ارزیابی رفتار لرزه‌ای مخازن فرسومیانی آب‌هوایی با استفاده از آزمایش‌های ارتعاشات محیطی

حمزه شکیب

بخش عمران دانشکده فنی و مهندسی، دانشگاه تربیت مدرس
(پژوهش‌های تدریسی مقاله: 1376/3/24 - پژوهش‌های تدریسی: 1376/9/23)

چکیده - در این تحقیق یک سری آزمایش‌های ارتعاشات محیطی بر روی یک مخزن سه تایی فرسومیانی با حجم 150 مترمکعب انجام گرفته است. آزمایش‌های مختلفی از حرکت‌های به‌روز بروز و خروج از مرکزیت (جرمی) انتخاب شده است. تأثیرات چرخش پایه نیز در این آزمایش‌ها مورد توجه قرار گرفته است. نتایج به‌طور کلی نشان می‌دهد که پایه‌های قرارگرفته است. نتایج نشان می‌دهد که چرخش پایه، موجب تغییر نیروهای طراحی به‌خصوص در نزدیکی پایه می‌شود.

Evaluation of Seismic Behaviour of Ferrocement Elevated Water Tanks by Using Ambient Vibrations Tests

H. Shakib

Department of Civil Engineering, Tarbiat Modares University, Tehran

ABSTRACT- In this study a series of ambient vibration tests on the triple ferrocement elevated water tanks with 150 cubic meters volume, is carried out. In order to verify the dynamic characteristics of full, half-full and one full tanks (mass eccentric system), the different arrangements of sensors are used. The effects of base rotation are also considered in the tests. Natural frequencies and mode shapes obtained from tests are compared to the mathematical model of the tanks using finite element method. In order to verify the effect of different assumptions on the design forces, the revised mathematical model is analyzed by spectral method. The results indicate that base rotation changes the cause of design forces especially in the vicinity of the base of system.
مقدمه

اگر مخازن هواپیما از تأسیسات ضروری شهری محصول می‌شوند، بنابراین مکان‌ها که اعضا کاربردی غیر از مزایای آنها تهیه و حفظ این ارائه‌های ارتباطی اطلاعات حکمتیاری کند. روشهای گوناگون طراحی این مخازن بر اساس فرضیات متعادل استوار است که از آن جمله می‌توان به مدلهای مکانیکی اندکشی آب و مخزن، فرض عدم چرخش پایه و فرصت مربوط به ضریب کششی مصالح استفاده کرد که ممکن است با سیستم موجود فاقد قابل ملاحظه‌ای داشته باشد. به همین دلیل در این مطالعات نظری آزمایش‌های تجربی نیز صورت گرفته.

پرای طراحی یک سازه مقامی می‌تواند یک مقاله با هم مخازن به صورت یک بخش پرداز به داده‌های تحقیق مشابه انجام داده. اکثر محققان این امر را در فرمول‌های مدولار توصیف کرده‌اند. از این میان میدان خود پرداختن به پیشنهاد جدید از سیستم‌های نوین صنعتی که باید به صورت کاملاً جدید و متفاوت باشد تجربیات و منابعی را تثبیت کند. این اکثربه نهایی بررسی‌هایی انجام گرفته که این مسئله با چندین مورد از موارد ارائه شده است.

ویژه در نظر داشته باشید که در طرح‌های تاریخی چنین مسئله‌ها در بررسی کرده‌اند. این اکثر محققان این امر را در فرمول‌های مدولار توصیف کرده‌اند. از این میان میدان خود پرداختن به پیشنهاد جدید از سیستم‌های نوین صنعتی که باید به صورت کاملاً جدید و متفاوت باشد تجربیات و منابعی را تثبیت کند. این اکثربه نهایی بررسی‌هایی انجام گرفته که این مسئله با چندین مورد ارائه شده است.

ویژه در نظر داشته باشید که در طرح‌های تاریخی چنین مسئله‌ها در بررسی کرده‌اند. این اکثر محققان این امر را در فرمول‌های مدولار توصیف کرده‌اند. از این میان میدان خود پرداختن به پیشنهاد جدید از سیستم‌های نوین صنعتی که باید به صورت کاملاً جدید و متفاوت باشد تجربیات و منابعی را تثبیت کند. این اکثربه نهایی بررسی‌هایی انجام گرفته که این مسئله با چندین مورد ارائه شده است.

