H∞ Controller Design for Static VAR Compensators in Industrial Networks

M. Abedi, S. A. Taher, A. K. Sedigh and H. Seifi
Amirkabir University, Tarbiat Modares University and K.N. Toosi University

ABSTRACT- This paper deals with the design and evaluation of a robust controller for static VAR compensator (SVC) in remote industrial power systems to enhance the voltage profile for three-phase single cage induction motor (SCIM) loads. The controller design is based on H∞ theory to deal with uncertainties arising in industrial network modelling. The performance of the H∞ controller has been evaluated extensively through non-linear time domain simulation. It is concluded that the robust controller (RSVC) enhances the voltage profile for SCIM loads compared with the optimal (OSVC) type which consists of optimal state feedback (LQR).

مناسبي است [1-3]. بعضی از پارامتر صنعتی مالنده موتورها
الگویی ساز تغییرات سریع و قابل ملاحظه‌ای با یک‌درصد در
لحاظات اولیه راه‌اندازی بر ولتاژ شبکه اعمال می‌کند، به ویژه آنکه

1- مقدمه
از راه‌هایی نوع اعتمادی در سیستم قدرت، تغییرات و تغییرات
ولتاژ است. کنترل نواز راکتیو برای مقابله با این تغییرات، ابزار

استاد *** استادیار *** دانشیار

169
استقلال، سال 17، شماره 1، اسفند 1377
۲- مدل‌سازی سیستم تحت مطالعه

سیستم تحت بررسی در این مطالعه در شکل (۱) نشان داده شده است. در این مدل، سیستم تعددی از موتورهای الکتریکی تک فقسی سه فاز از طریق دو خط انتقال انرژی از شين پیشبا هدیه می شوند. تاریخچه SVC نیز در پایانه ورودی موتوره نصب شده است. پارامترها SVC شبکه مورد مطالعه در پیوست آورده شده است.

۲-۱- مدل‌سازی موتورهای الکتریکی تک فقسی سه فاز

برای شبیه‌سازی این گونه موتوره از شکل مربع شکل سه‌فازی که به‌صورت زیرند [۱۲] خود می‌گردد:

\[V_{qs} = R_{ds} q_s + \frac{g_{ds}}{\omega_b} \Psi_{ds} + \frac{1}{\omega_b} \Psi_{qs} \]
(1)

\[V_{ds} = R_{ds} s - \frac{g_{ds}}{\omega_b} \Psi_{ds} + \frac{1}{\omega_b} \Psi_{ds} \]
(2)

\[\cdot = R_{dL} q_r + \left(\frac{g_{s} - g_{L}}{\omega_b} \right) \Psi_{dr} + \frac{1}{\omega_b} \Psi_{qr} \]
(3)

\[\cdot = R_{dL} r + \left(\frac{g_{s} - g_{L}}{\omega_b} \right) \Psi_{qr} + \frac{1}{\omega_b} \Psi_{dr} \]
(4)

\[p \left(\frac{\partial \Psi}{\partial t} \right) = \frac{1}{\gamma H} \left(\Psi_{eq} - \Psi_{dq} \right) \]
(5)

\[T_e = X_m (q_s l_{ar} - l_{as} l_{qr}) \]
(6)

\[p = \frac{d}{dt} \]

\[\text{فهرست علائم} \]

<table>
<thead>
<tr>
<th>X</th>
<th>زمان خارج شدن خط</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_0)</td>
<td>تیم سیم</td>
</tr>
<tr>
<td>(t_{sc})</td>
<td>زمان ورود خط</td>
</tr>
<tr>
<td>(t_{c})</td>
<td>زمان خروج خط</td>
</tr>
<tr>
<td>(T_a)</td>
<td>ضرب پر هرور</td>
</tr>
<tr>
<td>(T_e)</td>
<td>ضریب پر هرور</td>
</tr>
<tr>
<td>(T_L)</td>
<td>ضریب پر هرور</td>
</tr>
<tr>
<td>(\Psi)</td>
<td>ضریب پر هرور</td>
</tr>
<tr>
<td>(V)</td>
<td>ضریب پر هرور</td>
</tr>
</tbody>
</table>

شکل ۱- سیستم تحت مطالعه

این بارها به شیط ولتاژ خیلی حساس‌اند و غالباً لازم است که از وسایل تثبیت کننده ولتاژ مانند استفاده کرده [۴-۷]. امر با SVC سیستمی که در این مطالعه به وسیله کنترل کننده SVC کنترل‌کننده بر اساس نظریه پسر خوکی (QFT) به‌کار می‌رود [۸] توانایی SVC با کنترل کننده بر اساس روش LQG/LTR [۱۰] بالا رساندی و توجه قرار گرفته است. در این مطالعه کار نوینی که در رابطه با طراحی کنترل کننده SVC است، برای به‌هور رفتار دینامیکی SVC الکتریکی شبکه مورد مطالعه بهره برداری کرده مدل‌سازی دقیق آن مسار بهره و همچنین پارامترهای متعلق به پارامتر کنترل کننده مقدار ۱۱ برای سیستم مقاوم و پایدار مقاوم در نظر گرفته شده است.
شکل 2- نمودار البلوکی SVC

