننده ارسال شده و به دست می‌رسد. بین گزارانه می‌شود.

تریب مشابه از قدمه‌ها فوی در سال ساخت

A صورت می‌گیرد.

- مدل شییعه‌سازی

یک مدل شییعه‌سازی برای سیستم دوکارتی بالا با استفاده از

زبان شییعه‌سازی SLAM شناخت شده است. که شکست آن در شکل

2 ملاحظه می‌شود. از یک سال ساخت استفاده شده و تریب گزاراً و

4 گزاراً به ترتیب 2 و 7 قطعه است. تعداد گزاراً در دسترس

بین اجرایا مختلف به دو و در دو نشان داده می‌شود. جدول

3 شرایط اویه و اطلاعات ورودی را نشان می‌دهند.

اعتبار مدل: عضو سنجش برای اعتبار مدل، فرصت نتایج حاصل

از اجرای مدل با دیگر رفتگان مقاقدی ثابت برای تحقیق و سایر

پایه‌ها. به نتایج حاصل از مورد سیستم سیستم

صورت گرفته است. در این هر حالت پارامترات در دو راه تایید

یکسان شدهتند که می‌تواند دلیل برای صحت مدل و انجام

آزمایش باشد.

تعریف: پایه توجه کرد که تعادل، مسیری به حالت پایدار از یک

سیستم است و به دستااوی به مقادیر خاصی از حالت سیستم که در

یک اجرای تحت هم‌اکنون مشاهده می‌شود. تعادل، شرایط حیدر

سیستم ارائه شده در شکل 1 از اجرا زیر تحلیل شده است:

A) در ایستگاه مواد برای ساخت قطعه 8 در ایستگاه A برای

B) مواد قطعه 8 در ایستگاه A

A) سیستم گزارا برای C شکل به قطعه 8 به تبدیل می‌کند.

B) ابتکار دریافت که گزارا از دیگری شش قطعه A و

B) گزارا نخورده.

A) ابتکار مواد برای C ساخت قطعه A و

B) سیستم کننده مشابه می‌شود.

A) ابتکار ساخت

B) ابتکار مواد برای C گزارا بخاطر و P مربوط به

قطعه A و بخاطر گزارا بخاطر و P مربوط به قطعه C

B) ابتکار ساخت

B) ابتکار مواد برای C گزارا بخاطر و P مربوط به

قطعه A و B و C مواد قطعه 8.

A) هر گزارا X و گزارا Y فقط یک کانیان سفارش تولید و یک

کانیان برداشت دارد. هر گزارا X فقط یک کانیان برداشت دارد.

B) هر گزارا X و Y می‌توانند فقط تعداد مشخصی از قطعات را

حمل کنند.

چرخه در سیستم ارائه شده در شکل 1 به شرح زیر است:

A) کانیان برداشت از گزارا پر شده با داده و در محل نگهداری

آن قرار داده می‌شود. سیستم قطعه 8 به تعدادی که لازم است از گزارا

B) برداشت می‌شود و عملیات مواد تولید در سال B انجام می‌گیرد.

A) اگر یک گزارا در سال ساخت

B) خالی شود، یک کانیان برداشت

به آن متعلق شده و گزارا پر به سلول ساخت B برگردانده می‌شود.

کانیان برداشت از گزارا پر شده

B) اگر یک گزارا پر

B) در دسترس باشد، کانیان برداشت به آن متعلق

به در محل نگهداری شود. کانیان سفارش تولید برداشت به دست

کانیان باگاری منظور می‌ماند تا یک گزارا پر شود.
جدول ۲- شرایط اولیه

<table>
<thead>
<tr>
<th>به/ب</th>
<th>a</th>
<th>b</th>
<th>جمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۵</td>
</tr>
<tr>
<td>۲</td>
<td>۴</td>
<td>۶</td>
<td>۱۰</td>
</tr>
<tr>
<td>۳</td>
<td>۱</td>
<td>۲</td>
<td>۵</td>
</tr>
</tbody>
</table>

ظرفیت گاری (قطعه بر گاری)

