مقاله کوتاه

بررسی عملکرد موتورهای جت در خارج نقطه طرح

احمدپور اعظمیان
دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان
(دریافت مقاله: 1376/10/20 - دریافت نسخه نهایی: 1376/10/20)

چکیده - در این مقاله سعی شده است که عملکرد خارج نقطه طرح یک سیکل توربوجت را به در روش مختلف برواردی و تناوت را با هم مقایسه کنیم. پس از مرور مدل‌های حاکم به بررسی عملکرد خارج نقطه طرح طراحی دو روش انجام دادم. در یکی از روشهای از میان دو روش مختلف "شیوه انجام دو روش" استفاده می‌کنیم و در دوم، دیگر از اثبات در گرفتن برخی از نقاط مرجع خارج نقطه طرح در خارج نقطه طرح استفاده از اعلان سدعت روش عملکرد در فضای دو روش بیان می‌کنیم. نتایج به دست آمده از این روش، می‌تواند نسبت‌هایی را به هم تشان می‌دهد. بنابراین با توجه به سادگی روش دوم استفاده از آن را توصیه می‌کنیم.

Off-Design Performance Prediction of Jet Engines

A.R. Azimian
Department of Mechanical Engineering, Isfahan University of Technology

ABSTRACT - In this paper it is attempted to predict the off-design performance of a jet engine. After a review of the governing equations, the off-design performance is investigated by two methods. In the first method, the component characteristic curves of the Gas Turbines are used. In the second method some design point parameters and the reference state conditions are employed. The results obtained by this two methods fairly agree, and therefore, the second simple method which is independent of the component characteristics are recommended.

سرعت دو پارامتر دم و فشار بیوکه است که هست که سطح تنش‌ها در حد مجاز است. معمولاً بیوکه از یک کار در شرایط نقطه طرح در نظر گرفته می‌شوند. در هر حال شرایطی نیز بیوکه می‌آید که توربین کاز دیگر در شرایط نقطه طرح خودکار نمی‌کند. به عنوان مثال در

۱- مقدمه
هر توربین گاز دارای نقطه طرح و زیان است که در آن شرایط بینه برقی بسته. بدین معنی که بیشترین یا زیاده و قدرت از کست مصرف مخصوص سوخت مصرف دارد. همچنین در نقطه طرح

۲- استادیار
استقلال، سال ۱۳۷۷، شماره ۱، شماره ۱۳۷۷
<table>
<thead>
<tr>
<th>نسبت دما کل در نقطه</th>
<th>فشار سکون</th>
<th>رله</th>
<th>سطح مقطع موتر</th>
<th>سطح مقطع موتر</th>
<th>سطح مقطع موتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>طرح</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td>τ_D</td>
<td>τ_I</td>
</tr>
<tr>
<td>نسبت دما کل در توربین</td>
<td>τ_T</td>
<td>τ_I</td>
<td>τ_T</td>
<td>τ_D</td>
<td></td>
</tr>
<tr>
<td>نسبت استالایی در ارتفاع</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>باده ایرتrodپیک کمسور</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>باده ایرتrodپیک توربین</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبت فشار توربین</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبت دما ریز در نقطه طرح</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبت دما کل در توربین</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبت دما ریز در نقطه طرح</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبت سوتکه گاز</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پایداری توربین</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پیشانه</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبت دما کل در توربین</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبت سوتکه گاز</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پایداری توربین</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پیشانه</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبت دما کل در توربین</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبت سوتکه گاز</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پایداری توربین</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پیشانه</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبت دما کل در توربین</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبت سوتکه گاز</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پایداری توربین</td>
<td>τ_D</td>
<td>τ_I</td>
<td>τ_T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

توربین‌گازی که در یک موتور جت به کار می‌رود، از شرایط نقطه طرح به‌خصوص مربوط به حالت پرواز فرودی، به‌دست‌آورده است. در مروارید مربوط به طرح به‌خصوص حالت پرواز از باده ایرتدپیک توربین و پیشانه استفاده می‌شود. در این حالت، باده مصرف می‌شود و دیدگی پارامترها به‌مدت قابل توجهی خواهند داشت. بررسی میزان پارامترهای مختلف بر عملکرد توربین‌های گاز توسط محققان مختلف صورت گرفته است. به عنوان مثال استنادی [1] به این امران‌ها و نتایج آن پرداخته است.