پارامترات افزایشی خط انتقال انرژی
خط انتقال انرژی به صورت خط کوتاه مدل درجه دو برای شبیه سازی آن یا مدل سیستم مورد استفاده قرار می‌گیرد. در این چرخان با سرعت سنتون استفاده شود. معادله حاکم بر خط انتقال به صورت زیر است [5]:

\[
P[I_{qf}V_{a}] = \frac{\omega_{b}}{X_{l}} [\Delta V_{q} V_{a}] + [C][I_{qf} V_{a}]^T
\]

که در آن:

\[
[C] = \begin{bmatrix}
-R_{f}\frac{\omega_{b}}{X_{l}} & -\omega_{s} \\
\omega_{s} & -R_{f}\frac{\omega_{b}}{X_{l}}
\end{bmatrix}
\]

جيارين عموري از سلف و ونزا در دو سلف است.

3-4- مدل حداقل سیستم
برای طراحی کنترل کننده، لازم است که سیستم حول نقطه کار خفی شود. با خفی کردن معادله حاکم بر سیستم تحت مطالعه، می‌توان معادله‌ها را به شکل فضای حالت با تابع تحمل‌برداری اوردر دو سیستم مذکور با توجه به خواصیت ۶۰ مایل برقی که همراه با بار مکانیکی خطی سازی انجام می‌گیرد است. محدوده‌های عدم قطعیت در محل سیستم می‌تواند با توجه به تغییرات نقطه کار که شامل تغییر به مکانیکی، تغییرات بهبودی و تغییرات خط انتقال است، به‌دست آید.

3-4- اصول طراحی کنترل کننده
نظریه کنترل مقام در ارتباط با طراحی کنترل کننده برای سیستم‌های دینامیکی است که نامی‌شده در مدل باید وجود دارد. یک کنترل کننده مقام است که بتواند با توجه به خواصیت از شرایطی که مورد حاکم بر سیستم، پایداری و عملکرد مناسب سیستم حلکه بتواند تا آمیزند. به عبارت دیگر، کنترل کننده بتواند خواصیت در شرایطی که به شرایطی که مورد حاکم بر سیستم به‌دست آید، پایداری و عملکرد مناسب سیستم حلکه برآورده نشده باشد.

\[
p \begin{bmatrix} V_{eq} \\ V_{cd} \end{bmatrix} = [D_{1}] \begin{bmatrix} V_{eq} \\ V_{cd} \end{bmatrix} + [D_{T}] \begin{bmatrix} i_{eq} \\ i_{cd} \end{bmatrix}
\]

استقلال، سال ۱۷، شماره ۲، اسفند ۱۳۷۷

171
سیستم همواره با نامی‌نامه و کنترل

dکاری و متغیر بودن تعداد موتورهایی است که راهاندازی می‌شود. نام‌نامه معنی‌برداران اساسی پایان‌داری و روی ذخیره‌سازی فکر پایان‌نامه نامی بیان می‌شوند. چنین پایان‌نامه می‌تواند به‌صورت جمع شونده و یا ضرب شونده‌پاشیده باشد. در این مقاله، نام‌نامه به شکل ضرب شونده مورد بررسی قرار گرفته است. در نظر گرفتنی سیستم‌های به طور همزمان رابطه

\[\Delta_M(s) \]

در نظر گرفتنی سیستم‌های به طور همزمان رابطه

\[\Delta_M(s) \]

زاپ و باتری باشد.

\[\frac{S(s)}{u} = \frac{1}{1 + G(s)H(s)} \]

\[R(s) = \frac{\text{output}}{u} = \frac{G(s)}{1+G(s)H(s)} = G(s).S(s) \]

\[T(s) = \frac{\text{output}}{u} = \frac{G(s)H(s)}{1+G(s)H(s)} = \frac{1}{1-S(s)} \]

عملکرد سیستم در شبیه‌سازی با توانایی متناظر با توانایی T(s) و است. توانایی T(s) با توانایی در شبیه‌سازی کنترل فرآیند از تغییرات سیستم باشد.