جدول ۳- اطلاعات ورودی

<table>
<thead>
<tr>
<th>توزیع زمانی</th>
<th>نوع اطلاعات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>زمان آماده‌سازی ساخت قطعه (a) به قطعه (b)</td>
</tr>
<tr>
<td>۲</td>
<td>زمان ساخت قطعه (a)</td>
</tr>
<tr>
<td>۶</td>
<td>زمان ساخت قطعه (b)</td>
</tr>
<tr>
<td>۶±۲</td>
<td>زمان مونتاژ قطعه a به b</td>
</tr>
<tr>
<td>۶±۲</td>
<td>زمان مونتاژ قطعه b به a</td>
</tr>
<tr>
<td>۲</td>
<td>زمان حمل گاری بر a از انبار ساخت A به انبار مونتاژ A</td>
</tr>
<tr>
<td>۲</td>
<td>زمان حمل گاری خالی از انبار مونتاژ A به انبار ساخت A</td>
</tr>
<tr>
<td>۱</td>
<td>زمان حمل گاری بر b از انبار مونتاژ B به انبار ساخت B</td>
</tr>
<tr>
<td>۱</td>
<td>زمان حمل گاری خالی از انبار مونتاژ B به انبار ساخت B</td>
</tr>
<tr>
<td>۱</td>
<td>زمان حمل گاری بر c از انبار دریافت به انبار ساخت C</td>
</tr>
<tr>
<td>۱</td>
<td>زمان حمل گاری خالی از انبار دریافت به انبار ساخت C</td>
</tr>
<tr>
<td>۲۴۰±۲۵</td>
<td>تعدادگاری در هر ۲۴۰ دقیقه</td>
</tr>
<tr>
<td>۱۰±۲</td>
<td>فاصله زمانی بین ورود دو نقاشی متوالی</td>
</tr>
</tbody>
</table>

ورود گاری پر c (سیکل سفارش)

استقلال، سال ۱۷، شماره ۱، شهریور ۱۳۷۷
شکل 3. متوسط زمان موتاژ (دراجرای 2)

استکل‌ها برای سیستمی به نقطه تعادل بررسید. اطلاعات این است که هدف رساندن به آن است. تفاوت بین وضعیت فعلي در شیب‌سازی و وضعیت تعادل آن معمولاً با انواژانش زمان شیب‌سازی کاهش می‌یابد. بازاریابی، مستقل پایینگرفته‌ای است که تا قبل از آن نقطه، نتایج متأثر از شرایط اولیه‌اند. روشن کانوی (123) برای تعیین نقطه تعادل در این مطالعه مورد استفاده قرار گرفته است. پیش از اجرای مدل و بر اساس جمع‌آوری اطلاعات در هر 280 دقیقه که معادل یک شیفت کاری است، نتیجه زیر حاصل شده است.

شرايط شروهي: مدت زمانی که از سیستم مستقل از شرایط اولیه و دیگر یکی از معمول‌ترین راه‌های شرایط در شیب‌سازی، حالت بکاری و خالی بودن و یا به‌طوری که در صفر است. این حالت به‌عنوان در شرایط اجرا، تمام صفحه خالی بوده و تمام متغییرها یا تجهیزات بکارنده.

این‌گونه که در شکل 3 متوسط زمان موتاژ قطعه 4 (در اجرای اول) در هر 280 دقیقه حساب شده است. مقدار پنجمین تکرار اولین نقطه‌ای است که به حداکثر و هم حداکثر است. بازاریابی 1920 دقیقه اول (چهار استقلال، سال 17، شماره 1، شهریور 1377)
جدول ۴ - متوسط تعداد تولید و درصد تقاضای تأمین شده

درصد تقاضای تأمین شده	متوسط تعداد تولید قطعه	اجرای
۹۸/۳	۱	
۱۰۰	۲	
۹۸/۶	۳	
۱۰۰	۴	
۱۰۰	۵	
۱۰۰	۶	
برای اطلاعات بیشتر، لطفاً به دریافت‌گری نتایج دانشگاهی برای
جدول ۶- میزان متوسط تعداد موجودی

<table>
<thead>
<tr>
<th>پرونده</th>
<th>قطعه</th>
<th>اجرا</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۷۲</td>
<td>۱/۴۲</td>
<td>۱</td>
</tr>
<tr>
<td>۱/۷۲</td>
<td>۱/۹۶</td>
<td>۲</td>
</tr>
<tr>
<td>۱/۳۷</td>
<td>۱/۳۷</td>
<td>۳</td>
</tr>
<tr>
<td>۱/۳۷</td>
<td>۱/۹۹</td>
<td>۴</td>
</tr>
<tr>
<td>۵/۷۲</td>
<td>۱/۹۹</td>
<td>۵</td>
</tr>
<tr>
<td>۵/۷۲</td>
<td>۱/۹۹</td>
<td>۶</td>
</tr>
</tbody>
</table>

