استخراج اکسید وانادیم از خاکستر سوخت نیروگاه

مهدی حسن عباسی و محسن صفر نورا
دانشگاه مهندسی مواد، دانشگاه صنعتی اصفهان
(درباره مقاله: ۱۳۷۵/۷/۲۴ - درباره نسخه نهایی: ۱۳۷۶/۴/۲۵)

چکیده - سوخت سنگین یا مازوت که در نیروگاه‌های حرارتی استفاده می‌شود، حاوی ناخالصی‌های فلزی نظیر وانادیم است. پس از احتراق سوخت، این فلز به صورت اکسید در خاکستر باقی می‌ماند. در این تحقیق با به کارگیری یک فرآیند مركب پیرو هیدرومکالوروزی و یک فرآیند هیدرومکالوروزی استخراج اکسید وانادیم از خاکستر مورد بررسی قرار گرفته است. در فرآیند پیرو هید ромکالوروزی ابتدا خاکستر مورد تشویق نمکی یا ذوب قلیایی قرار گرفت. سپس محصول به دست آمده در آب حل شده و ترکیبات وانادیم روابط داده شد و تکثیر گردید. در فرآیند هیدرومکالوروزی خاکستر در هیدرومکالوروزی حل شد. سپس وانادیم به صورت اکسید از محلول بازیابی شد. در دو فرآیند پردازشی مؤثر بر استخراج مورد بررسی قرار گرفتند و شرایط بهینه برای دستیابی به حداکثر میزان بازیابی تعمیم و ارائه شده است.

Extraction of Vanadium Oxide from Boiler Fuel Ash

M. H. Abbasi and M. Safarnoorallah
Department of Materials Engineering, Isfahan University of Technology

ABSTRACT- Fuel oil used in power plants contain metal impurities like Vanadium. After combustion, this metal remains in boiler fuel ash in the form of oxide. In this research, extraction of Vanadium oxide from fuel ash has been investigated. Two processes were used for this purpose. A pyro- hydrometallurgy and a hydrometallurgy process. In the pyro-hydrometallurgy process, using sodium carbonate, salt roasting of the ash followed by water leaching was carried out. Vanadium was then precipitated as ammonium vanadates which on heating decomposed and vanadium pentoxide (V₂O₅) was obtained. In the hydrometallurgy process, the ash was dissolved in sodium hydroxide. Vanadum oxide was then recovered from solution. Effects of various parameters in each case were investigated and the optimum condition for maximum recovery was determined.
تحقيقات زیادی در مورد استخراج وانادیم توسط محققان مختلف صورت گرفته که عمدهاً مربوط به کانالهای وانادیم و سایر کانالهای وانادیم‌دار است \([20]\). در این مقاله نتایج تحقیقات انجام شده در مورد استخراج وانادیم از خاکستر سوخت نیروگاهی اسلام آباد اصفهان با استفاده از دو فرآیند پیرو-هیدرومتجوزی شامل ذوب قلیایی و حل کردن و هیدرومتجوزی شامل حل کردن در سوئرز آراش شده است. محصول نهایی در هر دو مورد به صورت اکسید بوده است. تأثیر پارامترهای مورف بر قیمت و اهمیت وانادیم در هر دو مورد تشریح شده و مورد بحث قرار گرفته است.

۲- روش تحقیق

نازک‌تری مورد استفاده در این تحقیقات از نیروگاه اسلام آباد اصفهان این مورد است. تأمین شد. تحلیل شیمیایی این خاکستر در جدول ۲ آمده است. هر مقدار گوشه که باید شکل، برای استخراج وانادیم از این خاکستر دو فرآیند استفاده شده که این بخش به تفکیک تشریح شده است.

۲-۱ فرآیند پیرو-هیدرومتجوزی

برای استخراج وانادیم با استفاده از این فرآیند مربوط به این باتلاق با استفاده از کربنات مورد شویش نمک با ذوب قلیایی ۱-قاره گرفت. نمک ذوب قلیایی نخستین بار تیمکلیکر \([2]\) در مورد کانالهای وانادیم به کار گرفته و تئوری شد. با ذوب قلیایی توسط کربنات سدیم و وانادیم موجود در خاکستر به ترکیب محلول در آب تبدیل می‌شود. واکنش شیمیایی ذوب قلیایی را می‌توان به صورت واکنش \((1)\) نشان داد.

\[
\text{Na}_2\text{CO}_3 + V_2\text{O}_5 + O_2 \rightarrow 2\text{NaVO}_4 + \text{CO}_2
\]
جدول 1- ترکب شیمیایی چند نوع سوخت (براساس تحلیل بالایشگاه اصفهان)

