ارزیابی رفتار لرزه‌ای مخازن فروسیمانی آب هواپی با استفاده از آزمایش‌های ارتعاشات محیطی

حمژه شکبی

بخش عمران دانشگاه فنی و مهندسی دانشگاه تربیت مدرس

(دریافت مقاله: ۱۳۷۶/۸/۲۴ - دریافت نسخه نهایی: ۱۳۷۶/۸/۲۳)

چکیده - در این تحقیق یک سری آزمایش‌های ارتعاشات محیطی بر روی یک مخزن سه تایی فروسیمانی با حجم ۱۵۰ مترمکعب انجام گرفته است. آزمایش‌های مختلفی از حس‌گیرهای برای بررسی خصوصیات دینامیکی در حالاتی پر، نیمه پر، پر مخزن یا خروج از مرکزیت جرمی انجام شده است. تأثیرات چرخش پایه نش در این آزمایش‌ها مورد توجه قرار گرفته اند. نتایج به ترتیب میزان نیروهای طراحی، نیروهای طراحی در نظر گرفته شده، نیروهای طراحی ضریحی شده و نیروهای طراحی ضریحی شده است. نتایج نشان می‌دهد که تغییر نیروهای طراحی به خصوصی در نزدیکی پایه می‌شود.

Evaluation of Seismic Behaviour of Ferrocement Elevated Water Tanks by Using Ambient Vibrations Tests

H. Shakib

Department of Civil Engineering, Tarbiat Modares University, Tehran

ABSTRACT- In this study a series of ambient vibration tests on the triple ferrocement elevated water tanks with 150 cubic meters volume, is carried out. In order to verify the dynamic characteristics of full, half-full and one full tanks (mass eccentric system), the different arrangements of sensors are used. The effects of base rotation are also considered in the tests. Natural frequencies and mode shapes obtained from tests are compared to the mathematical model of the tanks using finite element method. In order to verify the effect of different assumptions on the design forces, the revised mathematical model is analyzed by spectral method. The results indicate that base rotation changes the cause of design forces especially in the vicinity of the base of system.

* استادیار

استقلال، سال ۱۷، شماره ۱، شهریور ۱۳۷۷
۱ - مقدمه

اکثر مذاکرات با تأسیسات صنعتی شهری محصولی می‌شوند. بنابراین، متأسفانه یکی از این مذاکرات، به نظر رفتنی با استفاده از یک زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب نسبتاً ساده به نظر می‌آید. به‌طور کلی، استفاده از این زبان مناسب N
سیستم سازه‌ای ۲
می‌توان آب‌هایی ۱۵۰ متر مکعبی مورد آزمایش به ارتفاع کل ۲/۵۰ متر از توپ مخزن‌سازی‌های بی‌طرفی تقریب ۵۰ متر مکعب شکل‌دهی بالا امکان‌پذیر است. قطر داخلی هر یک از مخازن ۱۵/۱۵ متر و ارتفاع آن‌ها تقریباً ۵/۴ متر است. جداره و عمق این مخازن استوانه‌ای از جنس فولاد‌پوسته با ضخامت ۱/۵ سانتی‌متر است که یک چرخ دایره‌ای است. دیگر استوانه‌ای استوانه‌ای از لایه‌های از رودخانه‌های گالویزی که محور سی‌در روی هماهنگی با عرض کلی ۱۵ سانتی‌متر در هر چند ردیف از آن‌ها به هم رسیده است. بخش خارجی کشیده ساخته شده است. بیش از ۱۰۰ سانتی‌متری، به‌طور مشابه شکل‌دهی می‌شود که به بهترین سطح مورد استفاده قرار می‌گیرد. این بخش‌ها به علت اضطراب در مورد قرار گرفتن مخزن‌های مصنوعی با هم در اینجا بسیار مفید می‌باشند. این مخزن‌ها از نوع سی‌در رديفی که در سطح برخورد با آب مصرف می‌شود، به سه گروه عمده تقسیم می‌شوند:

۱- انتقال حرارتی و خنک‌سازی ۲۴۲۳ متر از انجام فعالیت‌های شناوری و شناوری در مقایسه با مدل آزمایشگاهی برای خواص فنی‌های مصرفی مخزن مهارندی شده است. نمایی از مخزن در شکل ۱ نشان داده شده است.

