چکیده - مقاله حاضر خلاصه‌ای از تأثیر شبیه‌سازی یک سیستم تولیدی دومرحله‌ای است که براساس فلسفه JIT پیاده شده است. این سیستم تولیدی دومرحله‌ای یک خط مونتاژ اتوماتیک است که از دو استفاده از SLAM یا سوار کردن دو پیش مونتاژی پیک تهیه، کامل می شود. مدل ارائه شده برای این سیستم دومرحله‌ای با استفاده از زبان ساخته است. با تایب در نظر گرفتن ظرفیت گارانتی حداکثر این پیش مونتاژی‌ها، سعی در برآورد تعداد آنها و تعداد واکارهای هدف به حداکثر رساندن موجودی در جریان صورت گرفته است. می‌تواند اثرات تغییر بیشتر تلفات و پرداختگذاری آن بر تعداد گارانتی‌ها نیز مورد بررسی قرار گرفته دارد. ارائه یک مدل شبیه سازی از یک سیستم سنتی کارگاهی برای سیستم فوق ساخته شده و برخی خصوصیات در سیستم تولیدی با یکدیگر مقایسه گردیده‌اند.

Simulation of a Two Cards JIT Production System

M. Aghdasi, F. Mokhatab Rafiei and G. Moslehi

Department of Engineering, Tarbiat Modares University

Department of Industrial Engineering, Isfahan University of Technology

ABSTRACT- This paper presents a summary of the results from the simulation of a given two-stages production system which uses JIT. The system consists of an assembly line with two automated assembly cells and two assembly stock points and one manufacturing cell with three manufacturing stock points for storing reserved parts and one receiving stock. Carts with fixed capacity are used for handling the parts. A kanban is attached to each cart. The minimum number of kanbans required to operate the system without shortage in stock are estimated. The effects of changing the demand’s mean and its variation on the number of carts are also investigated. Finally, a different simulation model is developed for the same production system using conventional job shop discipline and some main characteristics have been compared to the results, from the first model.

* دانشیار **پیام و دانشجوی دکتر در دانشگاه تربیت مدرس

استقلال، سال 17، شماره 1، شهريور 1377
هدف JT1 به سیستم توپولوژی است که ابزاری کارای برای دستیابی به نهایی توپولیجی سوداگری است. در این سیستم باید رساندن به این هدف یک‌درک فعالیت‌های اصلاحی در جهت کاهش هزینه انجام می‌شود. یکی از این سیستم‌های جدیدی که در جهت جلوگیری از موضع‌گیری ناپایدار در ساختار استفاده می‌شود، این‌ها (نجات توپولیجی) به مکانیکی تعریف شده در JT1 به می‌رود.

سیستم‌های توپولوژی این نوع به واسطه شکست در ساختار (به مکانیکی) یا انتظار احتمالی تغییرات عدم پایداری باشد. این انتظار وجود دارد که پایداری این دسته‌های اساسی در حال جهش داشته باشد.

سیستم کانبان

کتابن از نظر لغوی به معنی کارت است. زبانی که توپولیجی در هر مرحله را با دکارت متمایل می‌کند که یک کارت مجزا دریافت می‌شود. در سیستم JT1، سیستم‌های توپولوژی در آمریکا و اروپا و... به‌طور عمده به سیستم‌های کانبان منحصر می‌شود. این کار در انتظار احتمالی از این سیستم‌ها در حالت مکانیکی در حال جهش یا حمل کنند و برنامه‌ریزی کاهش‌های ناپایدار در مرحله بعدی انجام و کاربرد مورد نیاز را در یک مکانیکی پذیرفته دارد.

جستجوی کتابن

همانطور که کتابن و چندباره در اینجا ذکر شد، سیستم‌های کانبان در JT1 به هم‌خوانی با سیستم‌های کانبان در JT1 انتخاب شده است. به این دلیل که سیستم‌های کانبان در JT1 به هم‌خوانی با سیستم‌های کانبان در JT1 اختصاص دارد.

سیستم کانبان

کتابن از نظر لغوی به معنی کارت است. زبانی که توپولیجی در هر مرحله را با دکارت متمایل می‌کند که یک کارت مجزا دریافت می‌شود. در سیستم JT1، سیستم‌های توپولوژی در آمریکا و اروپا و... به‌طور عمده به سیستم‌های کانبان منحصر می‌شود. این کار در انتظار احتمالی از این سیستم‌ها در حالت مکانیکی در حال جهش یا حمل کنند و برنامه‌ریزی کاهش‌های ناپایدار در مرحله بعدی انجام و کاربرد مورد نیاز را در یک مکانیکی پذیرفته دارد.

جستجوی کتابن

همانطور که کتابن و چندباره در اینجا ذکر شد، سیستم‌های کانبان در JT1 به هم‌خوانی با سیستم‌های کانبان در JT1 انتخاب شده است. به این دلیل که سیستم‌های کانبان در JT1 به هم‌خوانی با سیستم‌های کانبان در JT1 اختصاص دارد.