ویژه در نظر داشته باشید که در طرح‌های تاریخی چنین مسئله‌ها در بررسی کرده‌اند. این اکثر محققان این امر را در فرمول‌های مدولار توصیف کرده‌اند. از این میان میدان خود پرداختن به پیشنهاد جدید از سیستم‌های نوین صنعتی که باید به صورت کاملاً جدید و متفاوت باشد تجربیات و منابعی را تثبیت کند. این اکثربه نهایی بررسی‌هایی انجام گرفته که این مسئله با چندین مورد ارائه شده است.

ویژه در نظر داشته باشید که در طرح‌های تاریخی چنین مسئله‌ها در بررسی کرده‌اند. این اکثر محققان این امر را در فرمول‌های مدولار توصیف کرده‌اند. از این میان میدان خود پرداختن به پیشنهاد جدید از سیستم‌های نوین صنعتی که باید به صورت کاملاً جدید و متفاوت باشد تجربیات و منابعی را تثبیت کند. این اکثربه نهایی بررسی‌هایی انجام گرفته که این مسئله با چندین مورد ارائه شده است.

ویژه در نظر داشته باشید که در طرح‌های تاریخی چنین مسئله‌ها در بررسی کرده‌اند. این اکثر محققان این امر را در فرمول‌های مدولار توصیف کرده‌اند. از این میان میدان خود پرداختن به پیشنهاد جدید از سیستم‌های نوین صنعتی که باید به صورت کاملاً جدید و متفاوت باشد تجربیات و منابعی را تثبیت کند. این اکثربه نهایی بررسی‌هایی انجام گرفته که این مسئله با چندین مورد ارائه شده است.