<table>
<thead>
<tr>
<th>نوع سوخت/عنصر</th>
<th>نفت کوره 2000</th>
<th>نفت کوره 1100</th>
<th>نفت گاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>کریز (درصد)</td>
<td>8/5</td>
<td>85-86</td>
<td>85/5</td>
</tr>
<tr>
<td>هیدروژن (درصد)</td>
<td>13/3</td>
<td>12</td>
<td>1/1</td>
</tr>
<tr>
<td>اکسیژن (درصد)</td>
<td>2/3</td>
<td>2-3</td>
<td>1/5</td>
</tr>
<tr>
<td>گوگرد (درصد)</td>
<td>0/2</td>
<td>0/5</td>
<td>0/10</td>
</tr>
<tr>
<td>آب (درصد)</td>
<td>0/1</td>
<td>0/5</td>
<td>0/5</td>
</tr>
<tr>
<td>نادرد</td>
<td>0/1</td>
<td>0/5</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

توضیحات:

- تشکیل شده متانولات آمونیوم است واکنش شیمیایی تکلیس را
 می‌توان به صورت واکنش (2) نشان داد.

\[
2\text{NaN}_3 + \text{VO}_2^+ \rightarrow \text{V}_2\text{O}_5 + 2\text{Na}_2\text{H}_2\text{O}
\]

- برای تحلیل فازی رسوبات و محصول تکلیس از روش تفکیه اشعه استفاده شد. میزان استخراج با بازیابی با داشتن میزان وانادیم در رسوب تکلیس شده و خاکستر اولیه محاسبه شد.

- در این فرآیند ابتدا خاکستر در هیدروکسید نیترات (NaOH) حل 3
 و تأثیر مایع سواد، غلظت سود و زمین حلق شدن بر میزان انحلال
 بررسی شد. آزمایش‌های لازم برای دسته‌ها 22 تا 90 درجه
 سانتیگراد، غلظت 3 تا 15 مول در لیتر و زمین حلق شدن از 6 تا 15 دقیقه
 داشت. این در مجموعات از مخلوط آبی رخ داد. برای رسوب داد و اندازه‌گیری از مخلوط آبی
 میزان این فاز 24 درجه سانتیگراد تکلیس شود.

- از نظر تحلیل سلول‌ریزی در حلال 0.2 مولی از PH
 ترکیب آنزیم‌های سلول‌ریزی و در حلال PH
 با انرژی کلروفیل‌های وانادیم به صورت رسوب درآمد و از
 پتیه مخلوط جدای خشک داد. این رسوب نهایی در دمای
 200 درجه سانتیگراد تکلیس شد. از نتایج وانادیم اصلی

- استقلال، سال 17، شماره 1، شهریور 1377
جدول ۲ - تحلیل شیمیایی خاک‌ترسی سوخت نیروگاه اسلام آباد اصفهان

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>درصد</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO_{2}</td>
<td>9/95</td>
<td>1</td>
</tr>
<tr>
<td>CO_{2}</td>
<td>ندارد</td>
<td>2</td>
</tr>
<tr>
<td>کلر</td>
<td>ندارد</td>
<td>3</td>
</tr>
<tr>
<td>(Na_{2}O) اسیدی (به صورت</td>
<td>4/5</td>
<td>4</td>
</tr>
<tr>
<td>(K_{2}O) پتاسیم (به صورت</td>
<td>0/09</td>
<td>5</td>
</tr>
<tr>
<td>لیتم</td>
<td>0/002</td>
<td>6</td>
</tr>
<tr>
<td>P_{2}O_{5}</td>
<td>0/003</td>
<td>7</td>
</tr>
<tr>
<td>آلومینیم</td>
<td>ندارد</td>
<td>8</td>
</tr>
<tr>
<td>کلسیم</td>
<td>0/07</td>
<td>9</td>
</tr>
<tr>
<td>کابلت</td>
<td>0/05</td>
<td>10</td>
</tr>
<tr>
<td>مس</td>
<td>0/09</td>
<td>11</td>
</tr>
<tr>
<td>واتانیم (به صورت</td>
<td>72/3</td>
<td>12</td>
</tr>
<tr>
<td>(V_{2}O_{5}) آهن (به صورت</td>
<td>5/3</td>
<td>13</td>
</tr>
<tr>
<td>رژی</td>
<td>0/05</td>
<td>14</td>
</tr>
<tr>
<td>Niکل (به صورت</td>
<td>0/06</td>
<td>15</td>
</tr>
<tr>
<td>منگنز</td>
<td>0/05</td>
<td>16</td>
</tr>
<tr>
<td>مسیم</td>
<td>0/16</td>
<td>17</td>
</tr>
<tr>
<td>کروم</td>
<td>0/33</td>
<td>18</td>
</tr>
</tbody>
</table>