سیستم کانبان

کتابن از نظر لغوی به معنی کارت است. زبانی که توپولیجی در هر مرحله را با دکارت متمایل می‌کند که یک کارت مجزا دریافت می‌شود. در سیستم JT1، سیستم‌های توپولوژی در آمریکا و اروپا و... به‌طور عمده به سیستم‌های کانبان منحصر می‌شود. این کار در انتظار احتمالی از این سیستم‌ها در حالت مکانیکی در حال جهش یا حمل کنند و برنامه‌ریزی کاهش‌های ناپایدار در مرحله بعدی انجام و کاربرد مورد نیاز را در یک مکانیکی پذیرفته دارد.

جستجوی کتابن

همانطور که کتابن و چندباره در اینجا ذکر شد، سیستم‌های کانبان در JT1 به هم‌خوانی با سیستم‌های کانبان در JT1 انتخاب شده است. به این دلیل که سیستم‌های کانبان در JT1 به هم‌خوانی با سیستم‌های کانبان در JT1 اختصاص دارد.
از آن جدای یده و به یک کتابن سفارش تولید در آن مرحله تبدیل می‌شود. گزارنده که به فرآیند پیروی نشسته‌اند می‌توانند با یک کتابن برداشته شود.

عملیاتی که به‌پایه سیستم کتابن انجام می‌شوند یک سیستم کتابن برداشت کننده را تشکیل می‌دهد که در آن مرحله قبلی فقط و فقط می‌تواند یک کتابن نگهدارندهٔ اردکانی که بار کتابن بیان می‌شود، تدوین کند. آن‌ها از طریق تابعی به‌کار می‌رود.

در این‌جا، به‌طور معمول، شکل‌گیری کتابن در این مرحله انجام می‌شود. این کتابن برداشت کننده، در یک سیستم صنعتی، تولید می‌کند که بار کتابن بیان می‌شود. در این مرحله، یک کتابن برداشت کنندهٔ داخلی در یک سیستم تولیدی دارد که در آن‌ها بار کتابن یک سیستم ایجاد می‌شود.

در این‌جا، به‌طور معمول، شکل‌گیری کتابن در این مرحله انجام می‌شود. این کتابن برداشت کنندهٔ داخلی در یک سیستم تولیدی دارد که در آن‌ها بار کتابن یک سیستم ایجاد می‌شود.

در این‌جا، به‌طور معمول، شکل‌گیری کتابن در این مرحله انجام می‌شود. این کتابن برداشت کنندهٔ داخلی در یک سیستم تولیدی دارد که در آن‌ها بار کتابن یک سیستم ایجاد می‌شود.

در این‌جا، به‌طور معمول، شکل‌گیری کتابن در این مرحله انجام می‌شود. این کتابن برداشت کنندهٔ داخلی در یک سیستم تولیدی دارد که در آن‌ها بار کتابن یک سیستم ایجاد می‌شود.

در این‌جا، به‌طور معمول، شکل‌گیری کتابن در این مرحله انجام می‌شود. این کتابن برداشت کنندهٔ داخلی در یک سیستم تولیدی دارد که در آن‌ها بار کتابن یک سیستم ایجاد می‌شود.
ستی انجام می‌شود. در بخش ۷ نتیجه گیری ارائه شده است.

۲- مبهمی بر تحقیقات موجود

تحقیقات نسبی زبانی در زمینه برنامه‌ریزی و کنترل عملیات در انجام شده که به‌صورت مقاله‌های منتشر شده به‌صورت دریافتی و رایگان در پایان هر ماه ارائه می‌شود.

۳- مدل‌های کوانتیتیوی برای نمایش‌دهنده این‌گونه ارائه‌ها به‌صورت مقاله‌های منتشر شده به‌صورت دریافتی و رایگان در پایان هر ماه ارائه می‌شود.

۴- مدل‌های کوانتیتیوی برای نمایش‌دهنده این‌گونه ارائه‌ها به‌صورت مقاله‌های منتشر شده به‌صورت دریافتی و رایگان در پایان هر ماه ارائه می‌شود.

۵- مدل‌های کوانتیتیوی برای نمایش‌دهنده این‌گونه ارائه‌ها به‌صورت مقاله‌های منتشر شده به‌صورت دریافتی و رایگان در پایان هر ماه ارائه می‌شود.

۶- مدل‌های کوانتیتیوی برای نمایش‌دهنده این‌گونه ارائه‌ها به‌صورت مقاله‌های منتشر شده به‌صورت دریافتی و رایگان در پایان هر ماه ارائه می‌شود.

۷- مدل‌های کوانتیتیوی برای نمایش‌دهنده این‌گونه ارائه‌ها به‌صورت مقاله‌های منتشر شده به‌صورت دریافتی و رایگان در پایان هر ماه ارائه می‌شود.

۸- مدل‌های کوانتیتیوی برای نمایش‌دهنده این‌گونه ارائه‌ها به‌صورت مقاله‌های منتشر شده به‌صورت دریافتی و رایگان در پایان هر ماه ارائه می‌شود.

۹- مدل‌های کوانتیتیوی برای نمایش‌دهنده این‌گونه ارائه‌ها به‌صورت مقاله‌های منتشر شده به‌صورت دریافتی و رایگان در پایان هر ماه ارائه می‌شود.

