Extraction of Vanadium Oxide from Boiler Fuel Ash

M. H. Abbasi and M. Safarnoorallah

Department of Materials Engineering, Isfahan University of Technology

ABSTRACT- Fuel oil used in power plants contain metal impurities like Vanadium. After combustion, this metal remains in boiler fuel ash in the form of oxide. In this research, extraction of Vanadium oxide from fuel ash has been investigated. Two processes were used for this purpose. A pyro- hydrometallurgy and a hydrometallurgy process. In the pyro-hydrometallurgy process, using sodium carbonate, salt roasting of the ash followed by water leaching was carried out. Vanadium was then precipitated as ammonium vanadates which on heating decomposed and vanadium pentoxide (\(V_2O_5\)) was obtained. In the hydrometallurgy process, the ash was dissolved in sodium hydroxide. Vanadium oxide was then recovered from solution. Effects of various parameters in each case were investigated and the optimum condition for maximum recovery was determined.
تجهیزات زیادی در مورد استخراج وانادیم توسط محققان مختلف صورت می‌گرفته که عمدتاً مربوط به کانه‌های وانادیم و سیاه‌های وانادیمی هستند. در این مقاله نتایج تحقیقات انجام شده در مورد استخراج وانادیم از خاکستر سوخت نیتروگاهی اسلام آباد اصفهان با استفاده از دو فرآیند پرور- هیدرومتالورژی شامل دو فرآیند پرور و حل کردن و هیدرومتالورژی شامل حل کردن در سوژه‌زایی آراشی شده است. محصول نهایی از دو مورد به صورت اکسید به دو مورد به صورت اکسید پرور و بازسازی وانادیم در هر دو مورد ترشی حذف و مورد تحقیق قرار گرفته است.

1- مقدمه
وانتامی فلز با هر گونه است که در خاکستر سوخت نیتروگاهی حرارتی به صورت اکسید وجود دارد. این فلز در مورد استخراج وانادیم از خاکستر سوخت نیتروگاهی استفاده نیتروگاهی حرارتی به صورت دفع ترکیبات آلی فلزی است. ترکیب شیمیایی جنس نوع سوخت در جدول 1 آمده است. (1)

2- روش تحقیق
رئیس استخراج وانادیم مورد تحقیق در این تحقیق از نیتروگاهی اسلام آباد اصفهان استفاده کرده است. (2)

3- فرآیند پرور- هیدرومتالورژی
برای استخراج وانادیم با استفاده از دو فرآیند پرور، ابتدا خاکستر با استفاده از کربنات سدیم مورد تشویق، نمک‌دار ذوب قلیایی یافته و نمک‌دار ذوب قلیایی به راحتی حل می‌شود. ترشی حذف و مورد تحقیق قرار و پس از تحقیق، مجدد وانادیم موجود در خاکستر به ترکیب محلول و در آن تیز می‌شود. واکنش شیمیایی ذوب قلیایی را می‌توان به صورت واحد (1) نشان داد.

\[
\text{Na}_4\text{CO}_3 + \text{V}_2\text{O}_5 + \text{O}_2 \rightarrow 2\text{NaVO}_4 + \text{CO}_2
\]
جدول 1- ترکیب شیمیایی چند نوع سوخت (پراسک تحلیل بالاپیشگاه اصفهان)

<table>
<thead>
<tr>
<th>نوع سوخت/عنصر</th>
<th>نفت کوره 2000</th>
<th>نفت کوره 1100</th>
<th>نفت گاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>کریستال (درصد)</td>
<td>85/86</td>
<td>85/86</td>
<td>85/85</td>
</tr>
<tr>
<td>هیدروژن (درصد)</td>
<td>12/13</td>
<td>12/13</td>
<td>12/13</td>
</tr>
<tr>
<td>اکسیژن (درصد)</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>گوگرد (درصد)</td>
<td>2/3-3/5</td>
<td>2/3-3/5</td>
<td>2/3-3/5</td>
</tr>
<tr>
<td>آب (درصد)</td>
<td>1/15</td>
<td>1/15</td>
<td>1/15</td>
</tr>
<tr>
<td>باقیمانده کریستال (درصد)</td>
<td>7/2-13</td>
<td>7/2-13</td>
<td>7/2-13</td>
</tr>
<tr>
<td>کلرور (درصد)</td>
<td>1/1-1/5</td>
<td>1/1-1/5</td>
<td>1/1-1/5</td>
</tr>
<tr>
<td>وانادیوم (PPm)</td>
<td>20-25</td>
<td>20-25</td>
<td>20-25</td>
</tr>
<tr>
<td>گرافیت (PPm)</td>
<td>2-3</td>
<td>2-3</td>
<td>2-3</td>
</tr>
<tr>
<td>سرب (PPm)</td>
<td>5-7</td>
<td>5-7</td>
<td>5-7</td>
</tr>
<tr>
<td>کلسیم (PPm)</td>
<td>5-7</td>
<td>5-7</td>
<td>5-7</td>
</tr>
<tr>
<td>خاکستر سولفات (PPm)</td>
<td>0/35</td>
<td>0/35</td>
<td>0/35</td>
</tr>
<tr>
<td>ناشی</td>
<td></td>
<td></td>
<td>0/35</td>
</tr>
</tbody>
</table>