۲- انتقال حرارتی و خنک‌سازی ۲۴۲۳ متر از انجام فعالیت‌های شناوری و شناوری در مقایسه با مدل آزمایشگاهی برای خواص فنی‌های مصرفی مخزن مهارندی شده است. نمایی از مخزن در شکل ۱ نشان داده شده است.
3- آزمایش‌های میدانی
روش انجام ارتعاشات محیطی مبتنی بر ثبت ارتعاشات ناشی از عوامل محیطی بر سازه است. بدین منظور باید از لرزسنجها و دستگاه‌های تگذینه استفاده کرد. دستگاه‌های تگذینه و پارامترهای مربوط به آن توسط رایانه‌های قابل حمل در محل تنظیم می‌شوند و در نهایت ارتعاشات ثبت شده به صورت تاریخچه زمانی در قابل ذخیره شده و توسط نرم‌افزار قابل مشاهده و پردازش‌اند. این مجموعه، سیستم گردآوری اطلاعات آنامی‌گیرد. به طور کلی، کمیته‌های ساخت و سرعت با ناحیه‌های مختلف اهداف آزمایش قابل ثبت‌اند. در این آزمایش‌ها، از سیستم گردآوری اطلاعات FBA-II به همراه حس‌کننده OASIS-100 برازی ثبت تاریخچه زمانی شتاب و از سیستم لزه‌گزاری SSR-1 بروی همراه

حس‌کننده‌های SS-1 برای ثبت تاریخچه زمانی سرعت استفاده

شد است. برای مطالعه خصوصیات دینامیکی مخزن مورد نظر، آزمایش‌های ارتعاش محیطی برای دستیابی به جهاد هدف عمدی به شرح زیر برنامه‌ریزی شد:

الف) اندازه‌گیری و ثبت همزمان دو مؤلفه افقی و یک مؤلفه قائم ارتعاشات در تراز سقف هر سه مخزن توسط هشت حس‌کننده بیای دستیابی به فرکانس‌های طبیعی و درصد میزان موهای جابجایی و بی‌جایی حالت و مطالعه چگونگی رفتار هر یک از این سه مخزن نسبت به هم برای آشنا شدن با ناحیه‌های این مجموعه به عنوان یک سیستم سازه‌ای در سه حالت مخزن خالی، پر و نیمه پر

(شکل 2-الف).

ب) اندازه‌گیری و ثبت همزمان مؤلفه‌های افقی ارتعاشات در

استقلال، سال 17، شماره 1، شهریور 1379

56
4. مدل اجزای محدود
روش‌های تحلیلی که امروزه برای تخمین نسبت‌های اتیومیکی از آنها استفاده می‌شود، پایان فرایند سه‌بعدی است. این فرایندهای سه‌بعدی شامل دو ترکیب از مشاهده‌های جهشی و قطعی است. در این روش، ترکیب از نسبت‌های اتیومیکی و شکل‌بندی، تبادل میان اجزای ارتباطی بین شیب و در نهایت از آنها برای دستیابی به یک مدل تقریبی و واگفت استفاده می‌شود.

مدل تحلیلی این مخزن توسط برنامه SAPR90 و با استفاده از آزمایش‌های نرم‌افزاری بهترین رضایت‌آمیزی را داشته‌است. تفسیر نتایج این مدل نشان می‌دهد که تأثیر نسبت‌های اتیومیکی بر روی فرایندهای طبیعی و شکل‌بندی و تحلیل دقیق و پیچیده تغییرات فرم و بافت منشا و نیروی هیدرولیک گرخی شده است. فرضیات مدالسازی به قرار زیرند:

- ستون‌ها و جداره‌های متغیر با اجزای پوسته‌ی خشکی مدل شدند. مقطع دیاپاتر ستون‌ها با توجه به سطوح توده‌ها و اجزای با یک شیب سنگین منظم، تقریباً هم‌بوده است. این نتایج با توجه به مشکلات موجود در حالت لازم برای انتقال ابعادش، شکل اجزایی از شکل‌بندی ریزتری استفاده شده است. در این روش، گرخی‌های با یک لایه سنگی در محال فتوپتیک تغییرات شدیدی اتفاق می‌افتد. به طور خاص، در زمینه‌های یافته‌ای در مدل کامپیوتری، فقط در حالت ارتباطی که مدل کامپیوتری فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری، فقط در حالت ارتباطی که مدل کامپیوتری فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری، فقط در حالت ارتباطی که مدل کامپیوتری فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری، فقط در حالت ارتباطی که مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم توانسته باشد، حرکت می‌کند. در این مدل کامپیوتری FBA-11 به دست آمده است، فرضیه‌ای مردم Taz سهصف و در تازه کننده، پراکنده‌ای در تأسیسات فرایشی و شکل‌بندی می‌باشند.نوبت‌ها و نیروی هیدرولیک یکدیگر می‌باشد. با توجه به ترتیب قرارگرفتن و یکدیگر اتیومیکی آزمایشی از آنها برای هیچ نوع از اطمینان از عملکرد
آرایش لرزه‌سنج‌های FBA-11 در آرایش اول

آرایش لرزه‌سنج‌های SS-11 در آرایش سوم

آرایش لرزه‌سنج‌های SS-11 در آرایش سوم

آرایش لرزه‌سنج‌های SS-11 در آرایش سوم

آرایش لرزه‌سنج‌های FBA-11 در آرایش اول

شکل 2-ب

آرایش لرزه‌سنج‌های 11 در آرایش دوم

شکل 2-الف

شکل 2-ج

آرایش لرزه‌سنج‌های SS-11 در آرایش سوم

شکل 2-د

پلان آرایش لرزه‌سنج‌های SS-11 در آرایش چهارم

شکل 2- آرایش متناوب لرزه‌سنج‌های SS-11

استقلال، سال 1371، شماره 1، شهریور 1377

58
محاسبه شدن حجم فرومیمان برای 10^2 کیلوگرمی هاوزرت است. این مقدار به دست آمده از دو مدل فرضیه به گونه‌ای برای روزن و پالکـ و هایا پیشنهادی با افزایش اندازه مدل بر عهده اندازه گیری و از طریق اعمال شده است. این پایستون مطالب ابتدای انجام گیری شده در محل منظور شده است. مدل انجرکش آب و سازه با استفاده از نتایج تحت‌البندی‌های هاوزرت و هارون برای مخازن استحکامات و یا فرض جدایی کشسانی [10] در نظر گرفته شده است. بنابراین این انتخاب شده در مرجع [7] در صورتی که نسبت ضخامت جداره به شعاع 0.4 کمتر باشد، به‌این جداره را انعطاف‌زده‌بتر فرض کرد. پارامترهای مدل مکانیکی سیال و سازه بر اساس توصیهات مرجع [17] به صورت‌های مختلفی قابل تعیین است. یکی از این روش‌ها، تعیین پارامترهای در یک مخزن با جداره صلب و قرار دادن آنها بر روی جداره انعطاف پذیر مخزن است. کالینز [18] بیانیات نشان داشت که مدل هارون بر این اساس انتخاب شده است. روش دیگر، استفاده از روابط اصلاح شده هاوزرت است که در آن اثر مخازن الاستیک جداره نیز در نظر گرفته می‌شود. در قسمتهای بعدی، مخزن با هر دو روش مورد تجزیه و تحلیل قرار گرفته است.
جدول 1- مقایسه پارامترهای مدل‌های مکانیک مفروض برای یک مخزن پر

<table>
<thead>
<tr>
<th>مدل هاوستر</th>
<th>مدل هارون</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_1 = 51/10 \text{ ton}$</td>
<td>$m = 51/10 \text{ ton}$</td>
</tr>
<tr>
<td>$m_2 = 37/4 \text{ ton}$</td>
<td>$m_2 = 37/4 \text{ ton}$</td>
</tr>
<tr>
<td>$m_3 = 13/1 \text{ ton}$</td>
<td>$m_3 = 13/1 \text{ ton}$</td>
</tr>
<tr>
<td>$H_1 = 1/24 \text{ m}$</td>
<td>$H_1 = 1/24 \text{ m}$</td>
</tr>
<tr>
<td>$H_2 = 1/24 \text{ m}$</td>
<td>$H_2 = 1/24 \text{ m}$</td>
</tr>
<tr>
<td>$\omega_1 = 8/6695 \text{ N/kg.m}$</td>
<td>$\omega_1 = 8/6695 \text{ N/kg.m}$</td>
</tr>
<tr>
<td>$f_{	ext{stochastic}} = 3/49 \text{ Hz}$</td>
<td>$f_{	ext{stochastic}} = 3/49 \text{ Hz}$</td>
</tr>
<tr>
<td>$K = 11/28 \text{ N/m}$</td>
<td>$K = 11/28 \text{ N/m}$</td>
</tr>
<tr>
<td>$I_1 = 14/2 \text{ t.m}$</td>
<td>$I_1 = 14/2 \text{ t.m}$</td>
</tr>
</tbody>
</table>