۱۰- مدل‌های کوانتیتیوی برای نمایش‌دهنده این‌گونه ارائه‌ها به‌صورت مقاله‌های منتشر شده به‌صورت دریافتی و رایگان در پایان هر ماه ارائه می‌شود.

۱۱- مدل‌های کوانتیتیوی برای نمایش‌دهنده این‌گونه ارائه‌ها به‌صورت مقاله‌های منتشر شده به‌صورت دریافتی و رایگان در پایان هر ماه ارائه می‌شود.
جدول 1- کرومبندی مقاله‌ها

<table>
<thead>
<tr>
<th>مایل‌ساز</th>
<th>استقلال</th>
<th>نویسنده (نویسنگان)</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>×</td>
<td>کی مورا، تردا (1981)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>هانگ، ریز، تیلور III (1983)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>اسکور (1984)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ابراهیم‌پور، فاطمه (1985)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>فالون، براون (1987)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>کویاجوسکی، کینگ، ریزمن، ونگ (1987)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>لی (1987)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>فیلیپسنو، ریز، تیلور III، هانگ (1987)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>گوارو، پیرپنس (1988)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>سارکر، هارس (1988)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>ودلی، دوک، اسمیت (1988)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>گورینا، گویا (1989)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>لی (1989)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>ریز، هانگ، تیلور III (1989)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>سارکر، فینظومون (1989)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>اندریچاک، کالارک (1991)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>یورکلی، کران (1991)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>چاتروندا، گلوهو (1992)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>سامی کپست، راسل، تیلور III (1992)</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>پارکری، سانتی (1995)</td>
</tr>
</tbody>
</table>

حلقه A- گاربیا بین انباز موتوتاز و انباز سالون 29 ساخت
حلقه B- گاربیا بین انباز موتوتاز و انباز سالون 29 ساخت
حلقه C- گاربیا بین انباز سالون و انباز دریافت حرکت
حرکت کرده و به انباز سالون 6 در سالون به کار می‌برد.
حرکت کرده و به انباز موتوتاز A برمی‌گردد.
حرکت کرده و به انباز موتوتاز B برمی‌گردد.
حرکت کرده و به انباز موتوتاز B برمی‌گردد.
حرکت کرده و به انباز موتوتاز B برمی‌گردد.

استقلال، سال 17، شماره 1، شهریور 1377
سپم ارائه شده در شکل ۱ از اجزای زیر تشکیل شده است:
- سیستم ارائه موانع برای موانع قطعه در اینستگا A و B
- محصول قطعه B در اینستگا A
- پک سلن ساخت که قطعات c با قطعه a به قطعه b تبدیل می‌کنند.
- پک ایبای برای ایبای درایفته که ایبای برای ایبای درایفته شمار قطعات c در آن
- نگهداری می‌شوند.
- پک ایبای موانع A برای نگهداری ایبای درایفته پر شمار قطعات a در
- سلن موانع A برای نگهداری ایبای درایفته پر شمار قطعات b در
- سلن موانع B
- پک ایبای ساخت A برای نگهداری ایبای درایفته خالی و پر مربوط به
- قطعه a از هم می‌شوند نگهداری ایبای درایفته خالی و پر مربوط به قطعه c
- پک ایبای ساخت B برای نگهداری ایبای درایفته خالی و پر مربوط به قطعه b
- عموخته‌های زیر در مدل مربوط به شکل ۱ در نظر گرفته شده است:
- هیجم قطعه‌ای از a با قطعه‌ای از b تا درایفته کننده سفارش تولید
- مناظر آن تولید می‌شود. نتیجتاً سلن ساخت A دریافت کننده سفارش
- سفارش تولید شدکار می‌شود.

۳- مدل شیشه‌سازی

یک مدل شیشه‌سازی برای سیستم شیشه‌سازی بالا با استفاده از

SLAM شیشه‌سازی ملاحظه می‌شود.

از یک سلن ساخت اسکله‌شده و فلز‌گیری قطار a و قطار b

گاری‌ها به ترتیب ۲ و ۷ قطعه است. تعداد ایبای در سلس

پیر اراجا مختلف بوده و در دول ۲ نشان داده شدند. جدول

۳ نشان‌های اولیه و اطلاعات ورودی را نشان می‌دهد.

جعبه‌ای سیستم ارائه شده در شکل ۱، به شرح زیر است:

- کانالان برداشت از قطار پر شمار b جدا شده و در محصول نگهداری

- آن قطار داده می‌شود. سپس قطعه B به تعداد که لازم است از قطار

- b برداشت می‌شود و عملیات سیستم در سلس B انجام می‌گردد.

- اگر یک قطار در سلس موانع B خالی شود، یک کانالان برداشت

- به آن متعلق شده و قطار در مسل ساخت B برگردد و می‌شود.

- کانالان برداشت از قطار جدا شده و در محصول نگهداری

- آزمایش می‌شود.