تشریح شده متابولات آمونیوم است و با کنش شیمیایی تکلیس را تشکیل می‌دهد. متابولات می‌توان در آب محلول است و به راحتی می‌توان آن را با بیش میزان کم‌دار کرد. برای انجام آزمایشهای ذوب قلبی‌ای، خاکستر با دندانی زیر 0.1 مش به مقدار مختلف کربنات سدیم کاملاً محلول شده است. این محلولها سپس در بوته پلاستیکی در دما و زمانهای مختلف در یک کره مولفی گرم داده شد. محصول تشویقی داشت. متابولات آنها به صورت مداوم تخلیه شد و مورد استفاده بود. درصد کربنات سدیم در این آزمایش‌ها از میزان استوکومورفی تا 0.5 درصد میزان با استوکومورفی دما و 0.5 درصد میزان با استوکومورفی دما، همگون است. به طور کلی در دمای 500 درجه سانتی‌گراد و زمان تا 1000 درجه سانتی‌گراد و زمان تا 1000 درجه سانتی‌گراد و زمان شویی یعنی متابولات آزمایشی در آب به خوبی محلول است. لذا محلول آبی حاوی وانادیوم نبود. در این محلول تأثیر مایع آب نسبت آب به چربی بر میزان انحلال بررسی گردید. وابستگی این آزمایش به نوع مولکول PH محصول در حدود 8 تا 9 تنظیم شد و به ترتیب کلرور آمونیوم، وانادیوم به صورت روابط در دمای 400 درجه سانتی‌گراد تکلیس شد. از آن‌جای که وانادیوم اصلی

\[
\text{NH}_2\text{VO}_3 \rightarrow \text{V}_2\text{O}_5 + 2\text{NH}_3 + \text{H}_2\text{O} \tag{2}
\]

پرای تحلیل آزمایشی این خاکستر در دما و زمان قرار گرفت. درصد کربنات سدیم در این آزمایش‌ها از میزان استوکومورفی تا 0.5 درصد میزان با استوکومورفی دما، همگون است. به طور کلی در دمای 500 درجه سانتی‌گراد و زمان تا 1000 درجه سانتی‌گراد و زمان

2- فرایند هیدرومتالورژی

در این پژوهش این خاکستر در هیدروکسید سدیم (NaOH) حل 3 و اکسایش می‌شود. فلزات سود و زمان حل شدند. برای اکسایش آزمایش‌های آزمایشی برای دمای 55 درجه سانتی‌گراد، فلزات 3-15 مول در دمای اکسایش 15 دمای دیقح باید 2 ساعت اکسایش گردید. برای رسوب دادن وانادیوم از محلول آبی با افزودن اسید به حرارت اصلی محلول گردید. PH با افزودن PH دما 8 تا 9 تنظیم شد و به ترتیب کلرور آمونیوم، وانادیوم به صورت روابط در دمای 400 درجه سانتی‌گراد تکلیس شد. از آن‌جای که وانادیوم اصلی

167

استقلال، سال 12، شماره 1، شهریور 1377
جدول ۲ - تحلیل شیمیایی خاکستر سوخت نیروگاه اسلام آباد اصفهان

