Analysis of Thin-Walled Structures Using Torsional-Bending Elements

H. Haji-Kazemi and M. Arab

Department of Civil Engineering, Ferdowsi University of Mashhad
Navy Force of Islamic Republic of Iran

ABSTRACT- In this paper a new element for analysis of thin-walled structures is presented, and the effects of secondary shear stresses on longitudinal displacements are examined. Since the Interpolation Functions are based on non-uniform torsional differential equations, the analysis of stiffness matrix is facilitated. Therefore, its ability to produce accurate results with the least number of elements is considerably improved. Furthermore, this element can be used in the analysis of all kinds of thin-walled, straight or curved beams with open or closed sections.
تفیایشک‌‌ها طولی ناشی از تابیدگی از معادله زیر محاسبه می‌شود [2]:

\[w(z, s) = - \omega(s) \theta'(z) \]

در معادله (1)، \(\theta'(z) \) تغییرات پیچش و \(a \) مختصات قطاعی است. این معادله برای محاسبه تغییرات شکل‌های طولی مقاطع جداران‌زک باز مناسب است، ولی برای مقاطعی که مقدار تنشپیچش یک‌پاک‌خواه روی مقاطع قابل ملاحظه است دقت مناسبی ندارد. ازین‌رو برای محاسبه تنش‌ها و تغییرات شکل‌های طولی در مقاطع جداران‌زک بسته و هم‌ساخته پیچش بیشتر است از نظریه پیچشکار [3] استفاده کنید.

در معادله (2)، \(\psi(z) \) تناوب تابیدگی است و \(a \) مختصات قطاعی است که برای معادله ولسوالی مشترک بسیار بیشتر محاسبه می‌شود و برای مقاطع با شیبی معادله (1) بوده ولی برای مقاطع بسته متفاوت است.

دراین مقاله یک جزء محدود تیری براساس نظریه نیسکوتو
معادله‌سازی شده و اثر نتشهای برشی ثانویه بی‌تغییرشکل‌های طولی

قرن خازن

در سال 1377 شهرویور
۱ - جزء تیری و لاسوف
دیفرانسیل پیچش مقاطع بسته به دست می آید استفاده می شود. در ادامه توان ت نشکل و ماتریس سختی جزء معادله سازی می شوند. جزء ماتریس سختی مربوط به درجات آزادی انتقالی و دورانی در سیستم از اکتابهای تحلیل می آید. اینجا فقط ماتریس سختی مربوط به درجات آزادی پیچشی و تاییدگی جزء آن را ارائه می شود.

۲ - معادله‌نوری جزء محدود
جذب تیری و لاسوف دارای دو گره است و هر گره دارای هفت درجه آزادی، شامل سه درجه آزادی انتقالی و سه درجه آزادی دورانی و یک درجه آزادی مربوط به تاییدگی مقطع است.

۲-۱ روابط تناسب - کرنش
با فرض اینکه مقطع عرضی جزء درجه دینامیک تغییرشکل نشان داده می شود می‌توان چنین روابطی یافت:

\[w(z, s) = \omega(s) \cdot \Psi(z) \]
\[v(z, s) = \varphi(s) \cdot \theta(z) \]

در جزء‌های مرحله‌ای از جزء محدود باید درجات آزادی انتقالی این جزء به محورهای مشخص مکانیکی جزء محدود بیان شوند. این درجه مرحله‌ای از جزء محدود به محورهای محلی با علامت‌های داده (\(x_1, x_2, x_3 \)) تابش داده می شود. درجات آزادی دیگر مربوط به تاییدگی مقطع است که با علامت‌های داده می شود. این‌ها باعث مصرف می‌شوند. می‌توان واقعیت جزء و علائم (\(x_1, x_2, x_3 \)) را مشخص است.

