حل جریان دامی دو بعدی برنویه یک شبکه تطبیقی بی سازمان

کریم مظاهری و یامادان لاسنی
دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف
(دریافت مقاله: 1403/2/21 – دریافت نسخه نهایی: 1403/8/8)

چکیده - معادله‌های در بعیضی اویلری یک شبکه تطبیقی بی سازمان حل شده است. برای این منظور ابتدا یک شبکه بی سازمان اویلری شامل مسئله‌ای "داوری" با استفاده از الگوریتم جایگذاری قطرها و جهت پیش‌رونه‌های موردنظر، با استفاده از روش حجم محکم، معادله‌های اویلری حل شده و با استفاده از روش جریان بالاتر درکته، تغییرات دی و ری په‌گیری از مقادیر توزیع روز معادله‌های اویلری شبکه محکم حل می‌شوند. در نواحی از معادله‌های کرانه‌ای با لایه‌های دارنده شبکه یا صورت خط‌کاری‌های می‌شود تا دقت جواب بالاتر رود. چگونگی عمل تطبیقی کردن و میکرودیای مربوط به آن توضیح داده شده است. برای نشان دادن تناسب، جریان حول ایرفورم بررسی شده است. این مقاله به دست آمده بر روی جریان دامی حول ایرفورم مشاهده می‌شود که فرآیند تطبیقی کردن تا چه حد بر روی دقت جواب مؤثر است و جوان شبکه فقط در محیط که موج ضرب‌های قوی وجود دارد ریز شده است یا کمترین تعداد سلول این عمل انجام شده است.

Adaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid

K. Mazaheri and B. Lesani
Department of Mechanical Engineering, Sharif University of Technology

ABSTRACT- Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roe's flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, according to an introduced adaptation criteria. To validate the procedure, a couple of internal and external steady flows are solved. One may see the effectiveness of introducing relatively few cells and the local adaptation algorithm on accuracy. Solution dependency on grid is also studied.
که مختصات هندسی این مثلث در آن تعدادی میشه میلادی از نوع درختی است. تا در صورتی زلزله بتوان آن شبکه ریز شده را دوباره درشت کرد.

۲- معادله‌های حاکم

معادله‌های اولر در دو بعد را می‌توان به صورت زیر نوشت:

\[\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0 \]

که در آن:

\[U = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho E \end{pmatrix} \quad F = \begin{pmatrix} \rho u \\ \rho u v + p \\ \rho v u + p \\ \rho v h + p \end{pmatrix} \quad G = \begin{pmatrix} \rho u \\ \rho u v + p \\ \rho v u + p \\ \rho v h + p \end{pmatrix} \]

۳- گسترش کردن معادله‌ها بر روی حجم محدود

در صورتی که از معادله اولر روی سطح سیال انگال گرفته شود و انگالی به انجیردیه مز تبدیل شود خواهیم داشت:

\[\iiint_{\Omega_i} \frac{\partial U}{\partial t} dA + \oint_{\partial \Omega_i} (Fdy - Gdx) = 0 \]

عبارت اول را می‌توان به صورت میانگین تغییرات U روی سیال در نظر گرفت و عبارت دوم نیز به صورت مجموع روبر

استقلال، سال ۱۷، شماره ۲، استند ۱۳۷۷

۸۴
سرعت موجوده پراز خواهد بود با:

\[
\lambda_i = \ddot{u}_L - \ddot{c}
\]

(10)

در صورتی که طول ضلع را \(\Delta s = \sqrt{\Delta x_i^2 + \Delta y_i^2}\) و پادار نرمال (یکه، بیرونی، پرتو) و جهت مثلث را \(\ddot{n}_i = n_i \ddot{u}_i + n_{ij} \ddot{v}_i\) و پادار یکه، مسابقه و جهت مثلث را \(\ddot{n}_i = -\ddot{n}_i \ddot{u}_i + n_{ij} \ddot{v}_i\) در نظر بگیریم، می توان معادله (2) را به صورت:

\[
\frac{d\ddot{u}}{dt} + \sum_{i=1}^{n} (F_{\Delta y} - G_{\Delta x})_i = 0
\]

(2)

نوشت که در آن:

\[
F_n = \begin{pmatrix}
\rho u_{\perp, u} + p_{n_i} \\
\rho u_{\perp, v} + p_{n_j} \\
\rho u_{\perp, h}
\end{pmatrix}
\]

(6)

در روش تجزیه تفاضل دیس "رو" شار اضافه به صورت زیر تخمین زده می‌شود:

\[
F(U_L, U_R) = \frac{1}{2} (F_L + F_R) - \frac{1}{8} \sum_{k=1}^{3} \Delta t_k \Delta V_k \ddot{R}_k
\]

(7)

اندیس R و L مربوط به مقدار در طرف چپ و راست سلول است.