- اگر یک قطار از سلس باشد، کانالان برداشت به آن متعلق

- شده و قطار از به ایبای موانع B برگردد و می‌شود. قبل از اینکه

- قطار پر شمار می‌شود. کانالان سفارش تولید برداشت شده و در

- محل نگهداری آن قطار داده می‌شود. اگر یک قطار در سلس نباشد

- کانالان با گاری موانع خالی مانند تا یک گاری پر شود.
جدول ۲- شرایط اولیه

<table>
<thead>
<tr>
<th>گاری a</th>
<th>گاری b</th>
<th>اجرا</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td>۳</td>
<td>۳</td>
<td>۳</td>
</tr>
<tr>
<td>۴</td>
<td>۴</td>
<td>۳</td>
</tr>
<tr>
<td>۵</td>
<td>۵</td>
<td>۵</td>
</tr>
<tr>
<td>۶</td>
<td>۶</td>
<td>۶</td>
</tr>
</tbody>
</table>

جدول ۳- اطلاعات ورودی

<table>
<thead>
<tr>
<th>توزیع زمانی</th>
<th>نوع اطلاعات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲</td>
<td>زمان آماده‌سازی ساخت قطعه (a) به قطعه (b)</td>
</tr>
<tr>
<td>۲</td>
<td>زمان ساخت قطعه (a)</td>
</tr>
<tr>
<td>۲</td>
<td>زمان ساخت قطعه (b)</td>
</tr>
<tr>
<td>۲</td>
<td>زمان مونتاژ قطعه A به ۲</td>
</tr>
<tr>
<td>۲ ± ۲۴</td>
<td>زمان مونتاژ قطعه B به A</td>
</tr>
<tr>
<td>۲ ± ۲۴</td>
<td>زمان مونتاژ قطعه B به A</td>
</tr>
<tr>
<td>۲ ± ۲۴</td>
<td>زمان حمل گاری پر تا انتبار ساخت A به انتبار مونتاژ A</td>
</tr>
<tr>
<td>۲</td>
<td>زمان حمل گاری بالایی A به انتبار مونتاژ A</td>
</tr>
<tr>
<td>۲</td>
<td>زمان حمل گاری پر تا انتبار ساخت B به انتبار مونتاژ B</td>
</tr>
<tr>
<td>۲</td>
<td>زمان حمل گاری بالایی B به انتبار مونتاژ B</td>
</tr>
<tr>
<td>۲</td>
<td>زمان حمل گاری پر تا انتبار ساخت C به انتبار مونتاژ C</td>
</tr>
<tr>
<td>۲</td>
<td>زمان حمل گاری بالایی C به انتبار مونتاژ C</td>
</tr>
<tr>
<td>۲</td>
<td>تعداد گاری در هر ۲۴۰ دقیقه</td>
</tr>
<tr>
<td>۲</td>
<td>ورود گاری پر C (مبak اضافه)</td>
</tr>
<tr>
<td>۲</td>
<td>فاصله زمانی بین ورود دو افزایش متوالی</td>
</tr>
</tbody>
</table>

استقلال: سال ۱۷، شماره ۱، شهريور ۱۳۷۷
شکل ۳ - متوسط زمان موتانز (در اجرای ۲)

آماره‌های زمانی که متوسط زمان موتانز در این دوره از زمان تا ۱۹۶۰ دقیقه از اطلاعات جمع‌آوری شده، حذف می‌شود. حالا تعادل برای سایر مشخصه‌های عملکرد سیستم مانند تعداد موجودی قطعات A و B نیز بررسی شده که نتیجه باتری را دارد. ممکن است قبل از آن نتیجه، نتایج متأخر و شرایط اولیه‌اند. روشن کالوی [۱۳] برای تعیین نتیجه تعادل در این مطالعه مورد استفاده قرار گرفته است. قبل از اجرای مدل و بر اساس جمع‌آوری اطلاعات در هر ۲۴ دقیقه که متوسط یک شفیت کاری است، نتیجه‌گیری‌های بعد از هر شفیت، هر آمار جمع‌آوری شده و با تاریخ و حساب تابعی از زمان زمان کردن، که حاصل، شاخصی برای رفتار سیستم است. روشن کالوی در هر یک در این نقاط در مجموعه بدست آمده به دنبال نتیجه‌ای است که نه حداکثر و نه حداقل باشد.

در شکل ۳ متوسط زمان موتانز قطعه ۴ (در اجرای ۱) در هر ۲۴ دقیقه حساب شده است. مقدار پنجمین تکرار اولین نتیجه‌ای است که نه حداکثر و نه حداقل است. بنابراین ۱۹۶۰ دقیقه اول (چهاردهمین) می‌شود. به‌طور کلی، برای این شیفت‌ها سایر مشخصه‌های عملکرد سیستم مانند تعداد موجودی قطعات، تعداد و بقیه تعداد مشخصات نیز بررسی شده که نتیجه باتری را دارد. ممکن است قبل از آن نتیجه، نتایج متأخر و شرایط اولیه‌اند. روشن کالوی [۱۳] برای تعیین نتیجه تعادل در این مطالعه مورد استفاده قرار گرفته است. قبل از اجرای مدل و بر اساس جمع‌آوری اطلاعات در هر ۲۴ دقیقه که متوسط یک شفیت کاری است، نتیجه‌گیری‌های بعد از هر شفیت، هر آمار جمع‌آوری شده و با تاریخ و حساب تابعی از زمان زمان کردن، که حاصل، شاخصی برای رفتار سیستم است. روشن کالوی در هر یک در این نقاط در مجموعه بدست آمده به دنبال نتیجه‌ای است که نه حداکثر و نه حداقل باشد.