۳ - معادله‌های اجزای جزء محدود ارتباط بین تغییرات
با تغییرات محلی جزء، باید به تواناکاری کرنش چرخش با علامت‌های تغییرات مشخص می‌شود.

\[\omega(s) = \int_{s_1}^{s} (P_R \cdot \psi) \cdot ds \]

در معادله (5)، \(P_R \) ضخامت جداره و \(\psi \) رابط پیچشی است و برای
با توجه داشته که انرژی کرنشی محاسبه شده از معادله (9) مربوط به تغییر شکل‌های ماماس و طول جزء است و برای محاسبه انرژی کرنشی کل با توجه به اینکه منبعان که در این بخش مربوط به تنش بر روی مقطع (برای مقاطع سبسط)، G مدول بریش و A سطح محصول توسط خط میانی مقطع است. برای مقاطع جداناتاکی بار: صفر است، یا اینکه صفر بوده و در تغییر معادله (9) به معادله

\[r_B = \int s \ P_R \ ds \]

(6) تبدیل می‌شود:

\[\omega(s) = \int s \ P_R \ ds \]

(7) کرنشهای طولی و برتری با استفاده از معادله‌ها (3) و (4) یافته می‌شود:

\[\varepsilon(z) = - \frac{\partial \omega}{\partial z} = - \omega(z) \sqrt{ } (z) \]

(8) \[\gamma(z) = \frac{\partial \omega}{\partial s} + \frac{\partial \varepsilon}{\partial z} = \sqrt{ } (z) \]

(9)

با فرض اینکه رفتار مواد از قانون هیپوپرای کند، می‌توان نشانه‌ای طولی و برتری را با استفاده از معادله‌ها بدست آورد.

\[\sigma_0 = E \varepsilon(s) = - \varepsilon(s) \sqrt{ } (s) \]

(10) \[\tau(z) = G \gamma(z) = G \left(\frac{\sqrt{ } (s)}{t} \right) \]

(11) انرژی کرنشی ناشی از تغییر شکل‌های جزء پس از جایگزینی تنها و کرنشهای معادله‌ها (7) در معادله انرژی بدسیروت زیر

\[U_1 = \int \frac{1}{t} \ \left[\sqrt{ } \ (z) \right] (z) (z) + \left(\frac{\sqrt{ } (s)}{t} - P_R \right) (z) = - \int \frac{1}{t} \ \left[\sqrt{ } (z) \right] (z) + \left(\frac{\sqrt{ } (s)}{t} - P_R \right) (z) \]

(12)

\[\delta \Pi = \delta (U - V) = \]

(13)
اکنون معادله‌ی بین تابع تاییدگی \(\Psi(z) \) و \(\theta(z) \) نیازمندی‌های و بردار معادله دیفرانسیل به‌خیال در حالت همگن (حالت 0) تعیین می‌شود. با استفاده از حساب تغییرات و سیستم انتگرال‌گیری جزو به‌جهت جهت (13) به‌صورت زیر نوشته می‌شود:

\[
\delta \Pi_p = - \int_0^l \left\{ \left[G(p + j \beta) \right] \theta(z) - [E_{10}] \Psi(z) \right\} dz + \left[G(p + j \beta) \Pi(z) - \theta(z) \right] \delta \theta(z) \bigg| _0^l
\]

\[+ [E_{10}] \Psi(z) \delta \Psi(z) \bigg| _0^l - [G(p - j \beta)] \Psi(z) \delta \theta(z) \bigg| _0^l - \delta \nu = 0. \tag{12}\]

\[\beta(z) = G(p + j \beta) \theta(z) - G(p - j \beta) \Pi(z) = 0. \tag{15}\]

\[E_{10} \Psi(z) + G(p - j \beta) \left(\theta'(z) - \Psi(z) \right) = 0. \tag{16}\]

\[\psi(z) \text{ از مشتق‌گیری معادله (15) نسبت به } z \text{ و جایگزینی (16) در معادله (14) مقدار (19) به‌صورت زیر خواهد شد:} \]

\[\psi(z) = \theta'(z) + \alpha \theta''(z), \quad \alpha = \frac{E_{10} (p - j \beta)}{G(p - j \beta)} \tag{17}\]

\[
\theta(z) = [P_0][G]^{-1} \{ \phi_n \} = [N_0] \{ \phi_n \}
\]