در معادله بالا مقدار پرتو و پرادارهای بیرونی به صورت زیر محاسبه می‌شوند:

\[
\ddot{R}_i = \begin{pmatrix}
\ddot{u}_i - c n_i \\
\ddot{v}_i - c n_j \\
\ddot{h}_i - \ddot{u}_i \ddot{c}
\end{pmatrix}
\]

(18)

\[
\ddot{R}_i = \begin{pmatrix}
\ddot{u}_i - c n_i \\
\ddot{v}_i - c n_j \\
\ddot{h}_i - \ddot{u}_i \ddot{c}
\end{pmatrix}
\]

(8)

\[
\ddot{R}_i = \begin{pmatrix}
\ddot{u}_i - c n_i \\
\ddot{v}_i - c n_j \\
\ddot{h}_i - \ddot{u}_i \ddot{c}
\end{pmatrix}
\]

(9)

\[
\Delta V = \begin{pmatrix}
\frac{1}{\rho c^2} (\Delta p - \rho c^2 \Delta u_L) \\
\frac{1}{\rho c^2} (\Delta p - \rho c^2 \Delta \rho) \\
\frac{1}{\rho c^2} (\Delta p + \rho c^2 \Delta u_L)
\end{pmatrix}
\]

(9)

\[
\frac{d\ddot{u}}{dt} + \sum_{i=1}^{n} (F_{\Delta y} - G_{\Delta x})_i = 0
\]

(2)

پرای حل معادله‌ها ابتدا یک شرط اولیه برای کل میدان تعيین می‌شود. این شرط اولیه در کار حاضر همان شرایط مرزی خارجی در نظر گرفته شده است. برای حل، از این شرط اولیه با قدم‌های زمانی به جواب نهایی خواهیم رسید. به عبارت دیگر من آن‌ها در روش حل عملی روش غیر دانی است. از معادله زیر برای گام پرداختن تا زمان نهایی استفاده می‌شود.

\[
\frac{d\ddot{u}}{dt} + \sum_{i=1}^{n} (F_{\Delta y} - G_{\Delta x})_i = 0
\]

(2)

\[
\frac{d\ddot{u}}{dt} + \sum_{i=1}^{n} (F_{\Delta y} - G_{\Delta x})_i = 0
\]

(2)

\[
\frac{d\ddot{u}}{dt} + \sum_{i=1}^{n} (F_{\Delta y} - G_{\Delta x})_i = 0
\]

(2)
الف - اگر M_0 باشد تمام خواص در این سلول مجازی برای مقادیر جریان آزاد خواهد بود.

ب - اگر M_0 باشد شرایط آن سلول، حاصل برهم نهایی جریان آزاد و اثرات یک گردابه تقاطعی است که وسط ایرفوریل قرار دارد و قادر به حذف نمی‌باشد با توجه به نیروی برای ایرفوریل محاسبه می‌شود.

6 - تولید شبکه اولیه

برای تولید شبکه اولیه از الگوریتم چاپی‌چاپی قطرها و جابجایی پیش‌روند آن استفاده شده است. فرآیند تولید نقطه توسط جابجایی پیش‌روند انجام شده و سپس با چند فرآیند سیلی، مانند حجم‌گیری پیمانهای قدم دنی و الگوریتم دیگر، نقاط یکدیگر به یکدیگر حذف یا دقایق می‌شوند.