جدول ۷- میزان بیشترین سلول ساخت

<table>
<thead>
<tr>
<th>پرونده</th>
<th>میزان بیشترین</th>
<th>اجرا</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۸۹</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱/۹۰</td>
<td>۲</td>
<td></td>
</tr>
<tr>
<td>۱/۸۸</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>۱/۹۱</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>۱/۹۱</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>۱/۹۱</td>
<td>۶</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۸- میزان بیشترین سلولهای مونتاژ

<table>
<thead>
<tr>
<th>پرونده</th>
<th>سلول مونتاژ</th>
<th>سلول مونتاژ</th>
<th>اجرا</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۵۸۷</td>
<td>۰/۶۰۵</td>
<td></td>
<td>۱</td>
</tr>
<tr>
<td>۰/۵۸۷</td>
<td>۰/۶۰۸</td>
<td></td>
<td>۲</td>
</tr>
<tr>
<td>۰/۵۸۲</td>
<td>۰/۶۸۹</td>
<td></td>
<td>۳</td>
</tr>
<tr>
<td>۰/۶۱۶</td>
<td>۰/۶۱۷</td>
<td></td>
<td>۴</td>
</tr>
<tr>
<td>۰/۶۱۶</td>
<td>۰/۶۱۷</td>
<td></td>
<td>۵</td>
</tr>
<tr>
<td>۰/۶۱۶</td>
<td>۰/۶۱۷</td>
<td></td>
<td>۶</td>
</tr>
</tbody>
</table>
شکل ۴ - رابطه افزایش دامنه نوسانات ثانیا با درصد گردش کانیان

تطلب دهد.

در اجرای ۱۱ نیز که دامنه تغییرات کمتر و کمتر است. متوسط یپره‌های سلول‌های موتناز کاملاً یافته و تغییر قابل ملاحظه‌ای در ترلی این نداده است.

شکل ۴ رابطه افزایش دامنه نوسانات ثانیا با درصد گردش کانیان را نشان می‌دهد که چگونه با افزایش واریانس تغییر ثانیا درصد گردش کانیان افزایش می‌یابد.

نکته قابل توجه دیگر تعداد گاری ۶ است. با انجام شبیه‌سازی

حداکثر تعداد گاری ۶ که اثر محدود کننده‌ای بر روی تأمین تغییرات و تعداد گاری‌های ۴ و ۵ درصد گردش کانیان ناشی شد. به طور مثال به ۲۱۱ مشاهده می‌شود.

همانطور که بیان شد نرخ سفارش از قطعه ۴ بر اساس سفارش در دوره است و نتایج نشان می‌دهد که حداکثر گاری ۶ برای این سیستم ۱۹ و ۱۳ واحد است و در هر ۸۸ دقیقه ۱۳ الی ۱۴ گاری در هر نوبت ارسال و دریافت می‌شود.

در جدول ۲۴ نیز اثر افزایش در دامنه تغییرات ثانیا و همچنین اثر افزایش در متوسط نوسان بر روی تعداد گاری ۶ نشان داده شده است. با افزایش نرخ ورود در اجراها ۸ و ۸ متوسط دریافتی از گاری ۶ افزایش یافته است که نتیجه نیاز پیشرفت به تولید قطعات ۸ و ۱۰ است. در عین حال حداکثر تعداد

استقلال، سال ۱۷، شماره ۱، شهریور ۱۳۷۷

۲۵
جدول ۹ - نتایج اثر افزایش نرخ ورودی در اجرای ۲

<table>
<thead>
<tr>
<th>اجرای ۲</th>
<th>اجرای ۱</th>
<th>اجرای ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>متوسط بهرهوری سول سولوتاژ A</td>
<td>۰/۵۸۸</td>
<td>۰/۴۰۸</td>
</tr>
<tr>
<td>متوسط بهرهوری سول سولوتاژ B</td>
<td>۰/۶۴۴</td>
<td>۰/۵۸۷</td>
</tr>
<tr>
<td>متوسط تولید در شیفت</td>
<td>۲۷/۵</td>
<td>۲۷/۵</td>
</tr>
<tr>
<td>۴۸۵</td>
<td>۴۸۵</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td></td>
</tr>
</tbody>
</table>

