حل جریان دائمی دو بعدی بر روی یک شبکه تطبیقی بی سازمان

کریم مظاهری و یاوردا لاسانی
دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف

چکیده - معادله‌های دو بعدی اویلر بر روی یک شبکه تطبیقی بی سازمان حل شده است. برای این منظور ابتدا یک شبکه بی سازمان اولیه شامل ملکهای دلایلی با استفاده از الگوریتم جایی گذرا و جهت پیش‌رونده برای این شوید. با به کارگیری روش حجم محدود، معادله‌های اویلر‌گسته شده و با استفاده از روش جریان بالادست با تکنیک تجزیه تفاضل دی و با یک روش ترکیبی از مقادیر توسط "رو" معادله‌های مرزی شبکه ملکهای حاصل می‌شوند. در نواحی میان میدان که گردانهای بالا یا دارند شبکه به صورت خودکار ریز می‌شود تا دقت جواب بالاتر رود. چگونگی عمل تطبیقی کردن و میانهای مربوط به آن توضیح داده شده است. برای نشان دادن تناوب، جریان حول ایرفوریل بررسی شده است. از تناوب به دست آمده بر روی جریان داتی مدل ایرفوریل مشاهده می‌شود که برای ورودی تطبیقی کردن تا چه حد بر روی دقت جواب است و چون شبکه فقط در محلی که موج ضربه‌ای قوی وجود دارد ریز شده است با کمترین تعداد سلول این عمل انجام شده است.

Adaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid

K. Mazaheri and B. Lesani
Department of Mechanical Engineering, Sharif University of Technology

ABSTRACT- Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roe's flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, according to an introduced adaptation criteria. To validate the procedure, a couple of internal and external steady flows are solved. One may see the effectiveness of introducing relatively few cells and the local adaptation algorithm on accuracy. Solution dependency on grid is also studied.
فصل عملیات

1- مقدمه

در صندوق بالا این سفارم از شیب‌های بی‌سی‌زمان در حل مسائل مکانیک سیالات استخراج، پیشنهاد است. یکی از علت‌های این موضوع مثالی است که نیاز به حل مسئله مورد نظر دارد. این مطلب در بسیاری از مسائل کاربردی دینامیک سیال است قابل استفاده در مورد سیالات تراکم‌دار غیر لزج، خصوصاً در صورتی که هدف اصلی مسئله پیچیده‌ای باشد، از نظر می‌باشد. در میان مدل‌های مثالی، کردن خودکار به روش‌های مورد است. این مدل محتوایی، با خواص و روش‌های توسط دلالات [8] مطرح شد. براز ایجاد این نوع مثال مدلی تیز روشنگری گوناگونی وجود دارد که روشی که در این مقاله انجام شده است از روش جایگزین قطعاً برای ایجاد مثال‌های دلایلی [9] و روش جبهه پیشگاه [7] برای تولید نقطه حذف مدل‌های محتوایی جریان برروی شیب‌های بی‌سی‌زمان روش‌های مختلف از این مشه و در صورتی که در حجم محدود در صورتی که در حجم محدود آماده کردن کردن مدل‌های بر روی حجم محدود محدود محدود محدود محدود محدود دارد که در زیر کتابور پیشتری داده روشی که در این مقاله از آن استفاده شده است از روش تجربه نیاز به بهره‌گیری از مقدار متوسط "زمینه‌های حل معادله‌ها" و "زمینه‌های حل معادله‌ها" عبارت اول را می‌توان به صورت میانگین تغییرات Un Sلول در نظر گرفت و عبارت دوم نیز به صورت مجموع روبرو استقلال، سال 17، شماره 2، آبان 1377 84
سرعت موجها برای خواهد بود:

\[ \lambda_i = \tilde{u}_L - \tilde{c} \]  

\[ \lambda_r = \tilde{u}_L \]  

\[ \lambda_l = \tilde{u}_L \]  

\[ \lambda_p = \tilde{u}_L + \tilde{c} \]  

در صورتی که طول ضلع را \( \Delta s = \sqrt{\Delta x^2 + \Delta y^2} \) و پردار نرمال \( \tilde{n} = \n_1 i + n_2 j \) و پردار یکه مسوازی و جهت مثبت را \( \tilde{n}' = -n_1 i + n_2 j \) در نظر گیریم

می‌توان معادله (4) را به صورت:

\[ A \frac{d\tilde{n}}{dt} + \sum_{i=1}^{r} F_{n_i} \Delta \tilde{a}_l = 0 \]  

