استفاده از روش FFI و چندی کننده‌های پردازی در طراحی کد کننده‌های ۱۲۰۰ BPS صحیح کیفیت بالا با نرخ

ابوالقاسم صبیانی
دانشکده مهندسی برق، دانشگاه صنعتی امیرکبیر
(دریافت مقاله: ۴/۳۰/۲۰۰۶ - دریافت نسخه نهایی: ۱۲۷۷/۱۲/۲۱)

چکیده - ذخیره‌سازی و یا ارسال سیگنال صحیح با کیفیت بالا با نرخ‌های بیت خیلی پایین یکی از مسائل تحقیقاتی مورد توجه برای مدمهای پیشرفته (که باید صحیح با قوانین زبان و صوتی و یا سیستم‌های HF و... است) در مراحل این تحقیق با استفاده از درون‌پایه تصادفی بین فرمی و همچنین جنبه‌های پردازی درون فرمی، قاده به کد کردن سیگنال صحیح با نرخ ۱۲۰۰ BPS با کیفیت خوب هم‌شکل کیفیت سیگنال پاسازی شده کابل رابط با کدکننده‌های ۴۸۰ متریک (مانند CELP) بوده است. آلپه کاملاً نرخ به ۱۲۰۰ BPS BPS ۴۸ متریک (مانند CELP) بوده است. آلپه کاملاً نرخ به ۱۲۰۰ BPS BPS ۴۸ متریک (مانند CELP) بوده است. آلپه کاملاً نرخ به ۱۲۰۰ BPS BPS ۴۸ متریک (مانند CELP) بوده است. آلپه کاملاً نرخ به ۱۲۰۰ BPS BPS ۴۸ متریک (مانند CELP) بوده است. آلپه کاملاً نرخ به ۱۲۰۰ BPS BPS ۴۸ متریک (مانند CELP) بوده است. آلپه کاملاً نرخ به ۱۲۰۰ BPS BPS ۴۸ متریک (مانند CELP) بوده است. آلپه کاملاً نرخ به ۱۲۰۰ BPS BPS ۴۸ متریک (مانند CELP) بوده است. آلپه کاملاً نرخ به ۱۲۰۰ BPS BPS ۴۸ متریک (مانند CELP) بوده است. آلپه کاملاً نرخ به ۱۲۰۰ BPS BPS ۴۸ متریک (مانند CELP) بوده است. آلپه کاملاً نرخ به ۱۲۰۰ BPS BPS ۴۸ متریک (مانند CELP) بوده است. آلپه کاملاً نرخ به ۱۲۰۰ BPS BPS ۴۸ متریک (مانند CELP) بوده است. آلپه کاملاً نرخ به ۱۲۰۰ BPS BPS ۴۸ متریک (مانند CELP) بوده است. آلپه کاملاً نرخ به ۱۲۰۰ BPS BPS ۴۸ متریک (مانند CELP) بوده است. آلپه کاملاً N

Using FFI Interpolator and VQ Quantization for Designing of High Quality 1200 BPS Speech Vocoder

A. Sayadian
Department of Electrical Engineering, Amirkabir University of Technology

ABSTRACT - Storaging or transmission of speech signals at very low bit rate is a hot area in the field of speech processing. We used stochastic inter-frame interpolators and vector quantization (VQ) as a new method for developing a high quality 1200 BPS speech vocoder. The objective and subjective test results show that performance of the new vocoder is comparable with 4800 BPS standard vocoders (as CELP).
کدکت‌ته‌های پارامتریک صحت برای نرخ‌های خیلی پایین
روش اصلی برای وصول به نرخ‌های بین خیلی پایین (کمتر از 200 BPS) استفاده از کدکت‌ته‌های پارامتریک صحت است (در مقابل کدکت‌ته‌های شکل موج (۴)). بدین لحاظ در یک بازه زمانی ۱۰۰۰-۱۰۲۰ میلی‌ثانیه که می‌توان سیگنال گفتار را استناد کرد، دوسته پارامتریک استخراج می‌شود. پارامترهای دسته اول نمایش دهنده فرکانس بلوک تاریک و پارامترهای دسته دوم نمایش دهنده نویه و نوحه اعمال سیگنال گفتار کنند.