در روی جستجوی پیمانهای تمام نقاط میدان را مرتب می‌کنند، یک روش ساده انجام این کار در این تابع قرار دادن تمام نقاط میدان درون یک مربع مستطیلی شرکتی است که هکدام از خانهای شرکتی این مستطیل را یک پیمانه‌گیر و به همراه یک اندزه‌گیر هستند. حال در نظر گرفتن که یک نقطه حاصل این سرعتژدایی که درون یک مربع مستطیلی شرکتی را نشان می‌دهد، به واسطه یک اندزه‌گیر هستند، حال جریان حول مقطع بال (ایرفوریل) است. در این حالت دو شرط مرزی وجود دارد:

1- شرط مرزی دیوار صلب: در سطوحی که مجاور بدن‌های ایرفوریل هستند، مولفه سرعت عمود بر دیواره برای صفر است. بنابراین در این شرط باید فقط مولفه ناهواز ترسیده بگردد. برای اعمال این شرط به ازای سرعت با مجاور دیواره سلول، سلول مجازی در همسایگی آن در نظر می‌گیریم که در این حالت مقدار چگالی و انرژی کل سلول مجازی دیوار سلول مرزی است، ولی مولفه سرعت کل آن، تصویر آن از مولفه سرعت کل سلول مرزی است.

2- شرط مرزی دوردست: برای اعمال شرط مرزی دوردست باید از سلول در نظر داشته باشیم که سلول مجازی، با این شرایط در نظر می‌گیریم که

می‌توانند باید ازیست با این شرایط. این سلول مجازی به صورت زیر تعیین می‌شود:

استقلال، سال 17، شماره 2، اسفند 1377
این میزان از این جهت انتخاب شده است که با توجه به مرتبتی
اول بودن معادله می‌توان اخلاق جواب حقیقی و عدی در یک
نشان داد. با بسط همین مطلب درد به میزان مانند

\[
V_p = \sqrt{\Delta x + \frac{\rho}{\alpha} A_p}
\]

یک می‌توان رشد.

اصلاح برای ریز کردن شبکه روش‌های بسیاری وجود دارد
[۱۱ و ۱۲] آنچه که در مورد است بزرگ کردن مجید این شبکه است
که با روش حاضر این مشکل حل می‌شود. اساس ریز کردن شبکه بر
این الگوی تست است که هر مثلاً را به فلز این ریز شدود
و ضعف‌های سه ضعف را به یکدیگر وصل می‌کند. البته از آنجایی که
هر مثلاً فقط با یک سه‌همایه‌ای داشته باشد، بنابراین لازم است
همسایگی‌های مثلاً که تضمین در به‌نظر شده است نیز به دو قسمت
تضمین شونده‌اند (مثلاً در شکل ۷-الف). البته این قانون در
مورد مثلاً که در هم‌سازه ای به جهر تضمین می‌شود صادق
نیست چون در این صورت آن مثلاً باید سه قسمت بشود که
موجه به وجود آنند مثلاً‌های تیز می‌شود. شکل (۱ - ب).

بنابراین برای چلگی‌گری از این مشکل در به‌نظر
چهر تضمین شونده آن مثلاً تیز به ناحیه تضمین به به‌نظر
خواهد شد. شکل‌های (۲ - ج و د). با استفاده از الگوی بالا به چند بارکه لازم
باشد می‌توان مثلث این رایزن‌کرد. ساختمان داده این مثلث به ضروری
است که مثلث‌هایی که از چهر تضمین کرده یک مثلث اولیه
(سطح) به وجود می‌آیند به عنوان پسرهای (سطح) ۱ آن مثلث در
نظر گرفته می‌شود و یک سطح از سطح پدرشان با آن‌نیستند. و باز
در مثلث بندی دلایی در دایره محیطی قرار دارند.

برای کنترل چگالی نقاط از یک باین حذف خلی استفاده
می‌شود به این صورت که یک ایرفویل چگالی نقاط زیست و در
خارج میدان چگالی آنها کم است و در میدان بین این دو از یک باین
توژیز خلی برای تضمین چگالی استفاده شده است. روش توزیع
نقطه‌ای گونه‌ای است که مثلث‌های توپولوژی یا حاصلکننده به مثلث‌های
منتاسب اضافه می‌گردند است و تبیین اندازه‌های بسیار هم‌صورت
می‌گردد. شکل (۱) دو نمای دور و نزدیک شبکه تولید شده حول
ایرفویل را نشان می‌دهد. در این حالت تعداد نقاط داخلی ۱۰۰ و
نقاط خارجی ۲۰ هستند.