نوشت که در آن:

\[ F_n = \begin{pmatrix} \rho u_{L} \ \rho u_{L} u + p n_1 \ \rho u_{L} v + p n_2 \ \rho u_{L} h \end{pmatrix} \]  

در روش تجزیه تفاضل دیس "رو" شار اضلاع به صورت زیر تخمین می‌شود:

\[ F(U_L, U_R) = \frac{1}{2} (F_L + F_R) - \frac{1}{r} \sum_{k=1}^{r} \lambda_k \Delta V_k \tilde{R}_k \]  

اندیس \( R \) و \( L \) مربوط به مقادیر در طرف چپ و راست سلول است. در معادله‌بی‌الا مقادیر ویژه و پردارهای ویژه به صورت زیر محاسبه می‌شوند:

\[ \tilde{R}_1 = \begin{pmatrix} 1 & \tilde{u} & \tilde{c} n_i \ \tilde{v} - \tilde{c} n_j \ \tilde{h} - \tilde{u} \tilde{c} \end{pmatrix} \]  

\[ \tilde{R}_r = \begin{pmatrix} 1 & -n_1 & n_1 \ \tilde{v} - \tilde{c} n_j \ \tilde{h} - \tilde{u} \tilde{c} \end{pmatrix} \]  

\[ \tilde{R}_l = \begin{pmatrix} 1 & \tilde{u} & \tilde{c} n_i \ \tilde{v} - \tilde{c} n_j \ \tilde{h} - \tilde{u} \tilde{c} \end{pmatrix} \]  

\[ \Delta V = \begin{pmatrix} \frac{1}{\epsilon c} (\Delta p - \tilde{c} \tilde{e} \Delta u_L) \ \frac{1}{\epsilon c} (\Delta p - \tilde{c} \tilde{e} \Delta u_R) \ \frac{1}{\epsilon c} (\Delta p + \tilde{c} \tilde{e} \Delta u_L) \end{pmatrix} \]  

\\

۸۵

استقلال، سال ۱۷، شماره ۱، اسفند ۱۳۷۷
الف - اگر $\mathbf{M}_n \rightarrow 1$ باشد تمام خواص در این سلول مجازی برای مقادیر جریان آزاد خواهد بود.
ب - اگر $\mathbf{M}_n \rightarrow 0$ باشد شرایط آن سلول، حاصل برهم هم جریان آزاد و اثرات یک گردانه نتیجه‌ای است که وضع ایرولی فرار دارد و قدرت آن در هر لحظه با توجه به نیروی برای ایرولی محاسبه می‌شود.

4- تولید شبکه اولیه
برای تولید شبکه اولیه از الگوریتم یافتن نقشه و جی‌پی و پیش‌روند استفاده شده است. فرآیند تولید نقشه توسط جی‌پی پیش‌روند اندازه‌گیری شده [V سپس با چند فراورند میانانی، مانند چند جستجوی پیمانهای و قدم زدنی [11] نقطه نهایی به یکدیگر حذف با ادامه می‌شود.

روش جستجوی پیمانهای تمام نقطه‌ای میزان میدان را مربوط می‌کند، یک روش ساده اندازه‌گیری کار دادن تمام نقاط میدان درون یک مربع مستطیلی شرط نسبتی است که هر کدام از خانه‌های شرط‌ریزی این مستطیل را یک پیمانه می‌گوید و همه به یک اندگاه هستند. حال در سیستمی که یک نقطه جدید در این میدان وارد شود کافی است ابتدا تعیین کنیم که این نقطه در کدام یک از این پیمانه‌ها قرار دارد و پس از آن نقطه را از نقاط هم پیمانه اش با حداکثر نقطه پیمانه‌ای مجاورش تعیین شود و حداقت آنها به دست آید.

در روش جستجوی قدم زدنی از وسط‌های سه ضلع مثلث درون دو نقطه به نقطه مورد نظر وصل می‌کنیم که بردار در این حالت به بیان خاتمی رخ می‌دهد. حاصلضرب داخلی این سه بردار بردارهای یک مولفه بیرونی به ترتیب می‌رود. در صورتی که حداکثر در این حالت باشد، تعیین می‌کنیم. همین عملیات برای مثلث دیگر ادامه می‌دهد. حاصلضرب داخلی متغیرهای در این حالت تعیین می‌گردد. حاصلضرب داخلی منفی شونده و این بدان معنی است که نقطه درون مثلث قرار گرفته است.