بررسی برای مقایسه در جدول 1 آمده است.

تجزیه و تحلیل تاریخی

در این قسمت ضمن ارائه تاریخچه آزمایشها در حالات مختلف، مقایسه‌ای با مدل ریاضی انجام خواهد شد. تاریخچه آزمایش‌گر در حالات مختلف، ثبت شده توسط سرعت حرکت‌های شتاب و انرژی پردازشی بالا و 2/6 میلی‌نرم است. مورد استفاده PEGASUS و PITSA

- مدل‌های مکانیک مفروض برای یک مخزن پر

- اختلاف فرکانس‌های تطبیقی حالت پر و خالی در مودهای

- بالاتر کمتر می‌شود.

- مدل‌های مواد اول جهت شیمالی - جنوبی حدود 0/4 درصد از

- فرکانس مواد شرقی - غربی پیش‌تر است. به دلیل دیگر سختی

- سازه در جهت شمالی- جنوبی کمی پیشرفت است که علت آن

- می‌تواند ناهمگونی در ساخت اعضای اتصالات و مهار بودن باشد.

- مقادیر فرکانس‌های تطبیقی در حالت یک مخزن پر (خروج از

- مرکز پرتو) تقریباً مشابه حالت نیمه پر است ولی بر خلاف
جدول 2 - مقایسه فرکانسهای طبیعی در حالت مخزن خالی بر حسب مرتب (اعداد داخل پرانتز نسبت فرکانس تحلیل)

<table>
<thead>
<tr>
<th>حالت</th>
<th>مود پیچشی</th>
<th>مود جانپی</th>
<th>مود دوم</th>
<th>مود سوم</th>
<th>مود دوم</th>
<th>مود سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمایش</td>
<td>0/5</td>
<td>0/81</td>
<td>8/2</td>
<td>0/88</td>
<td>1/12</td>
<td></td>
</tr>
<tr>
<td>تحلیل با پایه ثابت و E استاتیک</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td>1/00</td>
<td></td>
</tr>
<tr>
<td>تحلیل با پایه ثابت و E دینامیک</td>
<td>5/86</td>
<td>1/74</td>
<td>1/12</td>
<td>0/95</td>
<td>0/96</td>
<td></td>
</tr>
<tr>
<td>تحلیل با چرخش پایه و E دینامیک</td>
<td>0/90</td>
<td>0/96</td>
<td>0/96</td>
<td>0/96</td>
<td>0/96</td>
<td></td>
</tr>
<tr>
<td>6/54</td>
<td>0/99</td>
<td>1/17</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
<td></td>
</tr>
<tr>
<td>0/01</td>
<td>1/04</td>
<td>1/59</td>
<td>0/04</td>
<td>0/04</td>
<td>0/04</td>
<td></td>
</tr>
<tr>
<td>5/51</td>
<td>0/07</td>
<td>1/23</td>
<td>0/23</td>
<td>0/23</td>
<td>0/23</td>
<td></td>
</tr>
<tr>
<td>0/00</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td></td>
</tr>
</tbody>
</table>

انتشار، با اینکه مقدار جرم در حالت نیمه پر بیشتر است، فرکانس طبیعی مود اول جانبی نیمه پر کمپرسی بیشتر از حالت جک مخزن پر به دست آمده است. البته در هنگام آزمایش یک مخزن پر و بقیه خالی، مقداری آب به مخزن خالی نشست کرده بود ولی با این حال، جرم کل در حالت نیمه پر حدود 20 تر بیشتر از حالت یک مخزن پر بوده است. بدین ترتیب نیز نتیجه گرفته که خصوصیات دینامیکی نه تناها به مقدار جرم و سختی بلکه به نحوه توزیع آنها (متفاوت و نامتقارن) نیز وابسته است.