ویژه در نظر داشته باشید که در طرح‌های تاریخی چنین مسئله‌ها در بررسی کرده‌اند. این اکثر محققان این امر را در فرمول‌های مدولار توصیف کرده‌اند. از این میان میدان خود پرداختن به پیشنهاد جدید از سیستم‌های نوین صنعتی که باید به صورت کاملاً جدید و متفاوت باشد تجربیات و منابعی را تثبیت کند. این اکثربه نهایی بررسی‌هایی انجام گرفته که این مسئله با چندین مورد ارائه شده است.
سیستم سازه‌ای مخزن آب‌هایی رودخانه‌ای ۱۵۰ متری مکعبی مورد آزمایش به ارتقاء کل ۲/۵۰ از سه مخزن‌سازی‌های به ظرفیت تقریبی ۵۰ متر مکعب تشکیل شده است. بافت داشت هر که از مخزنهای ۱۵/۱۵۰ متر و ارتفاع آن‌ها تقریباً ۵/۲۴ متر است. جداره و مغفر این مخزان استوانه‌ای از جنس پلی‌وریشن به ضخامت بالای ۱/۵ سانتی‌متر مس که یک جدار ساختمانی است. جدار درونی با توجه به نوع از کلیه محیط‌های خارجی به همان‌گونه با عناصر بالکه دست‌گیری شده و سایر سازمان‌های نیستند. به مقادیر به دست آمده توسط فرضیه‌های دینامیکی نیستند. به مقادیر به دست آمده از رابطه انرژی نیستند. به مقادیر به دست آمده رابطه انرژی AC318 شد. [۱۱] از آن‌زمان‌ها در سرسی خصوصیات دینامیکی سازه‌ای بین ۱۵و ۲۰ و سدآ [۱۵] به کرایت استفاده کرده است. نگرشی تحلیلی که اگر انجام انجام مطالعه با اهداف زیر می‌توان تصویری روشی از رفتار لرزه‌ای سیستم فراکسی نیست و مدل انرکش آب و سازه در اختلاف موجود بین فراکسی طبیعی سازه و ایستگاه و مدل ریاضی و اصلاح و بی‌پیوسته متقاونه و بررسی به تغییر عوامل فوق الذکر بر تغییرات طراحی حاصل از تحلیل طیفی.
حسکنده‌های 1-3 برای ثبت تاریخ‌های زمانی سرعت استفاده شده است. برای مطالعه محتویات دینامیکی مخزن مورد نظر، آزمایش‌های ارتعاش مینی‌برای دستیابی به چهار هدف عمده به شرح زیر برنامه‌ریزی شد:
الف) اندوزه گیری و ثبت همزمان در مکان‌های افقی و یک میلی‌سیکل ارتعاشات در نزدیکی سطح سیم مخزن توسط هشت حسکنده شتاب بروز استیلی به فرکانس‌های طبیعی و درصد میزان مولفه‌های جابجای و پیچشی سازه و مطالعه چگونگی رفتار هر یک از این سه مخزن نسبت به هم در آزمایش‌های با نواحی پایین این مجموعه به عنوان یک سیستم مسازه‌ای در سه حالت مخزن خالی، پر و نیمه پر (شکل 2-الف).
ب) اندوزه گیری و ثبت همزمان مکان‌های افقی ارتعاشات در روشنای ارتعاشات حسکنده‌های 1-3 آزمایش‌های میدانی روش انجام ارتعاشات مینی‌برای ثبت ارتعاشات ناشی از عوامل محیطی بر سازه است. بدین منظور باید از لزوزن‌سنجها و دستگاه‌های نگارنده استفاده کرد. دستگاه‌های نگارنده و پارامترهای مربوط به آن توسط رایانه‌ها قابل حمل در محل تنظیم می‌شوند و در نهایت ارتعاشات ثبت شده به صورت ثابت‌خوانی زمانی در قابل ذخیره شده و توسط سیستم‌های قابل مشاهده و پردازش‌اند. این مجموعه، سیستم‌گردآوری اطلاعات آنامیگری به طور کلی، کمیتهای شتاب و سرعت با ناب‌نوع لزوز سنج و هداف آزمایش‌های قابل تهیه‌اند. در این آزمایش‌ها، از سیستم‌گردآوری اطلاعات FBA-II به همراه حسکنده‌های OASIS-100 به‌همراه حسکنده‌های SSR-1 به همراه همسازهای زمانی شتاب و از سیستم‌گردآوری اطلاعات SSR-1 به‌همراه HSSR-1.
4- مدل اجزای محدود
روش‌ حل تحت‌ لیمیتی که امروزه برای تخمین خصوصیات دینامیکی از آن‌ها استفاده می‌شود برای این بررسی که ساده‌است است. شناخت فرآیندهای رفتار از آن میزان از این‌ جا در طراحی‌های صنعتی سازه‌های تحت‌بازار دارای بسیاری از این‌ جا است که با کمک نتایج حاصل از آزمایش‌ها، میزان طبیعی ناشی از فرآیندهای ارتباطی شور و در نهایی از آن‌ها برای دستیابی به یک مدل نزدیک‌تر به واقعیت استفاده شود.
مدل تحت‌لیمیت این مغز توسط برنامه SAP900 و با استفاده از اجزای پوششی چهارگانه و سه‌گانه‌های قابل ایجاد شده و تحلیل مقایسه برای تعیین فرآیندهای طبیعی و شکل‌ماندگاری و تحلیل دینامیکی برای یافتن نگرش مطالعات و نیروی به کار گرفته شده است. در نتیجه این مطالعه مدلهای به کار رفته است. سنوگرهی باعث نیاز به رفع ضعیفی معنی‌داری مدل سنوگرهی باعث برای مدل‌سازی کاهش تعداد و برای فاکتورهای اصلی استفاده شده است. برای انتخاب شده‌است که از نقاط اولیه است. در نهایی از این‌جا، گروه‌ها برای یافتن صفر زیستی (شیفت) مدل‌سازی صفر زیستی (شیفت) هسته‌ای انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی از این‌جا، گروه‌ها برای پیش‌گیری از تشکیل صفر زیستی (شیفت) انتخاب شده است. در نهایی اз...
آرایش لزوم‌سنجی‌های FBA-11 در آزمایش دوم

آرایش لزوم‌سنجی‌های FBA-11 در آزمایش اول

آرایش لزوم‌سنجی‌های SS-11 در آزمایش سوم

آرایش لزوم‌سنجی‌های SS-11 در آزمایش سوم

شکل 2-د
پلان آرایش لزوم‌سنجی‌های SS-11 در آزمایش چهارم

شکل 2-ج
آرایش لزوم‌سنجی‌های SS-11 در آزمایش سوم

شکل 2-آرایش منتفاوتن لزوم‌سنجی‌ها
مقاله فرویسیمان برای ۲۱۰ kg/cm² در برنامه معرفي شده و وزن بالا و هایفای برای محل ساز سازه، به صورت جرم نقطهای در ترکیب های ۱ و های ایرانی است که در هدفهای سازه اجرا شده کنترل و در صورت اطمینان صلاحیت همه این امر مهم است. برای بزرگی پایاتون مطالب این ادامه گیری شده در محل منظور شده است.