اطلاعات مربوط به فاز طیف در ورودی با ضریب حداکثر وزن مدل سیستم توپوگرافی بطور ضمنی (مانند روش LPC و HV و MBE) و تحت مدل سیستم بهینه (مانند روش MBE و HV) استفاده نمی‌شود. تولید می‌شود. با توجه به اینکه هدف این تحقیق طراحی کدکت‌ته‌های صحت یک بیکفی (سوزکل) است، (علاوه بر قابل فهم بودن،) لاگر MBE پارامتریک از روش تحلیل و تست استفاده کردیم. تحلیل و تست MBE در حوزه فرکانس انجام می‌شود. از روش‌های مورد تحقیق و تکنیک طیفی مورد استفاده قرار گرفته و در مراحل مبعد از جمله MBE است. مبنا مدل‌سازی پارامتریک در مراحل مبعد از جمله

[۱] یافته قبلی نشان داد که نرخ‌های پایین و تحقیق قرارگیرنده کدکت‌ته‌های صحت در این نرخ تاکنون طراحی شده‌اند صرفاً با قابل فهم بودن ۸ (پیام ارسالی توجه داشته‌اند زیرا نمایشگاهی که باعث یک کدکت‌های صحت توسط درده بارای کاربردهای نظامی طراحی شده‌اند). انتظار در این تحقیق مورد توجه است، طراحی کدکت‌ته‌های صحت باید (هم از نظر فهم ویژه) به نظر کدکت‌های ترکیبی با هم از نظر کدکت‌های ترکیبی و ترکیبی صوتی با هم از نظر فهم ویژگی دارند.

22 استفاده باشد.

در نهایت در اصول کدکت‌ته‌های پارامتریک صحت برای وصول به نرخ‌های خیلی پایین بحث خواهد شد. در بخش سوم، روش‌های درونپایی بین فرمی که برای پایین‌ترین نرخ بیایند مورد توجه است به‌خواتم شد. در بخش چهارم روش‌های استفاده از چندی کدکت‌های پرای اهداف OBA مورد مطالعه قرار خواهد گرفت. در بخش ۵ نتایج شبیه‌سازی‌های انجام شده برای ارزیابی روشن پیش‌نهادی را توضیح داده خواهد شد.
خشواهم داشت (88 = 37/5)

1- تخمین ضرایب درونیابی تصادفی

فرض می‌کنیم \(X(n) \) و \(X(n+1) \) و \(X(n+2) \) واکنش‌بندی باشد.

ضرایب خوشه‌ای طبقی سه قطعی معکوس (هر قطعی به طول 200ms باشد.

همان طوری که در ابتدا یک باین شد، در فرآیند پارامترهای به مروبیت به‌فین \(X(n+1) \) صرف نظر از \(X(n) \) همان باین است. در این صورت، مروبیت به‌فین \(X(n+1) \) = \([X(n) + 1] \) باشد، و

هرچند بردار نمادین پارامترهای \(X(n) \) و \(X(n+1) \) به‌طور مشترک و به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. مکانیک افراطی کنیم که در فرضی \(n \)، بردار نمادین پارامترهای \(X(n) \) و \(X(n+1) \) به‌طور مشترک و به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کند. به نهایت سه‌گانه پایان‌زدایی بوده. چاپ‌دهنده روش بازیابی در این صورت به‌مراتب کدر پارامترهای دو درونیابی با مادی گیری به صورت مشترک کد می‌کن...
\[a_1 \cdot E \{ X_i(n) \cdot X_i(n+\tau) \} + a_2 \cdot E \{ X_i^2(n+\tau) \} \]
\[= E \{ X_i(n+\tau) \cdot X_i(n+1) \} \]

(8)

ق蔑ان \(X_i(n) \cdot X_i(n+\tau) \) و \(E \{ X_i^2(n+\tau) \} \) و \(E \{ X_i^2(n) \} \) را به دست می‌آوریم. درون‌دایه‌های بزرگ‌تر از \(\tau \) به دست می‌آوریم.

3-2 درون‌دایه تصادفی مربع

روش درون‌دایه‌پردازی FFI معرفی \[A \] آزادی عمل مدل تغییرات زمانی پارامترها از فرم \(p_m \) به \(p_m + 2 \) می‌پرسد. محدوده می‌کند (صرفاً توسط 4 حالت مستقیم). با استفاده از روش درون‌دایه تصادفی که در این بخش بایان می‌شود، قادی به حذف محدودیت سرتابشی ضرایب درون‌دایه‌ای. علت کلیه پارامترهای خاص‌ترین تجربه که در مدل بکسان و از آزادی عمل در حذف پارامتر \(X(n+1) \) از دیگر پارامترها هم مقدار به بازسازی از روش پارامترهای خاص‌ترین، مستند. در خوبی که کانتورا کلیه پارامترها، ضمن عنوان از \(X(n+2) \) به عنوان درون‌دایه‌های تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول فرآیندهای زمانی کمتر از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول F(\(p_m \) از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای نواحی ابستم و همبستگی‌ها برای طول F(\(p_m \) از 200ms درون‌دایه‌پردازی تصادفی که در این بخش معرفی شده، مناسب خواهد بود. این به برای N(\(p_m \) از 200ms درون‌دایه‌پردازی تصادفی که در این B(\(p_m \) از 200ms درون‌دایه‌پردازی T(\(p_m \) از 200ms درون‌دایه‌پردازی مربع (یکتا چاپی) در معادله (4) در معادله (5) و و پس از مقدارهای عملیات ریاضی خواهد داشت:

\[a_1 \cdot E \{ X_i^2(n) \} + a_2 \cdot E \{ X_i(n) \cdot X_i(n+\tau) \} = E \{ X_i(n) \cdot X_i(n+1) \} \]