درصد گردش کانیان

جدول ۱۰ - نتایج اثر افزایش در دامنه تغییرات نرخ ورودی در اجرای ۲

<table>
<thead>
<tr>
<th>اجرای ۲</th>
<th>اجرای ۱</th>
<th>اجرای ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>متوسط بهرهوری سول سولوتاژ A</td>
<td>۰/۵۸۶</td>
<td>۰/۶۰۸</td>
</tr>
<tr>
<td>متوسط بهرهوری سول سولوتاژ B</td>
<td>۰/۵۸۸</td>
<td>۰/۵۹۷</td>
</tr>
<tr>
<td>متوسط تولید در شیفت</td>
<td>۳۷/۵</td>
<td>۳۷/۵</td>
</tr>
<tr>
<td>۸۵</td>
<td>۸۵</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td></td>
</tr>
</tbody>
</table>

درصد گردش کانیان

استقلال سال ۱۷، شماره ۱، شهریور ۱۳۷۷
جدول 11- خلاصه نتایج گردش‌گاهی 5

<table>
<thead>
<tr>
<th>متوسط دریافتی در هر ۴۸۰ دقیقه</th>
<th>حداقل استفاده شده</th>
<th>متوسط استفاده شده</th>
<th>اجرا</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲/۴</td>
<td>۱۹</td>
<td>۱۱/۰۹</td>
<td>۱</td>
</tr>
<tr>
<td>۱۲/۷</td>
<td>۱۹</td>
<td>۱۱/۳۴</td>
<td>۲</td>
</tr>
<tr>
<td>۱۲/۴</td>
<td>۱۹</td>
<td>۱۱/۵۷</td>
<td>۳</td>
</tr>
<tr>
<td>۱۲/۰</td>
<td>۱۹</td>
<td>۱۱/۱۵</td>
<td>۴</td>
</tr>
<tr>
<td>۱۲/۰</td>
<td>۲۲</td>
<td>۱۲/۸۵</td>
<td>۶</td>
</tr>
</tbody>
</table>

جدول 12- حداقل تعادل گاری 5 در شرایط مختلف

<table>
<thead>
<tr>
<th>متوسط دریافتی در هر ۴۸۰ دقیقه</th>
<th>حداقل استفاده شده</th>
<th>متوسط استفاده شده</th>
<th>اجرا</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲/۷</td>
<td>۱۹</td>
<td>۱۱/۳۴</td>
<td>۷</td>
</tr>
<tr>
<td>۱۵/۱</td>
<td>۱۸</td>
<td>۹/۸۹</td>
<td>۸</td>
</tr>
<tr>
<td>۱۵/۷</td>
<td>۱۸</td>
<td>۹/۹۱</td>
<td>۹</td>
</tr>
<tr>
<td>۱۲/۹</td>
<td>۱۹</td>
<td>۱۱/۱۵</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۲/۷</td>
<td>۲۱</td>
<td>۱۲/۸۵</td>
<td>۱۱</td>
</tr>
</tbody>
</table>

6- مقایسه سیستم تولیدی کشیدنی (JIT)

در صورتی که در این مطالعه هدف اصلی یک بررسی مستقل از رفتار یک سیستم تولیدی دور‌حلقه‌ای است ولی به روش های JIT است، همان‌طور که محصول تولید شده از صندوق استخراج، کلیه محصولاتی که می‌توانند به‌طور انتخابی شود را به‌طور داخل تعیین شده است. هر یک از محصولاتی که به‌طور خاص از صندوق استخراج به‌طور داخل تعیین شده، به‌طور خاص به‌طور خاص تولید می‌شود. از این رو، این محصولات به‌طور خاص به‌طور خاص تولید می‌شود.