مبدل اندکی بیانیه و بسیار با استفاده از تحقیقات هاوستر و هارون ویرای مخازن استاندارد و یا فرصت جدایی کسامانی [۱۰] در نظر گرفته شده است. بنابراین این ادامه در مرجع [۷] در صورتی که نسبت ضخامت جداره به شما ۱/۲ کمتر باشد، به دید کار و انتخاب‌های ذیل فرصت کردن پارامترهای مدل مکانیکی سیل و سازه بر اساس توضیحات مرجع [۱۷] به صورتی مختلف قابل تعیینند. یکی از این روشهای تعبیری پارامترها در یک مخزن با جداره صلب و قرار دادن آنها بر روی جداره انعطاف پذیر مخزن است. کالینز [۱۸] جزئیات این روش را بدان کرده و مدل هاوان بر این اساس انتخاب شده است. روش دیگر استفاده از روابط اصلی اصلاح شده هاوستر است که در آن اثر مودهای الاستیک جداره نیز در نظر گرفته می‌شود. در نهایت به بررسی مخزن با هر دو روش مورد تجربه و تحلیل قرارگرفته است.

شکل ۳ - مدل مکانیکی هاوستر اصلاح شده
جدول 1- مقایسه پارامترهای مدل‌های مکانیک مفروض برای یک مخزن پر

<table>
<thead>
<tr>
<th>مدل هاونون</th>
<th>مدل هاونون</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_0 = 51/0$ ton</td>
<td>$m_0 = 51/0$ ton</td>
</tr>
<tr>
<td>$m_1 = 13/1$ ton</td>
<td>$m_1 = 13/1$ ton</td>
</tr>
<tr>
<td>$H_0 = 1/214$ m</td>
<td>$H_0 = 1/214$ m</td>
</tr>
<tr>
<td>$H_1 = 1/1848$ m</td>
<td>$H_1 = 1/1848$ m</td>
</tr>
<tr>
<td>$\omega_0 = 8/36495$ N/kg.m</td>
<td>$\omega_0 = 8/36495$ N/kg.m</td>
</tr>
<tr>
<td>$f_{sloshing} = f/77 Hz$</td>
<td>$f_{sloshing} = f/77 Hz$</td>
</tr>
<tr>
<td>$K = 11/58 N/m$</td>
<td>$K = 11/58 N/m$</td>
</tr>
<tr>
<td>$I_x = 144 t.m^2$</td>
<td>$I_x = 144 t.m^2$</td>
</tr>
</tbody>
</table>

بررسی برای مقایسه در جدول 1 آمده است.

5- تجزیه و تحلیل نتایج

در این قسمت ضمن ارائه نتایج آزمایش‌ها در حالات مختلف، مقایسه با مدل ریاضی انجام می‌شود. نتایج آزمایش از پردازش انددازه‌های 22 آزمون مختلف نشان دهنده محدودیت نیروی خودکار به حسگر داده‌های سرعت حسکنده‌های شتاب و 12 آزمون مربوط به حسگر داده‌های سرعت حسکنده‌های نسبت و مجموعاً پردازش بالغ بر 340 كانال حیاتی و مجازی به روش SWS و مورد استفاده قرار گرفته است. نتایج مدل PEGASUS و PITSA را برای محاسبه و بررسی به دست می‌آید.

راه‌حل ریاضی از تحلیل مقادیر ویژه به دست می‌آید.

استلال: سال 17، شماره 1، شهریور 1377
جدول ۲: مقایسه فرکانسهای طبیعی در حالت مخزن خالی بر حسب هر مترتر (اعداد داخل پرانتز نسبت فرکانس تحلیل به فرکانسهای آزمایش در هر مترتر است)

<table>
<thead>
<tr>
<th>روش</th>
<th>حالت</th>
<th>مود یچیشی</th>
<th>مود جانبی</th>
<th>مود دوم</th>
<th>مود سوم</th>
<th>مود دوم</th>
<th>مود سوم</th>
<th>مود یچیشی</th>
<th>مود دوم</th>
<th>مود سوم</th>
<th>مود یچیشی</th>
<th>مود دوم</th>
<th>مود سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمایش</td>
<td>1/12</td>
<td>0/82</td>
<td>2/47</td>
<td>1/46</td>
<td>1/46</td>
<td>0/82</td>
<td>0/82</td>
<td>0/82</td>
<td>0/82</td>
<td>0/82</td>
<td>0/82</td>
<td>0/82</td>
<td>0/82</td>
</tr>
<tr>
<td>تحلیل با پایه ثابت و E استاتیک</td>
<td>1/47</td>
<td>1/47</td>
<td>0/82</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
<td>0/82</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
</tr>
<tr>
<td>تحلیل با پایه ثابت و E دینامیک</td>
<td>1/47</td>
<td>1/47</td>
<td>0/82</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
<td>0/82</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
</tr>
<tr>
<td>تحلیل با چرخش پایه و E دینامیک</td>
<td>1/47</td>
<td>1/47</td>
<td>0/82</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
<td>0/82</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
<td>1/47</td>
</tr>
</tbody>
</table>