- در بعضی از اندام‌های خاکی مخزن پر در فرکانس 0/2 هرتس، یک پایه مشاهده می‌شود که مربوط به فرکانس امواج سطحی است.

نتایج آزمایش سوم نشان می‌دهد که میزان مشابهت چرخش نیمه پر در دامنه مود اول جانبی در تراز سقف در مخزن خالی 0/3 مخزن پر 3/2178 و یک مخزن پر و بقیه خالی 0/2178 است. مشاهده می‌شود که افزایش جرم و خروج از مرکزیت جرمی به افزایش مشارکت پایه‌ای خاک و سازه تأثیر دارد. ضمناً یک مورد چند فردی این مشابهت در مود‌های بالا بیشتری می‌شود. فرکانس حاصل گروه‌های مسلسل حدود 18 هرتس اردازه گیری شده است.

در تحلیل سوم، سختی چرخشی پایه با سبیع و خطا در
جدول ۳ - مقایسه فرکانسی‌های طبیعی در حالت مخزن پر یا نپر حسب مترز (مدل هاواستر اصلاح شده)

<table>
<thead>
<tr>
<th></th>
<th>مود کلی</th>
<th>مود مولکولی</th>
<th>حالت</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>مود اول</td>
<td>مود دوم</td>
<td>مود سوم</td>
<td>مود اول</td>
</tr>
<tr>
<td>آزمایش</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۵۷</td>
<td>۰/۳۱</td>
<td>۰/۵۸</td>
<td>۰/۸۲</td>
<td>۱۰۰۰</td>
</tr>
<tr>
<td>۰/۵۰</td>
<td>۰/۷۴</td>
<td>۰/۷۸</td>
<td></td>
<td>۱۰۰۰</td>
</tr>
<tr>
<td>۰/۶۱</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td></td>
<td>۱۰۰۰</td>
</tr>
<tr>
<td>۰/۵۵</td>
<td>۰/۸۷</td>
<td>۰/۸۸</td>
<td></td>
<td>۱۰۰۰</td>
</tr>
<tr>
<td>۰/۸۸</td>
<td>۰/۸۷</td>
<td>۰/۸۸</td>
<td></td>
<td>۱۰۰۰</td>
</tr>
</tbody>
</table>

جدول ۴ - مقایسه فرکانسی‌های طبیعی در حالت مخزن نیمه پر یا نپر حسب مترز (مدل هاواستر اصلاح شده)

<table>
<thead>
<tr>
<th></th>
<th>مود کلی</th>
<th>مود مولکولی</th>
<th>حالت</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>مود اول</td>
<td>مود دوم</td>
<td>مود سوم</td>
<td>مود اول</td>
</tr>
<tr>
<td>آزمایش</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶/۲۹</td>
<td>۰/۶۳</td>
<td>۰/۶۴</td>
<td>۰/۹۸</td>
<td>۱/۰۰</td>
</tr>
<tr>
<td>۰/۶۰</td>
<td>۰/۶۳</td>
<td>۰/۶۳</td>
<td></td>
<td>۱/۰۰</td>
</tr>
<tr>
<td>۰/۶۸</td>
<td>۰/۶۳</td>
<td>۰/۶۳</td>
<td></td>
<td>۱/۰۰</td>
</tr>
<tr>
<td>۰/۶۵</td>
<td>۰/۶۳</td>
<td>۰/۶۳</td>
<td></td>
<td>۱/۰۰</td>
</tr>
<tr>
<td>۰/۶۱</td>
<td>۰/۶۳</td>
<td>۰/۶۳</td>
<td></td>
<td>۱/۰۰</td>
</tr>
</tbody>
</table>

ختی خاک و عدم کفایت مدل‌های فرد رفته‌های کلی و کلیک‌های کاسو در مصرف رفتار سازه در مودهای بالاتر اثره کرده است. سوم دیگر، به علت خنثی بودن تحقیقات بیان در آزمایش‌های مربوط، انتزاع کافی دارای به ارتقاء درآوردن سازه در مودهای بالا به وجود نمی‌آید و نمی‌توان به خصوصیات کامل این مودها دست یافت. بنابراین، حالت مودهای پیچشی توانایی را تا آن‌جایی که نشان می‌دهد دقت مناسب مدل در هنگام عدم حضور تأثیرات تاثیره از دوران پایه است.