7- تطبیقی کردن

ازوستفاده بهینه از خانه‌ها شبکه، مستلزم توزیع پشتوانه
خطا در تمامی میدان‌ها حل است. بدین منظور با استفاده از نمایان‌های
خطی توزیع مطلوبی از خط اجرا می‌کنیم. اولین قدم در تطبیقی کردن
پیاکردن ناحیه‌ای است که در آن خطای گسترش سازی زیاد است که به
دنبال آن بتوان شبکه را به صورت موضعی ریزکرد.تا خطای شود. این
حالت‌ها مهم‌المرغی به صورت توزیع، حروف مسیری، خطوط لغزش و نهایت
اتسابی به وجود آن می‌آیند. معمولاً مختلف برای این کار وجود دارد
می‌تواند تفسیری چگالی انتقال نشان دهد. صورتی که در این مقاله از آن استفاده
روی شبکه چگالی را دوخته‌اند. می‌توانیم به این مقاله از آن استفاده
شود.

استقلال، سال ۱۷، شماره ۲، اسفند ۱۳۷۷

87
سولون با توسعه کسبوست و روز مخزونی تنز ۱۵ سولون با توسعه
یکنواست قرار دهیم، برابر تعریف تابع فاصله بصورت خطی،
مثلاً بندی اولیه (دالی) به دست می‌آید. هر چند که توسعه سولونا
از نظر نظری بسیار مسئول است، بوده‌ی است که این توسعه
با فیزیک مشتاق به طور کامل همبسته نیست. دراکه به دست آورده
توسعه مشتاق با فیزیک مشتاق به این صورت رفتار می‌شود. اگر
بروی شکاولی مداراتهای اولیه حل می‌شوند، شکل (۴) بهدا
استفاده از شکاولی
\[\int V_{pdA} = \int p_{dS} \]
حداکثر
\[|V_p| \leq |A_{\text{max}}| \]
تمام سولونا محاسبه شده مقدار
\[|V_p| \leq |A_{\text{max}}| \]
میدان به دست می‌آید، حس سلول‌هایی که در آنها
\[|V_p| \leq |A_{\text{max}}| \]
است ریز می‌شوند. پرتو ۳/۴ در نمادول است. بدون انتخاب برد
و سطحی به این دارد که در چه نواحی از سلول‌های مشکی
ریز داشته باشیم. برای ترکیب هموگراوی روی، مقدار متغیری
چرین در سلول‌های ریز شده به این صورت به دست می‌آید که اگر
گرادیان متغیری جرائی (مقدار U) در شکاولی (۲) در سلول پدر
مهارسی می‌شود، سپس با انتخاب تابع مقدار متوسط در مکث
مثلث تبیل (بد) مقدار U برای سلول‌های طیید (پسها) یا یک
تقریب خطی محاسبه می‌شود. برای انجام این کاری با ریز شدن
شکاول و صدا مجدید برناوری حل معدودی ولی یا زمان
کمتری به جواب نهایی نزدیک می‌شود. فراوانی ریز کردن را می‌توان
به مقدار صفرد کرد و به قطعات متغیر و رسمیت. این محدودیت
بروز مساحت سلولها و سالاری داره و مساحت آنها تا مساحت
خصائص مشترک مشکاول. با پنج ریز کردن مشکاول در کار حاضر
اندازه‌سولونا تقریباً به اندازه‌کرایه‌روی و عملیات متوافق
شد.
چون با هر ریز کردن مساحت سلول‌ها به یک چهارم مقدار
اولیه می‌رسد و یا پنج ریز کردن این مقدار به \[\frac{1}{4} \]
مقدار
اولیه خواهد رسیده که با توجه به اینکه در مساحت حاضر بزرگ‌ترین سلول
استقلال، سال ۱۷، شماره ۲، اسفند ۱۳۷۷
۸۸
شکل 2- حالت‌های مختلفی که در حین تطبیقی کردن به وجود می‌آید

شکله‌ای به دست آمده در مراحل مختلف ریز شدن شبکه در شکله‌ای (4) (9) آمده است. همان‌طور که مشاهده می‌شود در مرحله‌ی یک شبکه ریزتر می‌شود از نظر میزان تعداد سیال و جسم جامد است نیز تغییرات شوک که در این رابطه ریز شده است. براً مقایسه، صورت خودکار شبکه در آن توانایی نیز ریز شده است. برای مقایسه، نتایج مرجع [4] در شکله‌ای (11) آورده شده است که با مقایسه آن با کار حاضر هماهنگی زیادی شباهت می‌شود و در ضمن نوساناتی که در حوالی موج ضربه در آن شکله به وجود آمد در کار حاضر وجود ندارد.