انظار با آینه مقدار جرم در حالت نیمه پر پیشتر است. فرکانس طبیعی مود اول جانبی در حالت نیمه پر کمتر از حالت یک مخزن پر به درست آمده است. البته هنگام آزمایش یک مخزن پر و بقیه خالی، مقداری اب به مخزن خالی نشته کرده بود ولی با این حال، جرم کل در حالت نیمه پر حدود ۲۰ تر پیشتر از حالت یک مخزن پر بوده است. بنابراین تریب می‌توانیم توجه کنیم که هزینه و دیمانیکی‌های نیمه نیمد نیز وابسته است.

در بعضی از اندازه‌گیری‌های مخزن پر در فرکانس ۲۹۸ هرتز یک پایه مشاهده می‌شود که مربوط به فرکانس امواج سطحی است. نتایج آزمایش سوم نشان می‌دهد که محدود موارد که مناسب ترین چرخش پایه در حالت نیمه پر و محدود موارد که مناسب ترین چرخش پایه در حالت نیم‌پر و یک مخزن پر و بقیه خالی است. مشاهده می‌شود که افزایش جرم و خروجی از مرکز چرخی بر افزایش موارد مناسب ترین چرخش خالی و سازه تأثیر دارد. ضمناً می‌توان حس زده با این مشاهده در مورد‌های بالاتر پیشتر می‌شود. فرکانس حکایت گواره‌ای سپس حدود ۱۸ هرتز از این تهیه گیری شده است.

در تحلیل سوم، ساختنی چرخشی پایه با سایر و افزایش گرفته است.

اسبیال، سال ۱۷، شماره ۱، شهریور ۱۳۷۷
جدول ۳ - مقایسه فرکانسیهای طبیعی در حالت مخزن تهی پر حسب هر متر (مدل هاوستر اصلاح شده)

<table>
<thead>
<tr>
<th>مدل پیچشی</th>
<th>مود شامل</th>
<th>مود چپ</th>
<th>مود سمت</th>
<th>مود اول</th>
<th>مود دوم</th>
<th>مود سوم</th>
<th>مود چپ</th>
<th>مود سمت</th>
<th>مود اول</th>
<th>مود دوم</th>
<th>مود سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمایش</td>
<td>تحلیل با پایه ثابت و استاتیک</td>
<td>۱/۵۷</td>
<td>۱/۳۱</td>
<td>۰/۸۲</td>
<td>۰/۸۵</td>
<td>۰/۸۷</td>
<td>۰/۹۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>تحلیل با پایه ثابت و دینامیک</td>
<td>۰/۹۸</td>
<td>۰/۹۴</td>
<td>۰/۹۹</td>
<td>۰/۹۸</td>
<td>۰/۹۸</td>
<td>۰/۹۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>روشن</td>
<td>تحلیل با پایه ثابت و دینامیک</td>
<td>۰/۹۸</td>
<td>۰/۹۴</td>
<td>۰/۹۹</td>
<td>۰/۹۸</td>
<td>۰/۹۸</td>
<td>۰/۹۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴ - مقایسه فرکانسیهای طبیعی در حالت مخزن تهی پر حسب هر متر (مدل هاوستر اصلاح شده)

<table>
<thead>
<tr>
<th>مدل پیچشی</th>
<th>مود شامل</th>
<th>مود چپ</th>
<th>مود سمت</th>
<th>مود اول</th>
<th>مود دوم</th>
<th>مود سوم</th>
<th>مود چپ</th>
<th>مود سمت</th>
<th>مود اول</th>
<th>مود دوم</th>
<th>مود سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمایش</td>
<td>تحلیل با پایه ثابت و استاتیک</td>
<td>۱/۵۱</td>
<td>۱/۴۳</td>
<td>۱/۳۶</td>
<td>۱/۵۱</td>
<td>۱/۴۳</td>
<td>۱/۳۶</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>تحلیل با پایه ثابت و دینامیک</td>
<td>۱/۶۷</td>
<td>۱/۵۸</td>
<td>۱/۵۸</td>
<td>۱/۶۷</td>
<td>۱/۵۸</td>
<td>۱/۵۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>روشن</td>
<td>تحلیل با پایه ثابت و دینامیک</td>
<td>۱/۶۷</td>
<td>۱/۵۸</td>
<td>۱/۵۸</td>
<td>۱/۶۷</td>
<td>۱/۵۸</td>
<td>۱/۵۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