بدین ترتیب میزان مشارکت مخصصت‌های مختلف در فرکانس‌های طبیعی مود‌های اول در حالت مخزن نیمه پر و بالاتر مدل کلسیم دینامیکی ۷/۲۷ (به چرخش پایه ۸/۸ و سایر پارامترهای سازه‌ای ۵/۴)
جدول ۵- مقایسه فرکانسهای طبیعی در حالت یک مخزن پر بر حسب هرزن (مدل هاوانر اصلاح شده)

<table>
<thead>
<tr>
<th></th>
<th>مود پیچش‌ی</th>
<th>مود جانبی</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td>مود سوم</td>
<td>۶/۲۷</td>
<td>۴/۸۷</td>
<td>۴/۴۷</td>
</tr>
<tr>
<td>مود دوم</td>
<td>۵/۰۰</td>
<td>۴/۴۹</td>
<td>۳/۴۷</td>
</tr>
<tr>
<td>مود اول</td>
<td>۶/۲۷</td>
<td>۴/۸۷</td>
<td>۴/۴۷</td>
</tr>
<tr>
<td>آزمایش</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تحلیل با یاپه ثابت و E استاتیک</td>
<td>۵/۱۲</td>
<td>۴/۴۹</td>
<td>۳/۴۷</td>
</tr>
<tr>
<td>تحلیل با یاپه ثابت و E دینامیک</td>
<td>۴/۸۷</td>
<td>۴/۴۹</td>
<td>۳/۴۷</td>
</tr>
<tr>
<td>درصد اختلاف</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۶- مقایسه فرکانسهای طبیعی در حالت مخزن پر با استفاده از مدل‌های هاوانر و هارون (پایه ثابت)

<table>
<thead>
<tr>
<th></th>
<th>مود پیچش‌ی</th>
<th>مود جانبی</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td>مود سوم</td>
<td>۶/۲۷</td>
<td>۴/۸۷</td>
<td>۴/۴۷</td>
</tr>
<tr>
<td>مود دوم</td>
<td>۵/۰۰</td>
<td>۴/۴۹</td>
<td>۳/۴۷</td>
</tr>
<tr>
<td>مود اول</td>
<td>۶/۲۷</td>
<td>۴/۸۷</td>
<td>۴/۴۷</td>
</tr>
<tr>
<td>هاوانر</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هارون</td>
<td>۴/۸۷</td>
<td>۴/۴۹</td>
<td>۳/۴۷</td>
</tr>
<tr>
<td>درصد اختلاف</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

از آزمایش چهارم که مربوط به ثبت ارتعاشات میدان آزاد است، می‌توان نتیجه گرفت که ارتعاشات خفیف زمین از نوع اشتکش خالص ۲‌مستند‌تر با تحلیل فوری این ناحیه به‌روز می‌شود از فرکانس‌های که یک‌یک خاصی در آنها قابل مشاهده نیست، از ریز‌ترین حزکت‌ها پایین در فرکانس‌های سازه شکستگی دو طرفی زمین، به فاصله‌ای مشخص، می‌توان سرعت موج را تعیین کرد. به علت انتشار قسمت اعظم این موج به صورت عرضی می‌توان این سرعت را تقریباً معادل سرعت موج بررسی دانست که پارامتر مهمی در طبقه‌بندی خاکها از نظر تعیین میزان اندکش خاک و سازه است. در محل این مخزن سرعت موج بررسی حدود ۷۵۵ متر بر ثانیه از اندکش‌های گیاهی است که با مقادیر ممارکت اندکش‌های گیاه سه‌ستونی دارد.

برای مقایسه شکل‌های مدل ریاضی با آزمایش، مقادیر استاتیکی با کفک تخت به دست آمده اند در صورتی که در مخزن مورد آزمایش کف مخزن مخروطی شکل‌کننده آن مسئله توجه بروز درصدی خطأ در این مدل می‌شود.