به جامدی بود. تأثیر دمای ذوب قلیایی در شکل ۱ نشان داته داده است. نظر به اینکه مرکز استخراج در دمای ۸۰۰°C ناچیز به جامدی بود. حاصل دمای حلالیتی یا ژری به نشان ۸۰۰°C نشان داده شد. شکل ۱ درصد استخراج اکسیداتنیم را در دمای مختلف و در مقایسه مختلف کربن‌های سدیم‌دار می‌باشد. نشان می‌دهد. با توجه به شکل مشخص می‌شود که در دمای ۸۰۰°C با مصرف کربن‌های سدیم می‌باشد. ۶۰ درصد میزان ۶۰ درصد میزان بر نیاز استخراج مرکزی می‌تواند به حدود ۹۰ درصد استخراج اکسیداتنیم رسید. جنابی جهانی، میزان کربن‌های سدیم‌دار دمایه، دمای آلیه یا پی بوده استخراج کاهش یافته. علی این‌ها اوریخت فازهایی نظیر پیرو بافتات در (Na_{2}V_{2}O_{5}) اسیدی که حلالیت کمتری در آب دارند. این نمونه‌های میزان می‌شود که در دمای تغییر با ذوب قلیایی ۱۰۰۰°C با ۲۵ درصد کربن‌های سدیم میزان بر نیاز است. نتایج و بحث

۳-۱ فرآیند پرو - هیدرو متالورژی
پارامترهای مؤثر بر دمای استخراج واتانیم با استفاده از فرآیند ذوب قلیایی - حل کردن که مورد پرسر قرار گرفت، دمای ذوب قلیایی، زمان، میزان کربن‌های سدیم‌دار دمای آب و نسبت آب...
شکل 1 - تأثیر دمای تنش یابی بر میزان یازیابی و اندازه درصدسازی

شکل 2 - تأثیر زمان تنش یابی بر میزان یازیابی و اندازه درصدسازی

مربوط به شکل 2، زمان دو ساعت انتحاب شده است. همان‌گونه که این شکل نشان می‌دهد، در دمای 800 درصد کرتونر، سدیم و در دمای 1000 با مصرف 25 نان درصد کرتونر، حداکثر استخراج به دست می‌آید.

مرحله بعد از ذوب قلیایی، حل کردن محصول در آب است.

دما آب و نسبت آب به جامدی از پارامترهای مؤثر در این مرحله‌اند. شکل 2 نشان می‌دهد که در این شکل به دست می‌آید که زمان بین دو بازشده و دمای کرتونر، حداکثر استخراج می‌باشد. در دمای 800 درصد کرتونر، استخراج جدایی بین دست داده است.

همان‌طور که دیده می‌شود، در هر دو درصد کرتونر پس از حدود 2 ساعت می‌توان به حداکثر استخراج دست داشت و این کرتونر می‌باشد.

شکل 1 - تأثیر دمای تنش یابی بر میزان یازیابی و اندازه درصدسازی

شکل 2 - تأثیر زمان تنش یابی بر میزان یازیابی و اندازه درصدسازی

استخراج میزان یازیابی و اندازه درصدسازی است. برای مثال با مصرف کرتونر سدیم به میزان 60 درصد کرتونر، بر خلاف درصد استخراج حداکثر میزان اکسوپتافانامید 60 درصد است. شکل 2 نشان می‌دهد که تأثیر زمان تنش یابی می‌باشد. در دمای 800 با مصرف 25 نان درصد کرتونر، حداکثر استخراج پس از حدود 2 ساعت، به دست می‌آید.