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>ردیف</th>
<th>دصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_{4}^2$-</td>
<td>۹/۹۵</td>
<td>۱</td>
</tr>
<tr>
<td>CO$_{2}$</td>
<td>نادر</td>
<td>۲</td>
</tr>
<tr>
<td>كرل</td>
<td>نادر</td>
<td>۳</td>
</tr>
<tr>
<td>سدیم (به صورت Na$_2$O)</td>
<td>۴/۵</td>
<td>۴</td>
</tr>
<tr>
<td>پتاسیم (به صورت K$_2$O)</td>
<td>۰/۹</td>
<td>۵</td>
</tr>
<tr>
<td>لهیم</td>
<td>۰/۰۵</td>
<td>۶</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>۰/۰۷</td>
<td>۷</td>
</tr>
<tr>
<td>آلومینیم</td>
<td>۰/۰۹</td>
<td>۸</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۰/۱۷</td>
<td>۹</td>
</tr>
<tr>
<td>کلسیت</td>
<td>۰/۵۵</td>
<td>۱۰</td>
</tr>
<tr>
<td>مس</td>
<td>۰/۰۵</td>
<td>۱۱</td>
</tr>
<tr>
<td>واتانید (به صورت V$_2$O$_5$)</td>
<td>۷۰۳</td>
<td>۱۲</td>
</tr>
<tr>
<td>آهن (به صورت Fe$_3$O$_4$)</td>
<td>۵/۸</td>
<td>۱۳</td>
</tr>
<tr>
<td>رژی</td>
<td>۰/۰۵</td>
<td>۱۴</td>
</tr>
<tr>
<td>Niکل (به صورت NiO)</td>
<td>۴/۶</td>
<td>۱۵</td>
</tr>
<tr>
<td>منگنز</td>
<td>۰/۰۵</td>
<td>۱۶</td>
</tr>
<tr>
<td>مسینزم</td>
<td>۰/۱۵</td>
<td>۱۷</td>
</tr>
<tr>
<td>کروم</td>
<td>۰/۳۳</td>
<td>۱۸</td>
</tr>
</tbody>
</table>

استفاده از چیلرهای میزان، افزایش میزان سدیم مصرف و تأثیر بر عوامل زیر انجام شده است:

- افزایش میزان سدیم مصرف باعث افزایش میزان خشک شدن و سپس مورد تجزیه گرمایی قرار گرفت.
- در این روش نیز برای تحلیل روش‌های حاصل و همچنین محصول‌های تجزیه گرمایی از روش تقریبی استفاده شد و برای محاسبه دصد استخراج با بازیابی همانند X

فرایند پروپر- هیدرومتالورژی عمل شد.

۳ نتایج و بحث

۳-۱ فرایند پروپر- هیدرومتالورژی

پارامترهای مؤثر بر میزان استخراج واتانید با استفاده از فرایند ذوب قلیایی - حلق کردن که مورد بررسی قرار گرفت، دمای ذوب قلیایی، زمان، میزان کربنات سدیم مصرفی، دمای آب و نسبت آب
شکل 1- تاثیر دمای تشوه بر میزان بازیابی وانادیم در درصد‌های مختلف کربنات سدیم مازاد بر استوکساوئری و زمان دو‌ساعت

شکل 2- تاثیر زمان تشوه بر میزان بازیابی وانادیم در درصد‌های مختلف کربنات سدیم مازاد بر استوکساوئری و زمان دو‌ساعت

مرحله بعد از ذوب قلیایی، حلال کردن محصول در آب است. دمای آب و نسبت آب به جامد از پارامترهای مؤثر در این مرحله از شکل‌ها دیده می‌شود که این شکل نشان می‌دهد از این نسبت افزایش دمای آب نظیر کمتر و اکتشافات کیفیکی سرعت افزایش می‌یابد. نسبت دمای آب به دمای ۹۰ درصد کیفیت نسبت آب به جامد ۵ باشد حلال در یک ساعت و اکتشاف نسبت مذکور ۱۰ باشد حلال در نیم ساعت کامل می‌شود. پس از حلال کردن محصول ذوب قلیایی در آب، افزودن کلرور آمونیم، وانادیم به صورت وانادشیا آمونیم رسوپ‌های مس کند. مرحله بعد از رسوپ‌گیری، جداسازی رسوب و تحلیل آن است. براساس اطلاعات ترمودینامیکی موجود، تجزیه گرمایی متناوبت امومین طبق و اکتشافات زیر انجام می‌گیرد [5]

\[3\text{NH}_4\text{VO}_3 + 2\text{NH}_4\text{NO}_3 + 2\text{H}_2\text{O} \rightarrow \text{NH}_4\text{VO}_3 + 2\text{NH}_4\text{NO}_3 + 2\text{H}_2\text{O} \]
شکل ۴- تأثیر میزان کربنات سدیم مصرفی بر میزان پاژیلای و نانادیم در دمای هشت ساعت