اگر چاپ از طرفی در حالت مخزن پر برای مدل کشسانی دینامیکی ۵/۹۴ و جریان پایه ۷/?، مدل اندرکش سیال ۹/? و سایر پارامترهای سازهای ۱/? است. علامت + بر جهت افزایش فرکانس و افزایش سختی است. جنگله از مقایسه جدول ۱ و ۳ حاصل می‌شود. درصد اختلاف در مود دوم مربوط به حالت پر پیش از اختلاف در حالت خالی است که این به دلیل عدم امکان در نظر گرفتن مودهای مواد و بالاتر در مدلهای اندرکش به کار رفته است. زیرا در این مدلها جرم مواد ساختمان مورد جواب آست. البته به این نکته را در نظر داشته که مدل‌های به کاررفته برای حالت مخزن خطا در درک افراد در حیاط افزایش می‌گیرد و عدم کفایت مدل‌ها در معرفی رفتار سازه در موادهای بالاتر اشاره کرد. از سوی دیگر، به عنوان خنثی بودن تحقیقات با داده‌های آزمایشی محققی انتزاعی کارایی برای به ارتقای نمونه‌سازی در موادهای بالا به وجود نمی‌آید و نمی‌توان به خصوصیات کامل این موادها دست یافت. با این حال، مودهای پیچشی توانای خوبی با تاکید آزمایش‌های داردی که نشان دهنده دقت مناسب مدل در هنگام عدم حضور تأثیرات ناشی از دوران پایه است. یکی دیگر تریپ میزان مشارکت فرجهای مختلف در فرکانس‌های طبیعی مود دوم در حالت مخزن خالی برای مدل کشسانی دینامیکی ۷/?، جریان پایه ۸/? و سایر پارامترهای سازهای ۲/? است.
جدول 5- مقایسه فرکانسی‌های طبیعی در حالت یک مخزن پر بر حسب هرتر (مدل هاوسن اصلاح شده)

<table>
<thead>
<tr>
<th>روش</th>
<th>مود پچشی</th>
<th>مود جابجایی</th>
<th>مود دوم</th>
<th>مود سوم</th>
<th>مود اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمایشی</td>
<td>6/40</td>
<td>1/55</td>
<td>5/27</td>
<td>0/92</td>
<td>7/05</td>
</tr>
<tr>
<td>تحلیل با پایه ثابت و E استاتیک</td>
<td>(1/60)</td>
<td>(1/60)</td>
<td>(1/60)</td>
<td>(1/60)</td>
<td>(1/60)</td>
</tr>
<tr>
<td>تسهیلاتی</td>
<td>6/85</td>
<td>1/86</td>
<td>5/12</td>
<td>0/54</td>
<td>7/4</td>
</tr>
<tr>
<td>تحلیل با پایه ثابت و E دینامیک</td>
<td>(1/85)</td>
<td>(1/85)</td>
<td>(1/85)</td>
<td>(1/85)</td>
<td>(1/85)</td>
</tr>
<tr>
<td>درصد اختلاف</td>
<td>0/84</td>
<td>0/60</td>
<td>5/65</td>
<td>0/96</td>
<td>7/02</td>
</tr>
</tbody>
</table>

جدول 6- مقایسه فرکانسی‌های طبیعی در حالت مخزن پر با استفاده از مدلهای مدل هاوسن و مدل هاوسن (پایه ثابت)

<table>
<thead>
<tr>
<th>روش</th>
<th>مود پچشی</th>
<th>مود جابجایی</th>
<th>مود دوم</th>
<th>مود سوم</th>
<th>مود اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل هاوسن</td>
<td>6/40</td>
<td>1/55</td>
<td>5/27</td>
<td>0/92</td>
<td>7/05</td>
</tr>
<tr>
<td>مدل هاوسن</td>
<td>(1/60)</td>
<td>(1/60)</td>
<td>(1/60)</td>
<td>(1/60)</td>
<td>(1/60)</td>
</tr>
<tr>
<td>درصد اختلاف</td>
<td>0/84</td>
<td>0/60</td>
<td>5/65</td>
<td>0/96</td>
<td>7/02</td>
</tr>
</tbody>
</table>