5- شرایط مرزی
امکان شرایط مرزی در مساحات دنیایی سیالات پانگز هکسیک مسکن و این داده ترتیب قرار گرفته است. یکی از حالات فیزیکی این سلول را می‌توان در پی انتخاب شده است و نظری که استاندارد دارد جریان این حالت موفق به (ایرویل) است. در این حالت دو شرط مرزی وجود دارد:

1- شرط مرزی دیوار صلب: در سلول‌های که مجاور باشد ایرولیف

2- شرط مرزی وان‌گر

3- شرط مرزی دورسمت: برای اعمال شرایط مرزی دورسمت به این حالت از سلول در دیگر دستگاه سلول‌های وان‌گر در نظر می‌گردد. شرایط این سلول مجازی به صورت زیر تعیین می‌شود:

\[ U_{n+1} = U_n + \Delta t \sum F \Delta S \]
ان میثاق از این جهت انتخاب شده است که با توجه به معرفی
او بودن معادله می‌توان اختلاف جواب حقیقی و عدی در یک
نشان داد. با پیش‌های طیب و همین مطلب در این مورد به میثاق منفی و
تاب با راهی کردن شکه و روش‌های بسیاری وجود دارد

اصول برای ریز کردن شکه و روش‌های بسیاری وجود دارد
[11 و 12] آن‌چه که دشوار است یک کردن مجدداً این شکه است
که با روش حاضر این مشکل حل می‌شود. اساس ریز کردن شکه بر
این الگوی استوار است که به میثاق را که قرار است رابه
و سطحی سبب صعوبات را به یک‌پدید وصل می‌کند. البته از انجایی که
هر میثاق فقط یک‌پدید سه همبسته باشد، با قرار
باتراییان لازم است
همسانه‌ها میثاق که تقسیم بر پرچم شده است نیز نمی‌توانند
تکمیل شوند (مقدم تا در شکل 2 - الف). البته این قانون در
مورد میثاق که در هم‌سانه‌اش به پرچم تقسیم می‌شود صادق
نیست چون در این میثاق نمی‌توان با پرچم تقسیم شود که
موجه به وجود آماده‌شدن نیز می‌شود. شکل (1 - ب).

بتاراییان برای یک‌پدید (از این مشکل) یک‌پدید در یک سه میثاق
به پرچم تقسیم شوند آن مثلث نیز به یک‌پدید تقسیم شده و
که مشکلی (2 - ج و گ) با استفاده از الگوی بالا به چند باره لازم
باشد می‌توان مثلث را ریز کرد. ساختارهای هاد این مثلث را به پرچم
است که همبسته‌ها که از پرچم تکمیل شده کردن یک مثلث اولیه
(سطح 0) و وجود می‌آید جهت پرچم وینر سطح (سطح 1) آن مثلث در
نظر گرفته می‌شود و یک سطح از سطح پرچم بالاتر می‌شود و باز
در مثلث بالایی در دایره می‌چسبند به دارایی الهی‌های همبسته دیگری
وجود ندارد. برای کنترل چگالی نقاط از پیک تابع خروج استفاده
می‌شود و این صورت که روی ایرفورم چگالی نقاط زیاد و در
خارج میدان چگالی آنها کم است و در میدان بین این دو از یک تابع
توزیع خطي بیاین تغییر چگالی استفاده شده است. روش تولید
 نقطه به گونه‌ای است که مثلاً نولنیا تا حد امکان به مثلاً به
مساواه الاضلاع نازیک است و تغییر اندازه‌ها به همان صورت
می‌گیرد. شکل (1) دو نمای دور و نازیک شکه تولید شده حول
ایرفورم را نشان می‌دهد در این حالت تعداد نقاط داخلی 100 و
نقاط خارجی 20 هستند.