می‌شود به دیده می‌شود، که در هر دو درصد کرتونر پس از حدود 2 ساعت، استخراج 90 درصد امکان‌پذیر است و بازشده بر دصرد کرتونر در این دما تأثیری بر میزان یازیابی و اندازه دارد. شکل 2 نشان می‌دهد که درصد کرتونر سدیم مصرفی میزان درصد استخراج کرتونر را نشان می‌دهد. کرتونر سدیم به دلیل مصرف سدیم که به دلیل کاهش نرخ ذوب کرتونرهای آورده می‌شود، به طور زیاد دچار تورم می‌شود. این امر باعث تورم و چربی ماشینهای محصولات به طایی و اکتشافات می‌گردد.

\[
\text{NH}_4\text{PO}_4 + 2\text{NH}_4\text{H}_2\text{O} + V\text{O}_4\text{O}_4 + 2\text{H}_2\text{O} \rightarrow 3\text{NH}_4\text{VO}_4 + 2\text{H}_2\text{O}
\]
سنگ نمایشگری گرمایی در شکل ۷ نشان داده شده است. همان طوری که دیده می‌شود در °C ۱۰۰ پس از زمان حذف در ساعت تکلیس کامل می‌شود و در دمای ۶۰۰ کمتر از تکلیس کامل امکانپذیر نیست. تحلیل نتایج محصول حاصل از تجربه نشان داد که این (XRD)X از روش ترکیبی اشتهار، V۶O۵، V۵O۴، V۴O۵، V۳O۴، V۲O۵، V۱O۴، V۰O۴۳، V۰O۴ محصول اکسیدهای وانادیم نظیر نیز حذف شده و طبق واکنش (۳) پانتاکسید وانادیم تولید می‌شود. تأثیر دما بر

\[\text{NH}_4\text{V}_4\text{O}_{8} + 2\text{V}_2\text{O}_5 + 7\text{NH}_3 + \text{H}_2\text{O} \]

۴۷۰ طبق واکنش (۲) در سه مرحله تجزیه محصول تجزیه گرمایی تری وانادیوم است. این واکنش با حذف شدن دیسوم آمونیاک در دمای °C ۴۰۰ کمک می‌شود. با ادامه تکلیس در دمای ۵۰۰ تا ۵۵۰ درجه سانتیگراد، آمونیاک باقی می‌ماند و حذف شده و طبق واکنش (۱) پنتاکسید وانادیم تولید می‌شود. تأثیر دما بر

استقلال، سال ۱۷، شماره ۱، شهریور ۱۳۷۷

۱۷۰
پنتاکسیدزاندانیم آن بود که تکلیس در هوا انجام شد. به عنوان خاصیت کاتالیز کننده، V_2O_5، آمونیاک اکسی‌سید شده و احیای V_2O_3 به V_2O_5 را به دنبال خواهد داشت. اکسیدهای دیگر نظر V_2O_3 و V_2O_5 مستند به در شیکه خود دارای نفس V_2O_3 و V_2O_5 اکسیژن شده‌اند. برای به دست آوردن اکسی‌سید خالص V_2O_5 با استقیمی تجزیه گرمایی رسوب در شرایط اکسید انجام شود. همچنین جریان دادن هوای مواد به انتقال اکسیدهای از سطح نیز می‌تواند از این مسئله تا حدی می‌تواند جلوگیری کرده در
نتیجه V_2O_5 تشکیل خالص به دست می‌آید.
شکل 10- تاثیر زمان انحلال بر میزان بازیابی وانادیم در غلظت‌های مختلف سود و دمای 25°С

شکل 9- تاثیر زمان انحلال بر میزان بازیابی وانادیم در غلظت‌های مختلف سود و دمای 5°С

شکل 11- تاثیر زمان انحلال بر میزان بازیابی وانادیم در غلظت‌های مختلف سود و دمای 90°С

شکل 12- تأثیر میزان صورتی بر بازیابی وانادیم در دماي V_4O_5 نسبت مولی NaOH به HCl است 25° С

غلظت 15 مول در لیتر میزان استخراج به 30 درصد نمی‌رسد در حالت که در دمای 90°С استخراج بیش از 90 درصد امکان‌پذیر است. نظر سیمیتکی حل شدن خاکستر در هیدروکسید اسید واکنش این‌ها از بین نمی‌آید و سیال K به شدت حل را طبق مدل هسته‌کاکمده در نظر گرفته، انجام واکنش مستلزم انجام مراحل زیر است.

1- انتقال حرارت به سطح ذرات

استقلال، سال 17، شماره 1، شهریور 1377
شکل 14- تغییرات تابع در دماهای مختلف

می توان نوشت

\[F(x) = K'(x)D_A \]

که در این معادله ثابت است که به صورت زیر تعیین می شود

\[K' = \frac{(\lambda / a)A_1}{(\delta x^2) \rho b} \]

از آنجا که پارامترهای \(x \) و \(a \) می توان مستقل از دما فرض کرد، لذا به صورت زیر در می آید.

\[F(x) = KD_A \]