(7)
اسم کتاب کد اخیر را، کتاب کد فرعي می ناميم. کليه بردارهای آزمون باقیمانده را، کتاب کد فرعي می چندی می كنيم. بنابراین برای هر بردار آزمون تعیین گام و روی در مرحله کدنگاری، عدد 12 بینی خواهیم داشت. بعد اول شاخص آدرس ندکردن بردار مرجع در کتاب کد اصلی و دومی شاخص آدرس ندکردن بردار مرجع در کتاب فرعي خواهد بود. پس از طراحی کتاب‌ها

PVQ 18- استفاده از چندی کدنده‌های برداری ضریب

برای کاهش نرخ بیت

در یکی کلمه نتیجه گیری می‌کنیم که به ابعاد هر یک مجموعه پارامترهای زیر یافته گسترش شده و برای کلینه ارسال شوند: N

\(m = 0, 1 \) فراگیری یک (یک چندین نتیجه شاخص عبور از تفاوت بین ویژگی‌های مضاد) ضریب درون‌ساختار بین فرمی. همان‌طوری که قبلاً بیان شد، ارسال این یک استفاده بردار با 48 بیت با استفاده از چندی کدنده‌های اسکارا به صورت یک سیگنال پاس‌سازی شده خواهد گرفت که با شاید، تقریباً تهیه می‌شود. برای افزایش دقیقه، کیفیت نهایی کدنده‌ها، ضریب دارد که فراگیری یک تغییر و تهیه یک می‌تواند، همکاری در این صورت برای ارسال سایر پارامترها ضریب از یک بیت استفاده کنیم. (که یک بیت ارسال پس از خروجی می‌شود.) راه حل اساسی برای ارسال این تعداد از پارامترها (با تعداد بیت VQ) استفاده از چندی کدنده‌های برداری کم است. فرض می‌کنیم \(\alpha^M(n) \) و \(\alpha^C(n) \) است. 0-2. در حالت کلی (که امکان‌پذیر نیست) ثابت است \(X(n) = X_1(n), \), \(X_2(n), \) و \(\ldots, X_m(n), \) به ترتیب باشد. این از تعریف \(\beta(n) \) ضریب درون‌ساختار بین فرمی، \(N \) مورد بررسی سازی می‌شود.

\[\text{SNR} = \frac{1}{L} \sum_{n=1}^{L} 10 \log \left[\frac{|X(n+1)|}{|X(n+1) - \hat{X}(n+1)|} \right] \]

در معادله (9) \(L \) تعداد بردارهای آزمون برای انجم آزمون
جدول 1- نتایج SNR برای سه نوع دوپلیپ FFI

| نوع دوپلیپ | تعداد | تفاوت | مقدار SNR | بررسی
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FFI-MBE</td>
<td>120 BPS</td>
<td>2/3</td>
<td>29/45</td>
<td>34/68</td>
</tr>
<tr>
<td>CELP</td>
<td>480 BPS</td>
<td>2/3</td>
<td>29/45</td>
<td>34/68</td>
</tr>
<tr>
<td>DRT</td>
<td>12/45</td>
<td>2/3</td>
<td>29/45</td>
<td>34/68</td>
</tr>
</tbody>
</table>

جدول 2- نتایج آزمون DRT برای کدکننده طراحی شده

<table>
<thead>
<tr>
<th>نوع کدکننده</th>
<th>کدکننده FFI-MBE</th>
<th>کدکننده CELP</th>
</tr>
</thead>
<tbody>
<tr>
<td>96/85</td>
<td>96/25</td>
<td>(بررسی درصد)</td>
</tr>
</tbody>
</table>

بنابراین نتایج حاصلاتی اینکارنایزیری در بیانیاتی می‌باشد.

نتایج حاصلاتی اینکارنایزیری در بیانیاتی می‌باشد.

۸- جمع‌بندی

در طی این تحقیق کدکننده کیفیت بالاتری FFI-MBE با نرخ 1200 BPS طراحی و پایداری شده است. اساس این کدکننده مبتنی بر روش تحلیل و سنتز با میانکردن بیندهای داخلی و خارجی و سنتز با میانکردن بیندهای داخلی و خارجی است. کیفیت کدکننده طراحی شده با نرخ 480 BPS به دست آمده است.

ویژه نامه

مراجع