شکلی از زمانی که متوسط زمان موتانز مستقل از شرایط اولیه شد. یکی از معمولترین راه‌های شرایط در شیفت‌های این برنامه، حالت بی‌کاری و خالی بوده و یا به‌عنوان شرایط در صفر است. این حالت به عنوان شرایط اجرا، تمام صفحه خالی بوده و تمام منابع و یا تجهیزات بکارند. ایده آل خواهید بود اگر شرایط اولیه به نحوی انتخاب شود که میزان شرایط تعادل باشد. البته معمولاً این ایده آل به سختی حاصل می‌شود. بنابراین معمولاً شرایط اولیه‌ای بهتر از حالت

استقلال، سال ۱۷، شماره ۱، شهریور ۱۳۷۷

۲۲
جدول 4 - متوسط تعداد تولید و درصد تقاضای تأمین شده

<table>
<thead>
<tr>
<th>درصد تقاضای تأمین شده</th>
<th>متوسط تعداد تولید قطعه</th>
<th>اجرا</th>
</tr>
</thead>
<tbody>
<tr>
<td>98/3</td>
<td>27/3</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>27/5</td>
<td>2</td>
</tr>
<tr>
<td>98/6</td>
<td>27/3</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>28/3</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>28/3</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>28/3</td>
<td>6</td>
</tr>
</tbody>
</table>

جدول 5 - درصد گردش کتابان

<table>
<thead>
<tr>
<th>درصد گردش کتابان</th>
<th>متوسط درصد گردش کتابان</th>
<th>درصد گردش گاری</th>
<th>اجرا</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>87</td>
<td>77</td>
<td>2</td>
</tr>
<tr>
<td>91</td>
<td>86</td>
<td>78</td>
<td>3</td>
</tr>
<tr>
<td>82</td>
<td>84</td>
<td>78</td>
<td>4</td>
</tr>
<tr>
<td>66</td>
<td>64</td>
<td>55</td>
<td>5</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
<td>52</td>
<td>6</td>
</tr>
</tbody>
</table>

برای اجتذاب از این مشکل، پس از یک دوره مغروض متوسط ممکن است. در این مطالعه طبق نظر فیشمن [22]، دوره زمان 3840 دقیقه و دوره 8 شش طیاست. با این روش هیچ محدودیتی روی تعداد نهادهای ورودی و یا موجود در سیستم گذارشته نمی‌شود. بنابراین بعد از تکمیل اجرا، نهاده‌ها هستند در سیستم بوده و متقابل نیز در حال استفاده‌اند.

اطلاعات ورودی ثابت درنظر گرفته شده و در جدول 3 ارائه شده‌اند. هدف اصلی از این مطالعه تیپ این تعداد گاری‌ها و 3 برای تأیید تقاضا و حداقل گاری 3 برای کم‌کردن تعداد موجود در جریان قطعات a و b است.

جدول 4 متوسط تعداد تولید شده از محصول نهایی a و با در اجراهای مختلف نهان می‌دهد. بررسی درصد تقاضای تأمین شده برای شش اجرای اصلی نشانگر این است که اضافه کردن یک گاری از

صد اکست. برای مدل دوره‌ای مورد نظر، شرایط اولیه گاری‌های پر از و b و c است.

شرايط توقف: یک شرایط مشابه با تعبیر شرایط ورودی برای تعیین شرایط و برای توقف شرایطی وجود دارد، برای مثال، اگر شرایطی می‌تواند با توقف در ابتدای نهاده‌ای جدید و گردش کننده سیستم به حالت خالی و بی‌کاری متوسط شود، این‌کار معمولاً منجر به جمع‌آوری اطلاعات جهت دار به خصوص در صورت کوتاه بودن زمان شرایطی می‌شود.

نتایج مختلف حاصل از آزمایش

هدف آزمایش ارزیابی پارامترهای سیستم با تغییر دان تعداد گاری‌های په a و b در سلولهای مربوطه A و B است. شش اجرا با استفاده از شرایط اولیه موجود در جدول 2 انجام شده است. بقیه
نوع ا، باعث شده است که متوسط تعادل تولید شده در اجرای ۲ نسبت به اجرای ۱ افزایش یابد و صدرصد تقاضا اینم شود. در اجرای ۱، که تعادل‌گری ۶ درصد تعادل‌گری ۳ است عدم تعادل در تعداد قطعات ا و ب باعث کاهش تعادل تولید شده است. در اجرایهای ۵ و ۶، افزایش تقاضا در گروه‌های ا و ب یا اثر افزایش قدرت نسبت به اجرای ۴ نشان داده و اجرای ۵ مشکل از دو گروه از نوع ۴ و ۶ گزارش شده است. بنابراین، برای اجرای ۴ و ۵، درصد گروه کائین‌ها و همبستگی دیگر درصد اختلاف از موردی بقیه منحنی افزایش قدرت به ۷۸/۸ گروه کائین‌ها تجربه شد. زیرا در اجرای ۴ و ۵ افزایش گزارشی از موجبی بهصورت استفاده شد به اندازه بدیهیانه این مقایسه باید اخلاقی قرار گیرد. ۵ رانی موزیک‌هایی به‌دست آمده است.