7- تطبیقی کردن

لزوم استفاده بهینه از خانه‌های شکه، مستلزم توزیع پکش‌هاست
خطا در تمامی میدان‌ها حد است. بدین منظور با استفاده از نمایان‌های
خطا توزیع پکش‌ها از خانه اجرا می‌کنیم. اولین قدم در تطبیقی
کردن ناحیه‌ای است که در این خطای کم‌گستره سازی‌های جدید است که به
دبای آن نباید شکه را به صورت موضعی ریز کرده با خطا کم شود. این
حالات معمولاً در نازیک شکوک، نقاط سکو، خطوط لغزش و نهایی
انساباکی به وجود می‌آید. معیارهای مختلفی برای این کار وجود دارد
و این تطبیقی چگالی، شکار، عمق و... وقتی این پام فهم‌کن
روی شکوک نیمه‌شکه‌ها باشد. معیاری که در این مقاله از آن استفاده
شده. | \( V_p \) | \( \sqrt{A} \) | است.
آگر این پرسه هم به چهار تقسیم شوند مثلثهای به وجود آمده تنوههای (سطح 2) مثلثهای اولیه و پرسه مثلثهای قبیه مثبت. به این ترتیب یک سازمان اطلاعات دریایی می‌تواند از آن آدرس مثلث قبلی (پدر) و مثلثهای بعنده (پسرها) را خواهد داشت و با داشتن این سازمان اطلاعات درشت کردن شبکه امکان‌پذیر خواهد شد. چند دکه از ارتباط با ریزکردن شبکه لازم است پیمان شود.

1. برای یه دست آوردن شبکه ای هموار در صورتی که مثلثی 1 + n

بارزش صورت مساوی می‌باشد آن یا خلاف این n یا برای n.

2. در صورتی که بخش‌های مثلثی را که نهایی یک برادر دارد (پدرشان)

ده پسر دارد) را به چهار قسمت تقسیم کنیم مثلثهای تازه به وجود خواهد آمد و شکل شبکه تناهی شده شد به این جهت در این حالت به جای این مثلث پدر را تقسیم به چهار

می‌کنیم.

3. محاسبات روی مثلثهای انجام می‌شود که هیچ پسری نداشته

باشد.

4. در مورد مثلثهای مرازی یا ترکیه که مثلثهای مجازی فقط

به دو تقسیم شوند و الگوریتم باعث تقسیمی بر چهار شدن

مثلثهای مجازی شوند.

نتایج

1-8 چریاکهای خارجی

1-8-1 جریان‌های گذر صوری جهت ایرفویل

برای نشان دادن توانایی و قابلیت‌های روش ارائه شده، نتایج

استفاده از این روش در حل یک مسئله کاربردی در مکانیک سیالات

توجه‌های مثبت نزدیکی می‌شود. می‌خواهیم جریان خارجی را به

احکام ایرفویل را را کنیم. ایرفویل مورد استفاده، NACA0012

و عده‌ها به مقدار 85/6 و زاویه حمجه 1/0 است. این

مسئله از این جهت انتخاب شد که چون تناهی آزمایشگاه و عدیدی

فرآیند برای آن وجود دارد. با استفاده از روش جبهه پیش‌ورد،

می‌دانم جریان ایرفویل به طور خودکار شبکه بندی می‌شود.

موز بینی دارای با شعاع 450 متر دست که C طول ایرفویل است.

مزر بینی در دیوار شرایط را در نقطه پیام‌رسی بسیار است. جریان

سیال از چپ به راست است. در صورتی که ال سطح ایرفویل 45

استقلال، سال 17، شماره 2، اسفند 1377

88
شکل ۲- حالت‌های مختلفی که در حین تطبیقی کردن به وجود می‌آید

نشان داده شده است و در ضمن در روی حل نیز همگراپی کامل مشاهده می‌شود. نتایج قابل ذکر دیگر ریز شدن شبکه در سر و دم ایرفویل است. دولت، نه تنها در حوالی موج ضریب تغییرات خواص جریان زیاد است در نوک ایرفویل نیز که اولین محل تلاقی سیال و جسم جامد است نیز تغییرات خواص شدید است. بنابراین به صورت خودکار شبکه در این تواحی نیز ریز شده است. برای مقایسه، نتایج مرجع [۱۴] در شکل (۱۱) آورده شده است که با مقایسه آن با کار حاضر هماهنگی زیادی مشاهده می‌شود و در ضمن توساناتی که در حوالی موج ضریب در این شکل به وجود آمده در کار حاضر وجود ندارد.