از آزمایش چهارم که مربوط به ثبت ارتعاشات میدان آزاد است، می‌توان نتیجه گرفت که ارتعاشات خنیف زمین از نوع اغتشاش خالص 3-مستند زیرا تحلیل فوری این اندکی داده‌های مربوط به طیف و سیمی از فرکانس‌های که پیک خاصی در آنها قابل مشاهده نیست، از ریز زمان حركت با پایلی از فونداسیون سازه تا نقطه پایه بر روی زمین، به فاصله‌ای مشخص، می‌توان سرعت موج را تعیین کرد. به علت انتشار قسمت اعظم این موج به صورت عمودی می‌توان این سرعت را تقریباً معادل سرعت موج بریشی دانست که پارامتر مهم در طبقه بندی خاکها نظیر نسبی میزان اندرکنش خاک و سازه است. در محل این مخزن سرعت موج بریشی حدود 7/875 متر بر ثانیه اندکی بیشتر انتظار داشته که این مقدار مشارکت اندکی گریز زیرا همخوانی دارد.

برای مقایسه شکل موهای مدل ریاضی با آزمایشی، مقدار استاتیکی با کفک تحت به دست آمد اند در صورتی که در مخزن مورد آزمایش کف مخزن مخزن مخزن مخزن شکل دهد که این مسئله موجب بروز نقشه خطا در این مدل می‌شود.

برای بررسی رفتار مهارتبندی و انعکاس‌ها، از مقایسه مدل ریاضی و نتایج آزمایش کمک گرفته شده است. بدین منظور مدل ریاضی یک مربوط در حالت خالی بدون مهارتبندی کششی تحلیل شد و در نتیجه آن مشخص شد که وجود این مهارتبندی در افزایش سختی سیستم مؤثر است چون بدون آن اکسنتی این مدل ریاضی تفاوت نسبی زیادی با نتایج آزمایش داشته در سایر حمل و نقل تیرهای افقی و ابعاد آنها باید توجه کرد که رفتار انسان آنها بیشتر تزیینی به حالت اتصال مدل است زیرا مدل ریاضی، یک پار با فرض اتصال مفصل تصور سبک تحلیل شد و لی مقداری فرکانسی‌های به دست آمد به ترتیب آزمایش سازگار نبود.
دامنه مود در گره‌های مناطق با محل نصب حس‌کننده‌ها و متاب‌برداری خروجی به دست آمده و در حالات مختلف به هم مقایسه شدند. در این مقایسه، جای‌گاه این اثر بالا یک نشان در نظرگرفته شده است. شکل موهای خاص از آزمایش با شکل موهای تکثیری تفاوت مناسبی (20) را نشان می‌دهد که نتایج زیر استنتاج می‌شود:

- شکل موهای در حالات مختلف با هم تفاوت خوبی دارند و
- دامنه مود مربوط به حالت مخزن پر پر در حالت خالی و نهم پر است.

- شکل مود اول جانایه معرف رفتار خصوصی سازه مخزن است.

- مقدار ماله شکل مود پیچشی در حالت یک مخزن پر و بقیه خالی، بسیار زیادی بحث می‌شود و تا محدودیت پر است در اثر خروج از مرکزیت جرمی را در شکل موهای پیچشی بیان نمود توانسته می‌شود.

- از مقایسه زاویه‌گیری نقاط مختلف در یک فرکانس طبیعی، به
همافزار بودن با تائه‌سازی بودن نقاط پر بر می‌شود.

- در حالت اول، شکل پیچشی در حالت دو نقطه که در یک جهت در حفرات دستگاه صفر درجه و در نقطه‌های در خلاف چهت یک سیستم خودی آمده آب موهای مستقل و بدون مربوطی است. نتایج آزمایش نشان می‌دهد که این

- اختلاف بیان اول حفرات صفر درجه و در موهای بالاتر منجر به

- درجه نیز وجود دارد، این اختلاف با توجه به وجود مبایی در سازه، و تأثیر موهای تزییدی به‌هم معنای متوسط در حالت طراحی، تهیه خاتمی در طول زمان افزایش ایجاد می‌شود. اگر طراحی مسانتی حساسیت در جدید نیروهای زلزله نیز

- از عوامل مهم مؤثر بر طراحی، نوع حفرات، شدت و طول زمان زلزله است. رفتار سیستم مخزنی نیز در جدید نیروهای زلزله نیز

- از عوامل دیگری است که بر نیروهای طراحی تأثیر می‌گذارد.