جدول ۷ بهره‌وری سولو ساخت درصد وقایع در سولو ساخت مشابه است و باعث شده است به‌طور جامعه نتیجه می‌گیرد که سیستم IT است. مداد است که افزایش تقاضا در اجرای ۸۰ درصد اثرات تابع‌پیاده در سیستم ایجاد می‌کند. زیرا با ایجاد سیستم، ساخت مشابه ساخت قطعات است و در ۵ روزه تقریب تکرده و به‌طور میانگین متوسط در ۵ روزه خامین آماده است و در اجرای ۳ و ۴، افزایش ساخت مشابه ساخت بالا رفت. لذا سیستم می‌تواند این افزایش مقایسه باشد.

جدول ۸ بهره‌وری سلولهایی است که در اجرای ۱ درصد رسانه‌های ساخت مشابه است و باعث شده است به‌طور جامعه نتیجه می‌گیرد که سیستم IT است. مداد است که افزایش تقاضا در اجرای ۸۰ درصد اثرات تابع‌پیاده در سیستم ایجاد می‌کند. زیرا با ایجاد سیستم، ساخت مشابه ساخت قطعات است و در ۵ روزه تقریب تکرده و به‌طور میانگین متوسط در ۵ روزه خامین آماده است و در اجرای ۳ و ۴، افزایش ساخت مشابه ساخت بالا رفت. لذا سیستم می‌تواند این افزایش مقایسه باشد.

پیش‌بینی‌های این مقاله می‌تواند به‌طور جامعه نتیجه می‌گیرد که سیستم IT است. مداد است که افزایش تقاضا در اجرای ۸۰ درصد اثرات تابع‌پیاده در سیستم ایجاد می‌کند. زیرا با ایجاد سیستم، ساخت مشابه ساخت قطعات است و در ۵ روزه تقریب تکرده و به‌طور میانگین متوسط در ۵ روزه خامین آماده است و در اجرای ۳ و ۴، افزایش ساخت مشابه ساخت بالا رفت. لذا سیستم می‌تواند این افزایش مقایسه باشد.
جدول 6 - میزان متوسط تعداد موجودی

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/43</td>
<td>1/75</td>
</tr>
<tr>
<td>1/96</td>
<td>1/72</td>
</tr>
<tr>
<td>1/35</td>
<td>3/29</td>
</tr>
<tr>
<td>1/96</td>
<td>3/47</td>
</tr>
<tr>
<td>1/96</td>
<td>3/47</td>
</tr>
<tr>
<td>1/99</td>
<td>3/47</td>
</tr>
</tbody>
</table>

جدول 7 - بهرهوری سلول ساخت

<table>
<thead>
<tr>
<th>a</th>
<th>میزان بهرهوری</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/89</td>
</tr>
<tr>
<td>2</td>
<td>0/90</td>
</tr>
<tr>
<td>3</td>
<td>0/88</td>
</tr>
<tr>
<td>4</td>
<td>0/91</td>
</tr>
<tr>
<td>5</td>
<td>0/91</td>
</tr>
<tr>
<td>6</td>
<td>0/91</td>
</tr>
</tbody>
</table>

جدول 8 - میزان بهرهوری سلولهای موتاژ

<table>
<thead>
<tr>
<th>b</th>
<th>سلول موتاژ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/617</td>
</tr>
<tr>
<td>2</td>
<td>0/616</td>
</tr>
<tr>
<td>3</td>
<td>0/616</td>
</tr>
<tr>
<td>4</td>
<td>0/592</td>
</tr>
<tr>
<td>5</td>
<td>0/592</td>
</tr>
<tr>
<td>6</td>
<td>0/587</td>
</tr>
<tr>
<td>7</td>
<td>0/587</td>
</tr>
<tr>
<td>8</td>
<td>0/605</td>
</tr>
<tr>
<td>9</td>
<td>0/608</td>
</tr>
<tr>
<td>10</td>
<td>0/609</td>
</tr>
</tbody>
</table>
طرحی نه‌دیگر، در جدول ۱۲ نیز اثر افزایش در دامنه تغییرات تقاضا و همچنین اثر افزایش در متوسط تقاضا بر روی تعداد گزارش نشان داده شده است. با افزایش نرخ ورود در اجراهای ۷ و ۸ متوسط دریافت از گزارش‌های آنفوذی، رابطه ای بین گزارش‌های آنفوذی و تعداد تقاضا در دسترس گردش کتابان نشان می‌دهد که این افزایش رابطه واریانس تقاضا در دسترس گردش کتابان آنفوذی می‌باشد.

نکته قابل توجه ذی‌گر تعداد گزارش ۳ است. با انجام شبیه‌سازی، حاصلات تعداد گزارش ۳ که اثر معناداری نداشت به روی تأیید تقاضای و تعداد گزارش ۴ و ۵ و درصد گردش کتابان نشان داده شد و به‌دست آمده است که زیرین نشانگر داده می‌شود.

همان‌طور که بیان شد نه‌چندان سفارش از قطعه ۴ براساس سفارش در دوره است و نتیجه نشان می‌دهد که حداقل گزارش ۴ برای این سیستم ۱۹ واحده است و در هر ۲۸۰ دقیقه ۱۲ به ۴ گزارش در هر نویز ارسال و دریافت می‌شود.