در صورتی که برای تولید فکر خود به‌طور خاص سیستم معرفی شود، سیستم معرفی شده تولیدی علاوه بر اعمال SLAM برای اینکه یک مقایسه مناسب را انجام داد باید تفاوت‌های

استقرار، سال 17، شماره 1، شهریور 1377
جدول ۱۳ - مقایسه سیستم تولیدی JIT با سیستم تولیدی هن دادنی

<table>
<thead>
<tr>
<th>سیستم JIT (جریان)</th>
<th>سیستم هن دادنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد گارهای c ۸</td>
<td>۴۱</td>
</tr>
<tr>
<td>تعداد گارهای a ۲</td>
<td>۲۴</td>
</tr>
<tr>
<td>تعداد گارهای b ۱</td>
<td>۱۲</td>
</tr>
<tr>
<td>موجودی محصول نهایی در یک اثره شیفت ۰</td>
<td>۷</td>
</tr>
<tr>
<td>موجودی پیش مونتاژ در یک اثره شیفت ۰</td>
<td>۷</td>
</tr>
<tr>
<td>موجودی قطعه c در یک اثره شیفت ۶</td>
<td>۱۲</td>
</tr>
<tr>
<td>موجودی قطعه a در یک اثره شیفسازی ۴</td>
<td>۴</td>
</tr>
<tr>
<td>موجودی قطعه a در یک اثره شیفسازی ۱</td>
<td>۵</td>
</tr>
<tr>
<td>پرهوری سلسول ساخت a</td>
<td>۰/۹</td>
</tr>
<tr>
<td>پرهوری گارهای a</td>
<td>۰/۹۵</td>
</tr>
<tr>
<td>پرهوری گارهای b</td>
<td>۰/۹۲</td>
</tr>
<tr>
<td>پرهوری گارهای b</td>
<td>۰/۳۲۵</td>
</tr>
<tr>
<td>تولید متوسط ۱۲/۷۵</td>
<td>۱۲/۷۵</td>
</tr>
<tr>
<td>متوسط زمان انتظار یک قطعه ۱/۴۲۲</td>
<td>۱/۴۲۲</td>
</tr>
<tr>
<td>درصد تاخیری تأمین شده ۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

معلوم شد که ظرفیت زیاد گارهای c و a و b مشاهده شده که بایت تولید به مقدار مساوی در همان تعداد شیفت صورت مطلوبی، حجم موجودی قطعات در جریان و موجودی محصول نهایی بیشتر از قبل می‌شود. برخی از نتایج مهم این مقاله در جدول ۱۳ آورده شده‌اند. بررسی نتایج نشان می‌دهد که بالا با برد تعداد گاره‌ها ناشی از این ویژگی سیستم هن دادنی است که در مرحله کامل جدایی از مراحل دیگر و بدون هیچ ارتباط اطلاعاتی به طور مستقل به تولید ادامه می‌دهد و همین امر نیز موجب نالای رفت موجودی در جریان و موجودی محصول نهایی شده است. با بررسی ظرفیت‌های متغیری برای گاره‌ها

۷۷ نتیجه‌گیری در این مقاله شیبی سازی یک سیستم تولیدی در مرحله ای که براساس فلسفه JIT بنا شده اولاند شده است، در مدل پیشنهادی برای سیستم تولیدی در مرحله ای یک خط مونتاژ اتوماتیکی که از دو استگاه مونتاژ تشکیل می‌شود در نظر گرفته شده است. محصول
مقایسه سیستم تولیدی کشیدنی با سیستم تولیدی هل دادنی
برای مدل پیشنهادی نشان می‌دهد که در سیستم تولیدی هل دادنی
حجم موجودی قطعات در جریان و موجودی محصول نهایی بیشتر
از حالت مثالی آن در سیستم تولیدی کشیدنی است. با این تعداد
گارنی در سیستم تولیدی هل دادنی ناشی از این ویژگی است که در
این نوع سیستم‌ها هر مرحله کامل جدا با از مراحل ابتدایی به
بدون هیچ ارتباط اطلاعاتی به طور مستقل به تولید آدامه می‌دهد و همین
امکان نیز موجب این نشان می‌دهد موجودی در جریان و موجودی محصول
نهاپی شده است.

واژه نامه:

1. Just - in - time
2. two stages production systems
3. sub-assemble
4. containers
5. work-in-process
6. variance
7. wastes
8. just In time
9. lot
10. multi-Stage production system
11. push systems
12. pull systems
13. succeeding stage
14. preceding stage
15. production lead time
16. feed back
17. Kanban
18. line
19. Production ordering kanban
20. Post
21. Withdrawal kanban
22. cycle
23. home stage
24. Conveyance kanban
25. sequencing
26. Shortest Processing Time
27. First- Come, First-Served
28. utilization

29. یک نوع استقرار فیزيکی تجهیزات

است که در یک گروهی از مشابهات و ابزار
برای تولید قطعات به کار برده می‌شوند.

مراجع

استقلال: سال 17، شماره 1، شهریور 1377