\[\Psi(z) = [P_0][G]^{-1} \{ \phi_n \} = [N_0] \{ \phi_n \} \tag{18}\]

\[\theta(z) = [P_0] \{ a \} \tag{18}\]

\[\psi(z) \text{ از مشتق‌گیری معادله (15) نسبت به } z \text{ و جایگزینی (16) در معادله (14) مقدار (19) به‌صورت زیر خواهد شد:} \]

\[
G(p + j \beta) \Pi(z) - G(p - j \beta) \Pi(z) = 0. \tag{15}\]

\[E_{10} \Psi(z) + G(p - j \beta) \left(\theta'(z) - \Psi(z) \right) = 0. \tag{16}\]

\[
\psi(z) = \theta'(z) + \alpha \theta''(z), \quad \alpha = \frac{E_{10} (p - j \beta)}{G(p - j \beta)} \tag{17}\]

\[\theta(z) = [P_0][G]^{-1} \{ \phi_n \} = [N_0] \{ \phi_n \}
\]

\[\Psi(z) = [P_0][G]^{-1} \{ \phi_n \} = [N_0] \{ \phi_n \} \tag{18}\]

\[\theta(z) = [P_0] \{ a \} \tag{18}\]
جذب محدود را به دست آورده باترکیب معادله‌های (۸) و (۹) زوج
له و نش محروری نیز محاسبه می‌شوند. یک‌نشه برای در روش
مقطع، شامل دو بخش انت. بخش اول ناشی از یکش مربوط به تنش
برای سیستم است. که به ترتیب مقدار این نوع شکن‌زده می‌شود و بخش دیگر
نش برای مربوط به نایدیگی مقدار است. نش برای مربوط به
نایدیگی مقرط ناشی از پیچش گیردار است که به ترتیب مقدار
بیشک زیر
قابل محاسبه است:
\[\tau_{zs}^{sv} = G(\psi) \Psi(z) - P_{R} \Psi(z) + P_{R} \theta(z) \] (۲۶)
در معادله (۲۶)، (ز) به استفاده از ماتریس کرنش معادله (۲۲)
محاسبه می شود. نش برای مربوط به نایدیگی مقدار تعادل
به دست می‌آید:
\[\frac{\partial \tau_{zs}^{sv}}{\partial z} + \frac{\partial \sigma_{zs}}{\partial z} = 0 \] (۷)
اندیس بالایی (و) در معادله (۷۷) در بر فرض بشانش و سپس انگرالگیری از معادله
به دست آمده معادله (۸) احیا خواهد شد:
\[\tau_{zs} - \tau_{zs}^{sv} = -E \frac{\partial \psi}{\partial z}(z) S_{w} \] (۷۸)
در معادله (۷۸) قابل محاسبه است. نش برای (ز) از معادله (۷۷) می روند با استفاده از ناگی ناشی از نشتهای برای به دست
آورده.
\[M(z) = \int_A P_R G(z) \Psi(z) - P_R \Psi(z) + P_R \theta(z) dA \] (۷۹)
در این معادله فقط نش برای (ز) موجه اکثر که پس از محاسبه آن
نشتهای برای ناشی از نایدیگی مقطع نیز از معادله (۸) به دست می‌آید.

۲- بازه‌گر مهاد

بازه‌گر مهاد با استفاده از معادله (۲۴) و توابع شکل معادله
به دست می‌آید:

برای محاسبه مانیژی نیز جزء، پس از مشتقگیری از معادله‌های
(۲۲) و جایگذاری در معادله (۱۵) و سپس در معادله (۱۳) تنیز زیر
حاضر خواهد شد:
\[\delta \phi_n^N = \int [GJ[B_0]^T[B_0] + E_{LW}[B_0]^T[B_0] + G(I_p - I_B) \]
\[[B_0]^T[B_0] || \phi_n ||^2 m(z)[N_0]^T dz - \delta \phi_n^N]^T \]
\[M(\Psi) M_B(\Psi) M(L) M_B(L)] = 0 \] (۳۳)
برای ساده‌سازی معادله بالا، از معادله‌های زیر کمک گرفته می‌شود.