در جدول ۸ نیز اثر افزایش در دامنه تغییرات تقاضا و همچنین اثر افزایش در حاصل تقاضا بر روی تعداد گزارش ۳ نشان داده شده است. با افزایش نرخ ورود در اجراهای ۷ و ۸ متوسط دریافت از گزارش‌های آنفوذی رابطه ای بین گزارش‌های آنفوذی و تعداد تقاضا در دسترس گردش کتابان نشان می‌دهد که خود نشان دهنده نیاز به تولید مطالعات و تحلیل می‌باشد.
جدول 9- نتایج اثر افزایش نرخ ورودی در اجرای 2

<table>
<thead>
<tr>
<th>اجرای 2</th>
<th>اجرای 7</th>
<th>اجرای 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>متوسط بهرهوری سول مونتاژ A</td>
<td>0/688</td>
<td>0/683</td>
</tr>
<tr>
<td>متوسط بهرهوری سول مونتاژ B</td>
<td>0/694</td>
<td>0/688</td>
</tr>
<tr>
<td>متوسط تولید در شیفت</td>
<td>53/2</td>
<td>63/5</td>
</tr>
<tr>
<td>درصد گردش کانیان</td>
<td>100</td>
<td>85</td>
</tr>
<tr>
<td>بهرهوری حامل 1</td>
<td>0/2211</td>
<td>0/0996</td>
</tr>
<tr>
<td>بهرهوری حامل 2</td>
<td>0/0548</td>
<td>0/0548</td>
</tr>
<tr>
<td>متوسط زمان انتظار یک گاری برای سول ساخت (دقیقه)</td>
<td>27/31</td>
<td>27/33</td>
</tr>
<tr>
<td>درصد تفاوت‌های تأمین شده</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

جدول 10- نتایج اثر افزایش در دامنه تغییرات نرخ ورودی در اجرای 2

<table>
<thead>
<tr>
<th>اجرای 2</th>
<th>اجرای 10</th>
<th>اجرای 9</th>
<th>اجرای 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>متوسط بهرهوری سول مونتاژ A</td>
<td>0/689</td>
<td>0/7197</td>
<td>0/738</td>
</tr>
<tr>
<td>متوسط بهرهوری سول مونتاژ B</td>
<td>0/588</td>
<td>0/597</td>
<td>0/587</td>
</tr>
<tr>
<td>متوسط تولید در شیفت</td>
<td>87/8</td>
<td>87/5</td>
<td>85</td>
</tr>
<tr>
<td>درصد گردش کانیان</td>
<td>95</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>بهرهوری حامل 1</td>
<td>0/1866</td>
<td>0/1895</td>
<td></td>
</tr>
<tr>
<td>بهرهوری حامل 2</td>
<td>0/0494</td>
<td>0/055</td>
<td></td>
</tr>
<tr>
<td>متوسط زمان انتظار یک گاری برای سول ساخت (دقیقه)</td>
<td>35/5</td>
<td>37/3</td>
<td></td>
</tr>
<tr>
<td>درصد تفاوت‌های تأمین شده</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
جدول 11- خلاصه نتایج گردش‌گاری ۵

<table>
<thead>
<tr>
<th>سابقه استفاده شده</th>
<th>متوسط دریافتی در هر ۴۸۰ دقیقه</th>
<th>جرای</th>
<th>متوسط استفاده شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۱۱</td>
<td>۱۲/۶</td>
<td>۱</td>
<td>۱۱/۰۹</td>
</tr>
<tr>
<td>۱۲/۷</td>
<td>۱۹</td>
<td>۲</td>
<td>۱۱/۳۴</td>
</tr>
<tr>
<td>۱۲/۴</td>
<td>۱۹</td>
<td>۳</td>
<td>۱۱/۵۷</td>
</tr>
<tr>
<td>۱۴/۰</td>
<td>۱۹</td>
<td>۴</td>
<td>۱۱/۱۵</td>
</tr>
<tr>
<td>۱۴/۰</td>
<td>۱۹</td>
<td>۵</td>
<td>۱۱/۱۵</td>
</tr>
<tr>
<td>۱۴/۶</td>
<td>۳۲</td>
<td>۶</td>
<td>۱۲/۸۵</td>
</tr>
</tbody>
</table>

جدول 12- حداقل تعداد گاری ۶ در شرایط مختلف

<table>
<thead>
<tr>
<th>سابقه استفاده شده</th>
<th>متوسط دریافتی در هر ۴۸۰ دقیقه</th>
<th>جرای</th>
<th>متوسط استفاده شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲/۷</td>
<td>۱۹</td>
<td>۱/۲</td>
<td>۱۱/۳۴</td>
</tr>
<tr>
<td>۱۵/۱</td>
<td>۱۸</td>
<td>۷</td>
<td>۹/۸۹</td>
</tr>
<tr>
<td>۱۵/۱</td>
<td>۱۸</td>
<td>۸</td>
<td>۹/۹۱</td>
</tr>
<tr>
<td>۱۵/۲</td>
<td>۱۹</td>
<td>۹</td>
<td>۱۱/۲۹</td>
</tr>
<tr>
<td>۱۲/۷</td>
<td>۳۱</td>
<td>۱۰</td>
<td>۱۳/۵۴</td>
</tr>
<tr>
<td>۱۲/۷</td>
<td>۲۱</td>
<td>۱۱</td>
<td>۱۱/۶۷</td>
</tr>
</tbody>
</table>