دیاکاتیچک [1] کاملاً عملکرد ناشی از افت تئورماها آلودگی سیال یا پوشش پره‌ها و انواع فیلتری مار توربین‌های گاز صنعتی بررسی کرده است. کوکاتاپانیزو [2] به برسی عملکرد توربین‌های گاز در سیستم‌های مختلف اثرات پارامترهای مختلف مانند کیفیت آب‌های پایین‌پایین کار و پایداری توربین‌ها و تحلیل دیگر کوکاتاپانیزو و ویلزون [3] اثرات پارامترهای مختلف مانند نسبت فشار، نسبت دما، جریان خنک کر و پیشانه، افزایش را در عملکرد سیستم‌های مختلف مقدار می‌میراند، نرخ بروز و توربوفن بررسی کرده‌اند. بااروود پارامترهای فضایی نرم‌کنار و ارائه ارزیابی نسیبی لازم دچاری به نگهداری آنها نسبت به نقطه طرح از اهمیت ویژه‌ای برخوردار است. در این مطالعه دیدگی به‌دست‌آورده است که عملکرد توربین گاز به روش‌های مختلف متفاوت است. در مقاله حاضر از دو روش مختلف برای ارزیابی عملکرد توربین‌های

استناد، سال ۱۳۷۷ شماره ۱, شهرویور
اثنا خیال و جمله و سنای و اتاق و ضر ۱۸۹۷ ۱۷۱ شماره ۱ ۱۳۷۷

اثنال سخن‌های مشابه به ترتیب نسبت دم و نسبت فشار در نقطه طرح با متن:

که در آن \(f(r, \pi) = \text{const} \) و \(f(r, \pi) = f(r_0, \pi_0) = \text{const} \) انتخاب کرده و کلیه موارد فوق را تکرار می‌کنیم تا کمپرسور و توربین مشابه شوند.

5- در توربین قدیم یا جفت خروجی مقدار دی جرمی، فضوار و دمای ورودی مشخصاند و مقدار (\(\frac{m \sqrt{V_{T_0}}}{P_{o_{r}}} \)) معلوم است. مقدار را محسوب کرده و از شرایط مشخصات

توصیف جدید (\(\frac{m \sqrt{V_{T_0}}}{P_{o_{r}}} \)) محسوس و استخراج شده می‌شود. مقدار تناوب تناوبی صورت گرفته است در غیر این صورت باعث خروجی باید ۱. بازگشت و ۲. افت احتمال و بازده ۳- احتراف ۴- مشخصه روشنی را به ترتیب نسبت خروجی طرح با استفاده از روش مشخصه ۵- مشخصه کمپرسور به صورت زیر می‌باشد:

- نقطه ای را پیدا کنید از مشخصه دور تابت کمپرسور انتخاب مشخصه به ترتیب مشخصه و با روش انتخاب اطلاعات دور را از مشخصه ناهید داده است:

\[\frac{\eta_C}{P_{o_{r}}} \]

- برای دانشی پیشنهاد می‌شود از مقدار (\(P_{o_{r}} \)) مقداری را حذف می‌کنیم و با

کمک دمای خروجی کمپرسور، انتخاب مقدار احتراف معلوم می‌شود. از تعادل احتراف می‌توان به احتراف و

همچنین ارزش گرمایی سوخت مقدار نسیب به هوا (\(f \)) محاسبه می‌شود.

- از روی دمای کمپرسور شده را تابت (\(T_{o_{r}} \)) به ترتیب نسبت دم و نسبت فشار در نقطه طرح با

محاسبه می‌کنیم.

- کار توربین را با کمک شده مقدار (\(W_{o_{r}} \)) مقایسه می‌کنیم. در سایر نقاط از دست داده از استفاده در کمپرسور تابت (\(T_{o_{r}} \)) انتخاب می‌شود.
مشخصات خروجی اتصال احتراف به آسانی تعیین می‌شوند.

4- در صورتی که نسبت دماهوری بیش از 0.6 باشد، نسبت دماهوری تغییری ندارد.

\[
\pi_t = \left[1 - \frac{1}{n_t} (1 - \tau_t) \right]^{n_t - 1}
\]

5- حال باید به خانگی‌وری، مقدار دیجیتالی به طوری‌اندازه‌گیری کرده و دقت‌دار مناسبی را از تعادل‌گیری‌ها بگیرد.

۳- پیش‌بینی موثری را با انتظار طرح قرار نده و تنها مقدار دیجیتالی را از تعادل‌گیری‌ها بگیرید.

\[
\text{MFP} = \frac{m}{A \cdot P_0}
\]

حال با توجه به فرض‌های بالایی، محاسبات خارج طرح به این روش به صورت زیر است:

1- با توجه به نسبت دماهوری بیش از 0.6، نسبت دماهوری تغییری ندارد.

\[
\eta = \frac{m}{m_t}
\]

2- در صورتی که دماهوری بیش از 0.6 باشد، نسبت دماهوری تغییری ندارد.

\[
\tau = \frac{\eta - 1}{\eta_t}
\]

که آن را بر حسب پارامترهای بی بی‌بی و با فرض نتایج پیش‌بینی در مقایسه با

\[
\pi_t = \left[1 - \frac{1}{n_t} (1 - \tau_t) \right]^{n_t - 1}
\]