\[\{ K_{Q_l} \} = \int L [B_0]^T[B_0] dz \]
\[\{ K_{Q_\Psi} \} = \int L [B_0]^T[B_0] dz \]
\[\{ K_{Q_\psi} \} = \int L [B_0]^T[B_0] dz \]
\[\{ F_\psi \} = \int m(z)[N_0]^T dz \]
\[\{ F_m \} = \{ M(\Psi) M_B(\Psi) M(L) M_B(L) \} \] (۳۴)
با جایگزینی مقادیر بالا در معادله (۲۳)، معادله (۲۳) به دست می‌آید:
\[\{ K_0,0 \} = \{ F_0 \} + \{ F_m \} \] (۳۵)
در معادله‌های بالا، بردار بارهای مهاد معادل {F_0} بردار
بارهای مشرک درکره‌ها، {K_0} ماتریس سختی پیچش آزاد و
{K_\psi} ماتریس سختی پیچش گیردار و {K_\psi} سختی مربوط به تنش‌های برای ناشی از تغییر شکل‌های نایدیگی
مقطع است. همان طور که پیش ازین نیز اشاره داده ماتریس سختی
به دست آمده استفاده برای تحلیل مقطع‌کاروت باز، پسته و نیمه
بسته است. برای مقاطع‌کاروت باز، J_B = 0

مجهد در پیوست ارائه شده است.

۲- ۲-۲- بازه‌گر مهاد

بازه‌گر مهاد با استفاده از معادله (۲۴) و توابع شکل معادله
به دست می‌آید:
جدول ۱- مقایسه تحلیل با روش ویاسوف و روش پیشنهادی

<table>
<thead>
<tr>
<th>تاییدگی</th>
<th>زاویه چرخش</th>
<th>تعداد جزء</th>
<th>روش تحلیل</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۰۴۲۸۹</td>
<td>۰/۰۱۰۲۷۶</td>
<td>۱/۲۱۷۷۵</td>
<td>روش پیشنهادی</td>
</tr>
<tr>
<td>۰/۰۰۴۲۸۷</td>
<td>۰/۰۱۰۲۵۹</td>
<td>۱/۲۱۷۷۷</td>
<td>روش ویاسوف</td>
</tr>
<tr>
<td>۰/۰۰۴۸</td>
<td>۰/۰۱۰۲۵۰</td>
<td>۱/۲۱۷۱۰</td>
<td>روش پیشنهادی</td>
</tr>
<tr>
<td>۰/۰۰۴۹</td>
<td>۰/۰۱۰۲۴۶</td>
<td>۱/۲۱۷۱۹</td>
<td>روش ویاسوف</td>
</tr>
</tbody>
</table>

\[\{F\} = \int L \cdot m(z) [N_0]^T \, dz \] \hspace{1cm} (۳۰)

اگر در معادله بالا، \[[N_0] \] از معادله (۲۲) جایگذاری کنیم، شده، پاره‌ای گرمی معادل به‌صورت زیر خواهد شد:

\[\{F\} = (M(z) , M_B(z) , M(z) , M_B(z)) \] \hspace{1cm} (۳۱)

\[I_o = ۱۹۰۰ \text{ cm}^4 \] \hspace{1cm} \[I_s = ۷۵/۵ \text{ cm}^4 \] \hspace{1cm} \[I_p = I_{xc} + I_{yc} = ۷۵/۵ \text{ cm}^4 \]

نتایج تحلیل با استفاده از روش ویاسوف و روش پیشنهادی در جدول (۱) درج شده است.