(JIT) مقایسه سیستم تولیدی کشیدنی

مهر چند که در این مطالعه هدف اصلی یک بررسی مستقل از رفتار یک سیستم تولیدی دورحله‌ای است ولی برای روش‌های است و لیت برای روشنی رفتار سیستم تولیدی کشیدنی است که می‌تواند به تویی انجام یک سیستم تولیدی که انجام مشابه را انجام می‌دهد یک سیستم تولیدی هر دانشگاه می‌دهد SLAM

برای اینکه پیوان یک مقایسه مناسب و انجام داد باید تفاوت‌های

استقلال، سال ۱۷، شماره ۱، شهریور ۱۳۷۷

۲۸
جدول ۱۳ - مقایسه سیستم تولیدی هل دادنی JIT با سیستم تولیدی هل دادنی JI (چرای ۲)

| سیستم | سیستم هل دادنی | تعداد گاری
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۵۴۱</td>
<td></td>
</tr>
<tr>
<td>۵۷</td>
<td>۴۴۴</td>
<td></td>
</tr>
<tr>
<td>۳۲</td>
<td>۴۱۱</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>تعداد گاری a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>تعداد گاری b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>مجموعی محصول نهایی در یاپان هر شیفت ۷</td>
</tr>
<tr>
<td></td>
<td></td>
<td>مجموعی پیش‌مدت‌زایی در یاپان هر شیفت ۷</td>
</tr>
<tr>
<td></td>
<td></td>
<td>مجموعی قطعه‌های شیافته‌شده از یاپان شیبه‌سازی ۶</td>
</tr>
<tr>
<td></td>
<td></td>
<td>مجموعی قطعه‌های شیافته‌شده از یاپان شیبه‌سازی ۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>تولید متوسط ۱</td>
</tr>
<tr>
<td></td>
<td></td>
<td>متوسط زمان انتظار یک قطعه ۰/۹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۰/۹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۰/۹۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۰/۱</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۰/۱۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۰/۷۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۰/۷۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۰/۲۳۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۴/۲۳۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۰۰</td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

توجه ۷ - نتیجه گیری

در این مقاله، شبیه‌سازی یک سیستم تولیدی در مرحله ای که برای پیش‌نهادی برای JI بنیان‌گذاری شده است، در مدل شبیه‌سازی برای این سیستم تولیدی در مرحله ای یک خط محصولات اتوماتیک که از دو ایستگاه مونتاژ تشکیل می‌شود در نظر گرفته شده است. محصول مشابه گاری‌ها نوع c و a و b مشاهده شده که برای تولید به مقدار مساوی در همان تعداد شیفت مورد استفاده قطعات در جریان و موجودی محصول نهایی بیشتر از قبل می‌شود. برای این منظور، نتایج بانکی مهان این خاصیت در جدول ۱۳ آورده شدهاند. بررسی نتایج نشان می‌دهد که با وجود تعداد گاری‌ها ناشی از این ویژگی سیستم هل دادنی است که به مرحله کامل‌گردی بانک مربوط می‌گردد و بدون هیچ ارتباط اطلاعاتی به طور مستقل به تولید ادامه می‌دهد و همین امر نیز موجب باقی‌ماندن موجودی در جریان و موجودی محصول نهایی شده است. با بررسی ظرفیت‌های متفاوتی برای گاری‌ها معلوم شده که ظرفیت زیاد گاری‌ها که معمولاً در سیستم هل دادنی مرسوم است منجر به افزایش بیشتر سطح موجود بودن قطعات در جریان و محصول نهایی می‌شود.
مقایسه سیستم تولیدی کشیدنی با سیستم تولیدی هل دانی
برای مدل پیشنهادی نشان می دهد که در سیستم تولیدی هل دانی
حجم موجودی قطعات در جریان و موجودی مصوب نهایی بیشتر
از حالت مشابه آن در سیستم تولیدی کشیدنی است. با عودت تعداد
گارهای در سیستم تولیدی هل دانی ناشی از این ویژگی است که در
اين نوع سیستمها هي مرحله كامل جداي از مراحل ديگر و بدون
همين امر نيز موجب بالا رفتن موجودي در جریان و موجودی مصوب
نهایی شده است.

واژه نامه:

1. Just - in - time
2. two stages production systems
3. sub-assembly
4. containers
5. work-in-process
6. variance
7. wastes
8. just In time
9. lot
10. multi-Stage production system
11. push systems
12. pull systems
13. succeeding stage
14. preceding stage
15. production lead time
16. feed back
17. Kanban
18. line
19. Production ordering kanban
20. Post
21. Withdrawal kanban
22. cycle
23. home stage
24. Conveyance kanban
25. sequencing
26. Shortest Processing Time
27. First- Come, First-Served
28 . utilization

مراجع

استقبال، سال 17، شماره 1، شهریور 1377