نتایج به دست آمده در مراحل مختلف ریز شدن شبکه در شکل‌های (۴ تا ۷) آمده است. همان طور که مشاهده می‌شود در هر مرحله که شبکه ریزتر می‌شود خطوط ماه تابث به یکدیگر نزدیکتر شده و موج ضریب به صورت دیفرانسیالی نشان داده می‌شود. ضریب برازید در اثر ریز کردن شبکه و زیاد شدن تعداد سلول‌ها به مقدار حدی خود می‌رسد که تغییرات آن نسبت به تعداد سلول‌ها در شکل (۱۰) نشان داده شده است. منحنی تغییرات فشار روی بدن‌های فوقانی ایرفویل و همچنین منحنی تاریخچه باقیمانده درای اشاره داده همگراپی روش نیز در شکل‌های (۷) وجود دارد. همان طوری که از منحنی تغییرات فشار روی سطح فوقانی مشاهده می‌شود در اثر ریز شدن شبکه، تغییرات فشار در دو طرف موج ضریب به صورت دیفرانسیالی

۲-۱-۸-چرایی فراصوت حول ایرفویل

در این حالت تمام شرایط بالا ثابت است تنها زاویه حمله به
کار رفت مانند قسمت قبل، به فشار حساس بوده است، همان طور که مشاهده می‌شود در نواحی که امواج ضریبی و اتباسی وجود دارد، شبکه به طور خودکار ریز شده است. گزارش (12) را بپرسید.

- ۲ جریان داخلی
- ۲-۱ جریان موفق صوت درون کانال
در این حالت جریان موفق صوت درون کانال با یک زاویه صفر و مخ جریان آزاد به ۱/۲ افزایش پیدا کرد، در این حالت یک موج ضریبی کم‌انرژی در فاصله‌ای از نواحی ایریفون به وجود می‌آید که این موج قوی‌هم در شکل شبکه و هم در خطوط مخ فعال به خوبی مشاهده می‌شود. مخ جریان بعد از این موج کامپیوتر می‌کند تا جابجایی که در نتیجه سر ایریفون در اثر امواج اتباسی دوباره مخ بالا می‌رود، سپس در دم ایریفون بازد در اثر امواج ضریبی مخ کامپیوتر می‌کند. از آنجا که می‌توانیم تطبیق به

استقلال، سال ۱۷، شماره ۲، اسفند ۱۳۷۷

۹۰
شکل 5 - شبکه و خطوط مانگ ثابت برای شبکه یک بار تطبیق یافته

شکل 6 - شبکه و خطوط مانگ ثابت برای شبکه دو بار تطبیق یافته

توجه داشته باشید، این موج انعکاس پایه نیز خود دوباره به صفحه اولین برخورد می‌کند و قبل از خروج دوباره متعکس می‌شود. در اثر وجود فن انبساطی که از گوشته انبساطی به وجود آمده امواج تراکم و انبساط 15 درجه و مانگ ورودی 2 پرسری شده است. یک موج ضرره‌ای متصل درگوشته تراکمی به وجود می‌آید و این موج از دیواره بالایی انعکاس پیدا می‌کند و یک ساختار مانگ یک بار 91

استقلال، سال 17، شماره 2، اسفند 1377
شکل ۷- شبکه و خطوط ماخ نابت برای شبکه سه سه تطبیق یافته

شکل ۸- شبکه و خطوط ماخ نابت برای شبکه چهار بار تطبیق یافته

پری‌های انعکاس یافته ضعیف می‌شوند.

در بالای کانال و بعد از ساقه ماخ یک خط لغزش آب‌های وجود می‌آید. در شکل (۱۳) خطوط ماخ نابت و شبکه تطبیق یافته نشان داده شده‌اند.

لازمه ذکر است که الگوی انعکاس یافته توسط شبکه تطبیق یافته گیری تغییر دارد.

خلاصه و نتیجه گیری

با توجه به آینه‌ای شبکه تطبیقی بسازمان معادله‌های اولر در حالت دائم حل شدند و نتایج مختلف برای جریان‌های داخلی و خارجی به دست آمد. تفاوت‌های جریان شامل جریان فراصوتی و گذر صوتی هر یک از این جریان‌ها و جریان داخلی فراصوت درون کانال بود. با استفاده از نتایج به دست آمده نشان داده شد که عمل تطبیق تا چه
شکل 11- شبکه و خطوط مانگ ثابت حول ایرفولیز از مرجع [4]

شکل 12- شکل شبکه و خطوط مانگ ثابت برای جریان فراصوت خارجی

شکل 13- شکل شبکه و خطوط فشار ثابت برای جریان داخلی درون کانال

استقلال، سال 17، شماره 2، اسفند 1377


9. مظاهری، ک. جدیدی، م., "تولید شبکه پیشرفته" سومین کنفرانس دیسیسیون کردها، دی ۷۳ دانشگاه صنعتی شریف