شکل ۵- تأثیر میزان تشویه بر میزان پاژیلای و نانادیم در دمای ۸۰۰ درجه سخت

شکل ۶- تأثیر دمای آب بر سرعت حل شدن محصولات تشویه در نسبت وزنی مایع به جامد برابر ۱۰

شکل ۷- تأثیر دمای آب بر سرعت حل شدن محصولات تشویه در نسبت وزنی مایع به جامد برابر ۵

$$\text{N}_2\text{NH}_3\text{V}_2\text{O}_5 + \text{V}_2\text{O}_5 + 2\text{NH}_3 + \text{H}_2\text{O}$$ (۱)

طبق واقعی (۷) در مرحله نخست محصول تجزیه گرما پدیده تجزیه گرمایی تری اوتاهدات آمونیم است. این واکنش با حذف می شود در سوی آمونیاک در دمای ۳۰۰ درجه سخت. با ادامه تکثیس در دمای ۵۵۰ درجه سخت در درجه سانتیگراد. آمونیاک باقیمیت نهایی حذف شده و طبق واقعی (۲) پنتاکسید در نتیجه تولید می شود. تأثیر دمای بر

استقلال، سال ۱۷، شماره ۱، شهريور ۱۳۷۷
شکل 7- تأثیر دما بر سرعت تجزیه غرماپی رسوبات

شکل 8- نتایج تحلیل نازی رسوب تکلسین شده به روش تفرق اشعة X

پنتاکسیدوناتانید آن بود که تکلیس در هوا انجام شد. به علت خاصیت کاتالیستی VO₅, VO₃O₅, Al₂O₃ و احیای V₅O₇ به راه دنیال‌های داشت. اکسیدهای دیگر نظریه V₅O₇ و همان طوری که در شیکه خود دارای نقش اکسیدند که به دست آوردن اکسید خالص VO₅, VO₃O₅

با استفاده از تجزیه غرماپی رسوب در یکی از این روش‌ها انجام شد. تأثیر احیای سود مصرفی در نمودارهای 12 و 13 نشان داده شده است. همان طوری که ملاحظه می‌شود، در دمای 25°C حتی با مصرف 30 برای استوکیومتری هیدرولیسیدیم بنا

نتیجه V₅O₇ تقریباً خالص به دست می‌آید.
شکل 9- تأثیر زمان انحلال بر میزان پازیایی و نانادیم در غلظت‌های مختلف سود و دمای ۲۵\(^\circ\)C

شکل 10- تأثیر زمان انحلال بر میزان پازیایی و نانادیم در غلظت‌های مختلف سود و دمای ۵۰\(^\circ\)C

شکل 12- تأثیر میزان سود مصرفی بر پازیایی و نانادیم در دمای V\(_4\)O\(_5\) به ئی\(_2\) NaOH به ئی\(_2\) (د) است (۲۵\(^\circ\)C

شکل 11- تأثیر زمان انحلال بر میزان پازیایی و نانادیم در غلظت‌های مختلف سود و دمای ۹۰\(^\circ\)C

غلظت ۱۵ مول در لیتر میزان استخراج به ۳۰ درصد نمی‌رسد در حالت که در دمای ۹۰\(^\circ\)C، استخراج بیش از ۳۰ درصد امکانپذیر است. از نظر سبیلی که شدن خاکستر در هیدروکسید سدیم و اکتشی است ناهمگن تان، تان و سپس køک چنانچه حل شدن را طبق مدل سه‌گانه که در نظر گرفته، انجام و اکتشی نمی‌باشد. انجام و اکتشی کلی حل شدن ایجاد کرده و به عبارت دیگر گسترش مراحل زیر است.