اعداد منتدرج در جدول (۱) نشان می‌دهند که اختلاف پیشنهادات این دو روش ویاسوف و روش پیشنهادی وجود دارد. از این رو می‌توان چنین برداشت کرد که تنش‌های پرشی ثانویه در مقاطع باز

۳- مثال

در مثال‌های زیر ابعاد عضای مشابه کار پیشنهایان درنظر گرفته شده و

صفر ب‌هی‌آی منظور مقایسه انتخاب شده‌اند

۷۷
جدول 2- پارامترهای سازه‌ای هسته‌پای مقطع متغیر

<table>
<thead>
<tr>
<th>پارامترهای نیروی خارجی</th>
<th>تراز</th>
<th>تراز</th>
<th>واحد</th>
<th>پارامترهای هندسی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55/15m</td>
<td>53/24m</td>
<td>19/05 m</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>3/26</td>
<td>3/26</td>
<td>0/61</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>3/26</td>
<td>3/26</td>
<td>0/61</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>5/855</td>
<td>1/466</td>
<td>2/93</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>5/855</td>
<td>1/466</td>
<td>2/93</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>30/0/22</td>
<td>30/0/22</td>
<td>60/244</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>161/93</td>
<td>161/93</td>
<td>275/83</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>39/1/10.7</td>
<td>9/1/10.7</td>
<td>19/8210.7</td>
<td>m</td>
</tr>
</tbody>
</table>

شکل 3- پلان ساختمان و نمای هسته برزی

آن در ارتفاع تغییر می‌کند، تحمیل می‌شود. این هسته در تراز تیزی اتصالی بسته شده است. ضخامت این هسته در طبقه اول 61/0 متر و در بقیه طبقات 30/0 متر است. ضخامت تیزی اتصالی برای 2/575 متر و عرض آن برای مساحت این اتصال 1 برای 125 m^2 است. مدلهای استیسی و kN/m^2 و 27/610.8 kN/m^2 و 6/12 هستند. پارامترهای سازه‌ای این هسته در جدول (2) نوشته شده است.

عملای دربردارنده، بنابراین صرف نظر کردن از تغییر شکل‌های برزی در روی وپلگرف‌های برای مقاطع جداران‌های باز قابل توجه است.

3- هسته برزی با مقطع متغیر

یک ساختمان به ارتفاع 37/15 متر شامل 15 طبقه 60/13 متری، مطابق پلان شکل (2)، تحت فشار گسترده باد به شدت 1/2 kN/m^2 قرار گرفته است. یک هسته ناشی از فشار باد و پیچش در این ساختمان توسط یک هسته آسانسور با مقطع بزرگ سطح مقطع استقلال، سال 17؛ شماره 1، شهریور 1377

78
شکل 4 - چرخش همست برکش در تراز طبقات

شکل 5 - زوج لنگر در تراز طبقات

ابن هسته برکش با استفاده از روش تأثیرهای محدود (کر) و جزء پیشنهادی تحلیل شده است که نتایج تحلیل در شکل‌های (2) و (5) با یکدیگر مقایسه شده‌اند.

نتیجه‌گیری

کنش‌های خشکی سازه‌های جدارانژ را می‌توان مانند یک طره قائم نظریه‌نهاد کرد. کنش‌های تاییدی سازه‌های جدارانژ را با مقطع پیکن‌خی و تحت آجر پیچش تیز توسط معادله‌سازی و حل معادلات
پرشی نانویه در مقاطع جداری‌ازک بسته و نیمه بسته مینه بین ۱۰ درصد تا ۲۰ درصد خطا خواهد داشت، ولی این خطای در مقاطع باز تردیدک‌ به صفر است. همچنین سر نظر به از تغییر شکل‌های برخی سیب افراش زوج نیز در تکه‌گاه و کاهش تاییدگی در انتها و سه‌ی می‌شود. جزء محدود پیشنهادی ضمن سهولت و تسریع در تحلیل رفتاری تیرهای جداری‌ازک در مقایسه با روش‌های دیگر نتایج دقیق‌تری ارائه می‌دهد.