حال با توجه به اینکه ضریب تفکیک حرارت در جامد را می توان به \(KD_A \) صورت معادله زیر داشت. لذا از رسم نگاریم \(D_A \) به صورت عکس دما می توان استرئی اکسیاپوپیون 7 نفوذ هیدروکسیسدیم در ذرات خاکستر را به دست آورد.

\[D_A = D_0 \exp \left(-\frac{E_a}{RT} \right) \]

شکل 13- تأثیر میزان سود مصرفی بر پیازیایی وانادیم در دمای \(V_2O_5 \) به NaOH نسبت مولی \(b/a \) در \(90^\circ C \)

سرعت را دانسته باشید، آن مرحله کنترل دارد. سرعت یک بالایی در قطعات تحت بررسی ذرات کنترل کننده سرعت بدین میانگین تولید می شود. بنابراین چنانچه تفکیک حرارت در لایه سطحی ذرات کنترل کننده سرعت باشد، معادله زیر برقرار است.

\[\frac{1}{4} \left(1 - x \right)^{3/4} = \frac{a \, \pi \, d \, \rho \, b}{m \, a \, A \, D} \]

که در این معادله \(x \) میزان انحلال پس از زمان \(a \) نسبت مولی \(b/a \) عامل حل کننده به عامل حل شونده، \(D_A \) ضریب تفکیک حرارت در لایه سطحی، \(\delta \) تغییر از لایه سطحی، \(A_1 \) ابتدا ذرات، \(b/a_1 \) نسبت مولی جامد و \(\rho \) ضریب مربوط به پیچیدگی خلی و فری در لایه سطحی است. در این حالت تغییرات سمت چپ معادله بیشتر \(\left(1 - x \right)^{3/4} \) به صورت \(F(x) \) به صورت

\[\frac{1}{4} \left(1 - x \right)^{3/4} = \frac{a \, \pi \, d \, \rho \, b}{m \, a \, A \, D} \]

زمان خلوت خروج بود. با استفاده از تناوب آزمایشات این تابع محاسبه و در دماهای مختلف در شکل 14 رسم شده است. ملاحظه کنید که تغییرات تقریباً خطی وجود دارد و نشان دهنده آن است که در حالت شدن خاکستر در هیدروکسیسدیم، کنترل کننده سرعت تفکیک حرارت در ذرات است. در حالت کنترل تفکیک بیکی از پارامترهای مولکولی سرعت حلال ضریب تفکیک است. با توجه به معادله (۱) جفت محاسبه حلال، حلال حلال کننده و نسبت مولی

\[\frac{F(x)}{a / b} = \text{معادله} (2) \]

۱۷۳

استقلال سال ۱۷، شماره ۱، شهریور ۱۳۷۷
شکل 15- تغییرات نگاریم KD بر حسب عکس دما

شکل 16- تحلیل فازی رسوب به روش تفرق اشعه

تبیلی و همچنین کاربردهای سنتی فاز و اندازه و ترکیبات آن، استخراج و اندازه‌گیری خاکستر می‌توانند در اهمیت زیادی باشند. در این تحقیق از دو فرآیند برای استخراج استفاده شد. یکی فرآیند مربوط به برداشت‌کننده‌های دنیا-پرو-هیدرومولپولزی که در آن خاکستر ذوب قلیایی شده در آب حل شده و سپس و اندازه‌گیری حداکثر مقدار مول مولکول را به‌دست آمده در رسوب حاوی تکلسیسی شد. فرآیند دیگر فرآیندی هیدرومولپولزیک که در آن خاکستر در هیدروکسید‌سیسیم حل شده و سپس و اندازه‌گیری حداکثر مقدار مول مولکول را به‌دست آمده در رسوب حاوی تکلسیسی شد. در فرآیند مرکب پرو-هیدرومولپولزی نتایج به‌دست آمده توجه به مصرف بالای سوخت سنگین با مازوت در نیروگاههای کشور و علل‌های و اندازه‌گیری در خاکستر سوخت این

25/10 کیلو کالری به دست آمده است. تحلیل فازی رسوب‌های حاصل از فرآیند هیدرومولپولزی و همچنین محصول‌های نزدیک به گرمایی که با استفاده از روش تفرق اشعه X انجام شده به ترتیب در شکل‌های 16 و 17 دیده می‌شود. بررسی نتایج این تحلیل‌ها وجود را در رسوب واکسینهای و آنادیم را در محصول حاصل از تجزیه گرمایی تأیید کرده است.

نتایج گیری

با توجه به مصرف بالای سوخت سنگین با مازوت در نیروگاههای کشور و علل‌های و اندازه‌گیری در خاکستر سوخت این