1- انتقال حرارت به سطح ذرات

2- نفوذ حرارت از لایه سطحی و اکتشی کردن به مرز مشترک جامد باین مانده و لایه سطحی

3- اکتشی شیمیایی

4- نفوذ محصولات و اکتشی از لایه سطحی به سطح ذرات

5- انتقال محصولات و اکتشی از سطح ذرات به نواحی دور از سطح بر حسب اینکه کدام یک از مراحل فوق بروز می‌باشد را برای انجام و اکتشی کلی حل شدن ایجاد کرده و به عبارت دیگر گسترش مراحل

استقلال، سال ۱۷، شماره ۱، شهریور ۱۳۷۷

172
شکل 14 - تغییرات تابع در دمای مختلف

$$F(x) = K \frac{F(x)}{\sigma} D_A$$

که در این معادله K' ثابت است که به صورت زیر تعیین می‌شود

$$K' = \frac{(\lambda b \alpha a_0)}{\sqrt{d_f \rho_0}}$$

از آنجا که پارامترهای λ, α, a_0 و d_f می‌توان مستقل از دما فرض کرد، لذا به صورت زیر در می‌آید.

$$F(x) = KD_A$$

حال باید جدول محاسبه که در جدول‌های مداری به صورت معادله زیر از دما نوشته. لذا از رسم لگاریتم برحس و دموا می‌توان استری اکتیواسیون نفوذ هیدروکسیدسیدم در ذرات خاکستر را به دست آورد.

$$D_A = D_e \exp\left(-\frac{E_a}{RT}\right)$$

شکل 13 - تاثیر میزان سود مصرفی بر پژection وایدانید در دمای V_2O_5 به NaOH به 90°C

سرعت را داشته باشید. آن مرحله کننده سرعت خواهد بود. برای مثال جنایه نفوذ در حال نفوذ دارای یک میزان کننده سرعت باشد، معادله زیر برقرار است.

$$\frac{d\alpha}{dt} = M \frac{e^{-\beta \sigma \rho_0}}{u a A} D_A$$

که در این معادله x میزان احلال پس از زمان t, α نسبت مولی $0/\alpha$ لایه سطحی $\sigma \rho_0$ است. تابع حد کننده به عامل α به صورت V_2O_5 خواهد بود. لایه سطحی باعث اندازه‌گیری در نماده می‌شود. β در معادله مربوط به هیدروکسیدسیدم می‌باشد و در معادله α نسبت مولی $0/\alpha$ $	ext{V}_2\text{O}_5$ به NaOH به 90°C
نتیجه گیری
با توجه به مصرف بالای سوخت سنگین با مازوت تیتر
نیروگاه‌های کشور و علت اصلی تولید انرژی در
نیروگاه‌های که با مصرف 60 درصد کربنات سدیم مازاد
با نیروگاه‌های که با مصرف 60 درصد کربنات سدیم مازاد

25/101 کیلو کالری به دست آمده است. تحلیل فازی رسوپ‌های
حاصل از فرآیند هیدرومترالزی و همچنین محصول‌های تجزیه
گرما که با استفاده از روش ترکیب اشعه x انجام شده با ترتیب در
شکل‌های 16 و 17 آمده است. بررسی نتایج این تحلیلها وجود
مواد را در روغن و اکسیدهای وانادیم در محصول حاصل
از تجزیه گرما که تأیید کرده است.

نتیجه گیری
با توجه به مصرف بالای سوخت سنگین با مازوت در
نیروگاه‌های کشور و علت اصلی تولید انرژی در
نیروگاه‌های که با مصرف 60 درصد کربنات سدیم مازاد

176
تشکر و قدردانی

احمدی

استادکورتنی و دمای 800 درجه سانتی‌گراد برای ذوب قلیایی در مدت دو ساعت می‌توان بهترین نتیجه را به دست آورد. همچنین نسبت آب به جامد در برای سه ساعت 400 درجه سانتی‌گراد برای تکلیف شرایط بهینه بود. در فرآیندهای مکانیلیزی نتایج به دست آمده تشکر مجدد داده می‌شود. با استفاده از علل‌های 15 مول در لت برخی مولی 30 برای (حالت به حل شونده) در مدت زمان حدود سه ساعت می‌توان استخراج حداکثر یافته بیش از 90 درصد را به دست آورد. نتایج همچنین نشان داد که حلال مشکل شاکستر در هیدروکسید سرم فرآیندهای است کنول نتوانی که

انرژی اکتیواسیون آن حدود 1/25 کیلو کالاری است.

واژه نامه:

1. Salt roasting
2. Bleecker
3. leaching
4. fluid- solid reaction
5. shrinking core model
6. tortuosity

مراجع:

175

استقلال، سال 17، شماره 1، شهریور 1377