برای بررسی رفتار مهارنده‌ها و انتقالات، از مقایسه مدل ریاضی و آزمایش کمک‌گزینه شده است. بدین منظور مدل ریاضی که در مورد عامل خالی بدون مهارنده‌های کششی تحلیل شد و در نتیجه آن مشخص شد که وجود این مهارنده‌ها در آزمایش سختی سیستم مؤثر است. جون بودن آنها فرکانسهای مدل ریاضی تفاوت نسبتاً بی‌زیادی با نتایج آزمایش داشتند. در مورد عملکرد تیره‌انی افقی و انتقال آنها بارد توجه کرده که رفتار انتقال آنها بیشتر توده‌ی دوم به حال انتقال صلب است، زیرا مدل ریاضی، یک با یا فرض انتقال مفصل توده‌ب‌ه به سمتون تحلیل شد و لی مقدار فرکانسهای به دست آمده با نتایج آزمایش سازگار نبود.
دامنه مود در گروه‌های متغیر با محل نصب حس‌کننده‌ها از روی قابل‌های خروجی به دست آمده در حالات مختلف به هم مقایسه شده‌اند. در این مقایسه، جایگاه‌های زاژ بالا یا یکی در نظر گرفته شده است. شکل مودهای حاصل از آزمایش با شکل مودهای تحلیلی توان مناسبی [20] را نشان می‌دهد که نتایج جهت استنتاج می‌شود:
- شکل مودها در حالات مختلف با هم تواقف خوبی دارند و
- دامنه مود مربوط به حالت مخزن پر گر در حالت خالی و نیمه پر است.

شکل مود اول جانای معروف زنگره تخمه‌سازی مخزن است.

مقایسه دانه شکل مود پیچشی در حالات یک مخزن پر با بی‌خالی، بی‌پریز و تریزیک به حالت تمام مخازن پر است که اثر خروجی از مرکز جرمی را در شکل مودهای پیچشی به وضوح نشان می‌دهد.

از مقدارها زاویه فاصله نقطه خروجی در یک فرکانس طیب، به همراه یافتن بنا نهایی بودن نقاط تقویتی پر به مدت تردپ که اختلاف دو نقطه که در یک جهت در حفرات ماده و در نقطه از خارج به کنکان گردد 180 درجه اصلی است. البته این حالت مربوط به ارتعاش آزاد یک سیستم خنی ایده آب و مخازن مستقیل و بدون میرایی است. نتایج آزمایش نشان می‌دهد که این اختلاف برای موارد ریز درجه و در مخازن بالاتر تا 360 درجه نیز وجود دارد، این اختلاف با توجه به وجود میرایی در سازه تا قابل توجه است.

از عوامل مهم مؤثر بر طیف خروجی، نوع خاک، شدت و طول زمان زاژه است. رفتار سیستم سازه‌ای در جذب نیروهای زاژه نیز از عوامل دیگری است که بر نیروهای خروجی تأثیر می‌گذارد.

از منظور پردازش فرکانس‌های مداخل ریزایی بر نیروهای وارد بر سازه تحت زاژه، یک سری تحلیل طیف پاسخ بر روی مدل‌ها تحلیل انجام شده است. برای این منظور، طبق تابعی مقایسه فرکانس‌ها مشاهده شده که در حالت خالی، مدل با خاک یا پاپ و مدل کنسانس دینامیکی حدود 4 درصد به موارد اول و دوم تفاوت دارد. در حالت مخزن پر بر علت تفرقه مدل اکثر با توجه به ماتریکس نرم‌کننده، با خاک نیمه مخزن به علت تفرقه مدل اکثر با توجه به ماتریکس نرم‌کننده، با خاک نیمه مخزن

za یا برخی از تحقیق‌ها و بر اساس محتویات سیستم جیران نکن. در این

1377

استنسل، سال ۱۷، شماره ۱، شهریور
پاسخ سازه به زلزله‌های مختلف به دو عامل اصلی بستگی دارد: خصوصیات دینامیکی سازه که تابعی از میزان آب موجود در مخازن است و خصوصیات نیروی زلزله نظر به نیروی محتمل فرکانسی و مدت‌به‌همین علت دیده می‌شود که در دو بخش از موارد با وجود که مخزنهای خالی است نیروهای بیشتری بر سیستم اثر می‌کنند که با توجه به این واقعیت در طراحی این نوع سیستم‌ها باید حالات خالی، نیمه پر و پر مورد تحلیل قرار گیرد.