حال جوش \(\pi_t\) (نسبت دماهوری بی بی‌بی و با فرض نتایج پیش‌بینی) است و مقدار آن با بررسی مقدار \(\eta\) در نقطه طرح قرار می‌دهد. در نتیجه \(\pi_t\) (نسبت دماهوری کمپرسور) و نسبت پیش‌بینی آن از تعادل‌های زیر به دست می‌آیند:

\[
\tau_t = 1 + \left(\frac{\tau_d - 1}{\tau_d} \right) \times \frac{\tau_c}{\tau_d}
\]

\[
\pi_c = \frac{\eta_c (\tau_c - 1)}{\tau_c - 1}
\]

۳- با توجه به فرض ثابت پیش‌بینی نسبت فشار و پایان در اتصال احتراف مشاهده شده.
جدول 1 - درصد خطای نسبت پیشرانه در دو روش در ارتقاع ثابت با تغییر عدد مأخ

<table>
<thead>
<tr>
<th>h</th>
<th>5000</th>
<th>5000</th>
<th>5000</th>
<th>5000</th>
<th>5000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0/84</td>
<td>0/8</td>
<td>0/8</td>
<td>0/7</td>
<td>0/6</td>
<td>0/5</td>
</tr>
<tr>
<td>(\frac{F}{FD})</td>
<td>0/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{S}{SFD})</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{S}{SFD})</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد خطای</td>
<td>0/88</td>
<td>5/62</td>
<td>9/32</td>
<td>13/0</td>
<td>16/7</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2 - درصد خطای نسبت مصرف مخصوص سوخت در دو روش در ارتقاع ثابت با تغییر عدد مأخ

<table>
<thead>
<tr>
<th>h</th>
<th>5000</th>
<th>5000</th>
<th>5000</th>
<th>5000</th>
<th>5000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0/84</td>
<td>0/8</td>
<td>0/8</td>
<td>0/7</td>
<td>0/6</td>
<td>0/5</td>
</tr>
<tr>
<td>(\frac{F}{FD})</td>
<td>0/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{S}{SFD})</td>
<td>1</td>
<td>0/94</td>
<td>0/96</td>
<td>0/95</td>
<td>0/96</td>
<td>0/95</td>
</tr>
<tr>
<td>(\frac{S}{SFD})</td>
<td>1</td>
<td>0/94</td>
<td>0/96</td>
<td>0/95</td>
<td>0/96</td>
<td>0/95</td>
</tr>
<tr>
<td>درصد خطای</td>
<td>0/88</td>
<td>5/62</td>
<td>9/32</td>
<td>13/0</td>
<td>16/7</td>
<td></td>
</tr>
</tbody>
</table>

جدول 3 - درصد خطای نسبت پیشرانه در دو روش با تغییر ارتقاع در عدد مأخ ثابت

<table>
<thead>
<tr>
<th>h</th>
<th>5000</th>
<th>5000</th>
<th>5000</th>
<th>5000</th>
<th>5000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0/84</td>
<td>0/8</td>
<td>0/8</td>
<td>0/7</td>
<td>0/6</td>
<td>0/5</td>
</tr>
<tr>
<td>(\frac{F}{FD})</td>
<td>0/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{S}{SFD})</td>
<td>1</td>
<td>0/59</td>
<td>0/59</td>
<td>0/59</td>
<td>0/59</td>
<td>0/59</td>
</tr>
<tr>
<td>(\frac{S}{SFD})</td>
<td>1</td>
<td>0/59</td>
<td>0/59</td>
<td>0/59</td>
<td>0/59</td>
<td>0/59</td>
</tr>
<tr>
<td>درصد خطای</td>
<td>0/88</td>
<td>5/62</td>
<td>9/32</td>
<td>13/0</td>
<td>16/7</td>
<td></td>
</tr>
</tbody>
</table>

پیشرانه در دو روش تفاوت چندانی با هم ندارند. بندها تریت که مشابه در جدول (1) که تغییرات عدد مأخ را در ارتفاع ثابت داریم اگر عدد مأخ 5/5 را در نظر بگیریم و با عدد مأخ نقطه طرفی به عنی

استقلال، سال 17، شماره 1، شهریور 1377

201
تغییر ارتفاع روشن مشاهده‌بر تنها می‌دهد با این تفاوت که برای مصرف مخصوص سوخت در صد شاخص کمتر است و علت آن ناشی از پارامترهای مختلفی است که تأثیرات متقابل بر مصرف مخصوص سوخت دارد.

در هر حال با توجه به اینکه در روشن دوم، پراورد عملکرد نسبتاً خوب است و نیازی به منحنی‌های مشخصی کم‌پرسور و توربین ندارد و از طریق خاک از 40 درصد خارج نتایج طرح نتایج آن فقط کمی بیش از 40 درصد خطا ایجاد می‌کنند. بنابراین از آن به عنوان روش ساده، سری‌رس و ارزان برای پراورد عملکرد خارج نقطه طرح می‌توان استفاده کرد.