مراجع

پیوست

ماتریس ساخت جزء حدود پیشنهادی

ماتریس ساخت جزء حدود پیشنهادی از سه بخش تشکیل شده است. بخش اول شامل اثرات پیچش خالص، بخش دوم اثرات تابیدگی و بخش سوم اثر تنش‌های برخ ثانویه روی تغییر شکل‌های تابیدگی بوده و به صورت زیر است.

$$[k_0] = [k_{0_1}] + [k_{0_2}] + [k_{0_3}]$$

$$[K_0] = [A_1][A_2] - [A_1][A_2]$$

$$[K_0] = [GJS_1 + EI_{01} A_1 + G(l_p - J_B)C_1]$$

$$K = [K_1] + [K_{0_1}] + [K_{0_2}] + [K_{0_3}]$$

$$S_1 = \frac{1}{\Delta p} \left(y_{e} + H_{y}(a + b - d) - \lambda \alpha_{e} H_{y}(a - b - d) - \lambda \alpha_{b} H_{y}(b - a - d) \right)$$

$$S_2 = \frac{1}{\Delta p} \left(y_{e} + H_{y}(a + b - d)(H(b - d) - c + s + 1) - \lambda \alpha_{e} H_{y}(H_{a} + b - d) \right)$$

استقلال، سال 17، شماره 1، شهریور 1377
\[
S_2 = \frac{1}{\Delta_p} \left(y e^{-H y} (H (b + d) - c s + 1) a e^{H y} (a + b - d) + \gamma (c) + b (c) + a (d) + H y (a + b - d) + b (c)
\right)
\]

\[
S_2 = \frac{1}{\Delta_p} \left(y e^{-H y} (H (b + d) - c s + 1) a e^{H y} (a + b - d) + \gamma (c) + b (c) + a (d) + H y (a + b - d) + b (c)
\right)
\]

\[
A_1 = \frac{1}{\Lambda_p} \left(y e^{-H y} (a + b - d) - y e^{H y} (a - b + d) + \gamma a (b - d) + a (c - d) + H y (a + b - d) + b (c) - a (d - c) + b (c) + a (d) + H y (a + b - d) + b (c)
\right)
\]

\[
A_2 = \frac{1}{\Lambda_p} \left(y e^{-H y} (a + b - d) - y e^{H y} (a - b + d) + \gamma a (b - d) + a (c - d) + H y (a + b - d) + b (c) - a (d - c) + b (c) + a (d) + H y (a + b - d) + b (c)
\right)
\]

\[
C_1 = \frac{1}{\Lambda_p} \left(e^{-H y} (a - d) + e^{H y} (a - d) + \gamma (a + d) + H y (a + b - d) + b (c) - a (d - c) + b (c) + a (d) + H y (a + b - d) + b (c)
\right)
\]

\[
C_2 = \frac{1}{\Lambda_p} \left(e^{-H y} (a - d) + e^{H y} (a - d) + \gamma (a + d) + H y (a + b - d) + b (c) - a (d - c) + b (c) + a (d) + H y (a + b - d) + b (c)
\right)
\]

\[
C_3 = \frac{1}{\Lambda_p} \left(e^{-H y} (a - d) + e^{H y} (a - d) + \gamma (a + d) + H y (a + b - d) + b (c) - a (d - c) + b (c) + a (d) + H y (a + b - d) + b (c)
\right)
\]

\[
C_4 = \frac{1}{\Lambda_p} \left(e^{-H y} (a - d) + e^{H y} (a - d) + \gamma (a + d) + H y (a + b - d) + b (c) - a (d - c) + b (c) + a (d) + H y (a + b - d) + b (c)
\right)
\]
\[\begin{align*}
\alpha & = (\gamma + \alpha \gamma^T), \quad p = (H \alpha b + a(c-1) + bs + d(c-1)) \\
c & = \cosh(\gamma H), \quad s = \sinh(\gamma H), \quad b = sa, \quad d = ca
\end{align*}\]

\[\begin{align*}
M_{z1} & = M_{z1} = m(z) \frac{H}{\gamma} \\
M_B(z) & = \frac{1}{\gamma p} \left\{ e^{-H_H'(H \alpha - c + s + 1)} - e^{H_H'} (H \alpha - c - s - 1) \right\} + (H_H'(a(c+1) - \gamma H s + \gamma(c-1)) \\
M_B(z)_{\gamma} & = -M_B(z)
\end{align*}\]