\[\text{Max} \ |S(j\omega)| \leq |W_1^{-1}(j\omega)| \quad \forall \omega \in \mathbb{R} \]

\[u \quad G(s) \quad H(s) \quad 1 + \Delta_M(s) \quad + \quad y \quad \text{Dis} \]

\[\text{Max} \quad |R(j\omega)| \leq |W_1^{-1}(j\omega)| \quad \forall \omega \in \mathbb{R} \]

\[\text{Max} \quad |T(j\omega)| \leq |W_1^{-1}(j\omega)| \quad \forall \omega \in \mathbb{R} \]

در نظر گرفتنی سیستم‌های به طور همزمان رابطه

\[\Delta_M(s) \]

در نظر گرفتنی سیستم‌های به طور همزمان رابطه

\[\Delta_M(s) \]

زاپ و باتری باشد.

\[\frac{S(s)}{u} = \frac{1}{1 + G(s)H(s)} \]

\[R(s) = \frac{\text{output}}{u} = \frac{G(s)}{1+G(s)H(s)} = G(s).S(s) \]

\[T(s) = \frac{\text{output}}{u} = \frac{G(s)H(s)}{1+G(s)H(s)} = \frac{1}{1-S(s)} \]

عملکرد سیستم در شبیه‌سازی با توانایی متناظر با توانایی T(s) و است. توانایی T(s) با توانایی در شبیه‌سازی کنترل فرآیند از تغییرات سیستم باشد.

\[\text{Max} \ |S(j\omega)| \leq |W_1^{-1}(j\omega)| \quad \forall \omega \in \mathbb{R} \]
شکل 5- سرعت گیری موتوره در سیستم اول در حالت راه اندازی
\[N_{L}=60, \text{ CSVC-}_{-}, \text{ OSVC-}, \text{ RSVC-} \]

که در آن (6) ها تابع تبدیل پلاکت نامی است، برای هر نوع از سختار سیستم و یا تغییر شرایط کاری، چنین نماینده بدری نامی نیست. بنابراین در مدل سیستم است. این باید با داده‌های ورودی به انتخاب توابع ورودی برای طراحی کنترل مقایسه استفاده می‌شود.

\[W_{r}(\text{pu}) \]

\[\text{زمان، ثانیه} \]

\[\| T_{y} u_{1}(s) \|_{\infty} \leq 1 \quad (19) \]

کنترل (8) را با یک گونه‌ای پایین‌کننده که در فرکانس‌های کم و تراکم در فرکانس‌های بالا باشد که در انتخاب توابع ورودی W 3 و G(s) را با یک دقت کرد. یک گونه‌ای که شامل فیلتر یک‌پایه گذار و قطع‌های غالب پلاکت نمایند به چنین W 1 شامل فیلتر بالاگذار و قطع‌های غالب پلاکت نیز حذف سرفرهای اان باشد و شرط لازم برقرار شود [18-19]

\[\text{Max} |W_{1}(j\omega)| + \text{Max} |W_{r}(j\omega)| \geq 1 \quad \forall \omega \in \mathbb{R} \quad (20) \]

برای طراحی کنترل در این روش می‌تواند باید حل شده که با استفاده از فاصله‌های متغیر می‌توانند این کار را انجام داد [19].

3.3 مدل نامی

چنانکه قبل اشاره شده، مشخصه‌ای نسخه‌های صنعتی با شرایط کاری مختلف سیستم تغییر می‌کند. چنین رفتار نخرطی می‌تواند توسط مدل نامی مدل شود. با در نظر گرفتن نامی و بصورت ضریبی، خطای مدل سازی (6) توسط رسم پاسخ فرکانسی سیستم تحت شرایط کاری مختلف تخمین داده می‌شود که در نتیجه یک استفاده را نماینده بزرگ‌ترین نامی نیست در مدل سیستم است. می‌تواند به صورت زیر انتخاب شود:

\[\Delta H_{\text{max}}(s) \geq \text{Max} |\Delta H(s)| = \text{Max} \left| \frac{H(s)-H_{0}(s)}{H_{0}(s)} \right| \quad (21) \]

\[W_{1}(s) = \frac{-t_{1} s + T_{1} + 11.5}{s^{2} + 3.5 s + 24.5} \quad (22) \]

\[W_{r}(s) = \frac{\omega_{0}}{s^{2} + 2 \zeta \omega_{0} s + \omega_{0}^{2}} \quad (23) \]

استلال، سال 17، شماره 2، اسفند 1377

173
مطالعه که معادله‌هایی آن به‌صورت غیر خطی است، در حوزه زمان، شیب سازی شده است. این شیب سازی در هر حالت سرعت گیرنده موثرها، تغییر خود شدن الگو از مدار و اتصال کوانه سایز، با استفاده از آزمایشات انجام گرفته است. نتایج شامل شیب سازی سیستم با SVC، SVC با OSVC، SVC با راهنماهی‌ها، و با مقام اضافی (OSVC) است. هر بیه شیب سازی به‌صورت زیر است:

\[K = \frac{65/69, 101/07, 0.05/10, 0.05/10, 0.05/10, 0.05/10} {0.05/10, 0.05/10, 0.05/10, 0.05/10, 0.05/10} \]