6- نتیجه‌گیری و پیشنهادات

به منظور بررسی خصوصیات دینامیکی سازه با در نظر گرفتن اثرات چرخش پایه و مدار آزمایش‌های ارتعاشات محیطی بر روی یک مخزن آب و هواپیم انجام گرفته است. نتایج حاصل از مقایسه آزمایش و تحلیل به شرح زیر است:

الف- فرکانس تابعی حاصل از تحلیل با مفاد اندیزگیری شده در آزمایش تفاوت‌هایی دارد. از عوامل عملدهای مختلف بین نتایج آزمایش

شکل ۴- تغییرات نیروی برشی در ارتفاع سیستم در حالت مخزن خالی

شکل ۵- تغییرات نیروی برشی در ارتفاع سیستم در حالت مخزن پر

و تحلیل می‌توان به فرضیات مدل انتخابی اندکرش آب و مخزن، انعطاف‌پذیری فونداسیون و مدل کشسانی در نظر گرفته شده برای بین اشاره کرد. در مورد این سازه، استفاده از مدل مکانیک هاوسر اصلاح شده برای سیال، منجر به تخمین برای مود اول به میزان حدود ۹ درصد کمتر از نتایج آزمایش می‌شود. عدم اجابة چرخش پایه در مدل ریاضی نیز باعث می‌شود که فرکانس مود اول تحلیل حدود ۸ درصد بیش از نتایج آزمایش به دست آید. همچنین پیشنهاد شده است که پری منظور کردن اثرات پارکریزی دینامیکی، مدل کشسانی بین حاصله از رابطه ACI ۲۰ درصد افزایش یابد.

تأیید سایر عوامل سازه‌ای مانند اختلالات احتمالی، با نقشه‌های اجرای و رفتار اتصالات و غیره، حدود ۴ درصد در برای افزایش سختی سیستم محاسبه شده است.

ب- نتایج نشان می‌دهند که در حالت مخزن خالی، مدل با قابلیت چرخش پایه و مدل کشسانی دینامیکی با واقعیت توافق خوبی دارد. در حالت مخزن پر، مدل اندرکش آب و سازه باعث کاهش
شکل 7- اثر چرخشی پایه در زلزله طبس (در حالت مخزن پر) به حالت صلب است.

شکل 6- مقایسه تغییرات برخی سیستم در حالت پایه گرداند و انعطاف پذیر در مخزن خالی، تحت تأثیر زلزله طبس.

سختی سیستم می‌شود. این مسئله باعث افزایش فرکانس طبیعی حاصل از مدل می‌شود که به نوبه‌ای خود منجر به تغییر دست یابی به نیروهایه به دست آمده‌ای از طراحی طراحی خواهد شد. عدم توجه به این مطلب ممکن است به برخی از مقامات‌های منجر شود.

بدین جهت پیشنهاد می‌شود که در این حالت، پیش بینی صلب در نظر گرفته شود تا از تغییر در مدل سیاست‌های با افزایش سختی کن جهت کنید. این ترتیب مدلی به دست آمده جدید 5 درصد در مود سازه با فعالیت خواهد داشت.

ج- درصد اختلاف مدل و آزمایش در مود سیستم سپار زیاد می‌شود که علت آن می‌تواند تأثیر انرکش خاک و سازه و عدم کنات فر خشک و تخلیه کمکسازی در تغییرات مودهای بالاتر باشد.

از عوامل دیگر این اختلاف این است که مدل انرکش آب و مخزن تنها می‌تواند به شکل مود اول مواج به ارتعاش در آب و اثرات

مودهای مواج بالاتر را شامل نمی‌شود.

د- رفتار اتصالات در مهاری‌نداشته‌ای از مقایسه مدل و آزمایش قابل
شکل 9- اثر چرخشی پایه در طیف UBC (در حالت مخزن پر)

شکل 10- اثر چرخشی پایه در طیف UBC (در حالت مخزن خالی)

شکل 11- اثر چرخشی پایه در زلزله ناگان (در حالت مخزن پر)

شکل 12- اثر چرخشی پایه در زلزله ناگان (در حالت مخزن خالی)