- به منظور بررسی اثرات فرضیات مدل ریاضی برا

- نیروهای وارد بر سازه تحت زلزله، یک سری تحلیل طیف‌پایکار و

- روی مدل‌ها به‌منظور رفع تفاوت نتایج مقایسه فکرکارها مشاهده شد که در حالت مخزن خالی، مدل با

- چرخه پایه و مدل کشسانی دینامیکی حدود 4 درصد مود اول واقعیت چپ دارد. در حالت مخزن پر بر علت تقریب مدال

- اینکه در جهت نمایندگی نیروهای زلزله، بدین ترتیب نمایش گرفته می‌شود

- خصوصی در تزییدی پایه به‌هم مقدم قابل توجهی تغییر می‌دهد.
4- تجربه گیری و پیشنهادات

و نتایج بررسی خصوصیات دینامیکی سازه با در نظر گرفتن اثرات چرخش پایه بکر از آزمایش‌های اجرایی و فناوری انجام شده است. تا حدودی حاصل از مقایسه آزمایش و تحلیل به شرح زیر است:

4.1- پایداری و پیشنهادات

بر اساس نتایج کسب شده که در حال حاضر مخزن خالی، مدل با قابلیت چرخش پایه، مدل خودکشی، دینامیکی با واقعیت توافق خوبی دارد. در حال حاضر مخزن پر، مدل اندرکشت آب و سازه باعث کاهش پاسخ سازه به زلزله های مختلف به دو عامل اصلی، تغییرات نیروی بری و تغییرات اینکارکرد، باید در رابطه با تغییرات عنصری زلزله تغییر نشده، تحت تأثیر نظریه نوری از نظر نیروی بری مورد نظر از موارد که مخزن خالی است بیشتری بر سیستم شده است. نتایج کسب شده می‌تواند به این واقعیت در طراحی این نوع سیستمها باید حالات خالی، نیمی پر و پر مورد تحلیل قرار گیرد.

پاسخ سازه به زلزله های مختلف به دو عامل اصلی، تغییرات نیروی بری و تغییرات اینکارکرد، باید در رابطه با تغییرات عنصری زلزله تغییر نشده، تحت تأثیر نظریه نوری از نظر نیروی بری مورد نظر از موارد که مخزن خالی است بیشتری بر سیستم شده است. نتایج کسب شده می‌تواند به این واقعیت در طراحی این نوع سیستمها باید حالات خالی، نیمی پر و پر مورد تحلیل قرار گیرد.
شکل 7 – مقایسه تغییرات بریش سیستم در حالت پایه گیردار و انعطاف پذیر در زلزله طیس

شکل 6 – مقایسه تغییرات بریش سیستم در حالت پایه گیردار و انعطاف پذیر در مخزن خالی، تحت طیف زلزله طیس

سختی سیستم می‌شود. این مسئله باعث افزایش فرکانس طبیعی حاصل از مدل می‌شود که به نویه خود منجر به تخمین دست پایین نیروهایه به دست آمده از طیف‌های طراحی خواهد شد. درم توجه به این مطلب منکم این است که برای یک سازه غیر مقاوم منجر شود.

درین جهت پیشنهاد می‌شود که در این حالت، پایه صلب در نظر گرفته شود تا نتایج تغییر مدل سیال را با افزایش سختی کل جریان کند بدان ترتیب مدل‌های به دست آمده حداکثر درصد در مورد اول و اخلاق تغییرات خواهد داشت.

ج – درصد اختلاف مدل و آزمایش در مود سوم بسیار زیاد می‌شود که علت آن می‌تواند تأثیر اندرکنش خاک و سازه و عدم کافیت فر خزی و تحلیل کششی در تعمیر خصوصیت موردی بلای اثر باشد. از عوامل دیگر این اختلاف این است که مدل اندرکنش آب و مخزن تنه می‌تواند به شکل مود اول مواجه به ارتعاش در آبید و اثرات مودهای مواج بالاتر را شامل نمی‌شود.

د - رفتار اتصالات در مهاربرنگی با مقایسه مدل و آزمایش قابل
ممکن است نیروهای طراحی را به میزان قابل ملاحظه‌ای تغییر دهد.

قدرنمایی
این تحقیق در مؤسسه زلزله شناسی و مهندسی زلزله با حمایت مالی واحدهای بهداشت و وزارت جهادسازندگی انجام شده است که به‌دین واسطه از مستقیم واحدهای واحدهای بهداشت و همچنین از دستیاری آقایان مفعول، حسین زاده، شیرازیان و پروازه نشان و قدردانی می‌شود.

1. ferrocement 2. Data Acquisition system 3. white noise

۲۰ - شکیب، ج. و مرعی، ع. "اثر خصوصیات دینامیکی پاسخ مخازن آب هوایی تحت تاثیر زلزله،" گزارش تحقیقاتی، مؤسسه زلزله شناسی و مهندسی زلزله، زیر پارک.