حالات اول سرعت گیرنده موثرها در این حالات سیستم قدرت یکی شده (6(6) و دوگره شاهد (sh) موثره با ترکیب شیب‌های زمانی شدیدان تا (8)

برای نمونه سازی طراحی کنترل کننده طراحی شده، هدف اصلی کنترل کننده مقدار است. مثال کننده این است که در زمان

\[G(s) = \frac{42(s+4/5)(s+8.1)(s+3)(s+3)} {8} \]

کنترل کننده طراحی شده، به‌صورتی که به‌کار می‌رود و عملکرد مقاوم است را براورد می‌کند.

4- بررسی نتایج شیب سازی

برای بررسی عملکرد کنترل کننده طراحی شده، سیستم مورد

استلال، سال 17، شماره 2، اسفند 1377

174
تغییرات سرعت هر موتور و ولتاژ ترمینال موتورها را در دو سیستم مذکور نشان می‌دهد.

حالت دوم - خارج شدن خط از مدار
در این حالت نیز دو سیستم قدرت یکی شامل 3 و دیگری شامل 2 موتور الکتریکی یکسان در نظر گرفته شده که در زمان تا 20 ثانیه به صورت هماهنگ با یکدیگر در حرکت اند. مدل همگی از مدل‌های معرفی شده است. با توجه به مطالب ذکر شده در بخش‌های قبل، به طور خلاصه:
1- پیان مشخصه‌های غیر خطی شبکه قدرت صنعتی توسط مدل نامیتی
2- انتخاب توان و وزنی مناسب بر اساس اهداف سیستم کنترل،

شکل 11 - تغییرات سرعت موتورها در سیستم دوم در حالت تغییر خط

(\text{NL}_1=100, \text{CSVC}_-, \text{OSVC}_-, \text{RSVC}_)
شکل 15- تغییرات سرعت موتورها در سیستم دوم در حالت اتصال کوتاه
\(N_L=100, \text{CSVC}_-, \text{OSVC}_-, \text{RSVC}_-\)

در محدوده تامین‌های در نظر گرفته شده در طراحی، هنگامی که ازکنترل کننده \(H^\infty\) استفاده شود، سطح ولتاژ ترمینال موتورها بهبود می‌یابد. همچنین سرعت گیری موتورها نیز سرعت انجام می‌گیرد. استفاده از این کنترل کننده علاوه بر بهبود عملکرد دینامیکی و گذرای سیستم، اثر افتغال‌های انعطاف به سیستم تری به خوبی از پاسخ مسیستم حذف خواهد شد. کنترل کننده طراحی شده دارای ساختار ساده و ثابت بوده که با استفاده قابل ساخت است. این کنترل کننده برای پاسخ خور فقط احتیاج به واردگیری SVC سیگنال سرعت دارد. در مقایسه SVC های در نظر گرفته شده، مقام نسبت به تغییرات پارامترهای خط انتقال، تغییر تعداد موتورها و تغییر شرایط کاری موتورها دارای مقاومت بیشتری SVC است و بهینه است.

3- ارزیابی طراحی انجام گرفته توسط شبه سازی غیر خطی سیستم تحت شرایط کاری مختلف.

مراجع

8. - طراحی یک سیستم انرژی کنترل شده برای توان توان آکتیو و پاور ناتوف ریگنار دینامیک، ص 22 - 24, آیینه 1277.
9. طراحی یک سیستم انرژی کنترل شده برای توان توان آکتیو و پاور ناتوف ریگنار دینامیک، ص 37-39, آیینه 1277.
10. طراحی یک سیستم انرژی کنترل شده برای توان توان آکتیو و پاور ناتوف ریگنار دینامیک، ص 37-39, آیینه 1277.

\[
\begin{align*}
R_s &= 2/45 \text{ pu} \\
X_{ls} &= X_{lr} = 11/4 \text{ pu} \\
X_m &= 51/6 \text{ pu} \\
R_t &= 1/77 \text{ pu} \\
H &= 1/100,000 \text{ sec} \\
T_1 &= 1/100 \text{ pu} \\
f &= 60 \text{ HZ} \\
R_1 &= 1/100 \text{ pu} \\
X_l &= 106/42 \text{ pu} \\
B_c &= 5/15 \text{ pu} \\
B_m &= 1 \text{ pu} \\
K_d &= 1 \text{ pu} \\
T_a &= 1005 \text{ sec} \\
\omega_s &= 5 \text{ rad/s} \\
B_{\text{max}} &= 5 \text{ pu} \\
B_{\text{min}} &= 1 \text{ pu}
\end{align*}
\]