نتایج به دست آمده در مراحل مختلف ریز شدن شبکه در شکله‌ای (4) (9) آمده است. همان‌طور که مشاهده می‌شود در مرحله‌ی یک شبکه ریزتر می‌شود از نظر میزان تعداد سیال و جسم جامد است نیز تغییرات شوک که در این رابطه ریز شده است. براً مقایسه، صورت خودکار شبکه در آن توانایی نیز ریز شده است. برای مقایسه، نتایج مرجع [4] در شکله‌ای (11) آورده شده است که با مقایسه آن با کار حاضر هماهنگی زیادی شباهت می‌شود و در ضمن نوساناتی که در حوالی موج ضربه در آن شکله به وجود آمد در کار حاضر وجود ندارد.

شکله‌ای مساحتی حدود 15 در دارا می‌باشد با پنج پاره‌های ریز کردن مساحت آن به حدود 16 می‌رسد.

نتایج به دست آمده در مراحل مختلف ریز شدن شبکه در شکله‌ای (4) (9) آمده است. همان‌طور که مشاهده می‌شود در مرحله‌ی یک شبکه ریزتر می‌شود از نظر میزان تعداد سیال و جسم جامد است نیز تغییرات شوک که در این رابطه ریز شده است. براً مقایسه، صورت خودکار شبکه در آن توانایی نیز ریز شده است. برای مقایسه، نتایج مرجع [4] در شکله‌ای (11) آورده شده است که با مقایسه آن با کار حاضر هماهنگی زیادی شباهت می‌شود و در ضمن نوساناتی که در حوالی موج ضربه در آن شکله به وجود آمد در کار حاضر وجود ندارد.
یک موج ضریب‌های کم‌کمی در فاصله‌ای از نوک ایرفوئیل به وجود می‌آید که این موج قوی‌تر هم در شکل شیشه و هم در خطوط مانند پایه هر ماه می‌شود. ماه چربان بعد از این موج کاملاً پیدا می‌شود. در این هر اندازه‌ای از ایرفوئیل در اثر امواج انباشته‌ای دیواره می‌باشد. سپس در از ایرفوئیل باید در اثر امواج ضریب‌های مانند پایه می‌کنند از اندازه‌ای که می‌تواند اعمال تنظیم به

شکل ۴ - شبکه و خطوط مانند پایه شیشه اولیه

کار رفتگان می‌توانند فیلتر پیش‌بازداره است، همان طور که مشاهده می‌شود در نواحی که امواج ضریبی و انباشته و وجود دارد، شبکه به طور خودکار ریز شده است، شکل (۱۲) را ببینید.

۸-۲ جریان داخلی

۸-۱ جریان موفق صوت درون کانال

در این حالت جریان موفق صوت درون کانالی با یک زاویه
شکل 5 - شبکه و خطوط مانثایت برای شبکه یک بار تطابق ساخته شده.

شکل 6 - شبکه و خطوط مانثایت ثابت برای شبکه دو بار تطابق ساخته شده.

توجه کنید، این موج انعکاس یافته نیز خود دوباره به صفحه پایینی برخورد می‌کند و قبل از خروج دوباره متعکس می‌شود. در اثر وجود فن انبعاثی که از گوشه انبعاثی به وجود آمده اعمال

تراکم و انبساط ۱۵ درجه و مانثایت بورسی شده است. یک موج ضریب‌های متصل درگوشه تراکمی به وجود می‌آید و این موج از دیواره بالایی انعکاس پیدا می‌کند و یک ساخته مانثایت به

استقلال، سال ۱۷، شماره ۲، اسفند ۱۳۷۷
شکل ۷- شبکه و خطوط مانگ ناب در سه شبکه سه بعدی تطبیق یافته

شکل ۸- شبکه و خطوط مانگ ناب در یک شبکه سه بعدی تطبیق یافته

ضریب‌های انعکاس بالاته ضعیف می‌شوند.
در بالای کانال و بعد از سطح مانگ یک خط لغزش آن وجود می‌آید. در شکل (۱۳) خطوط مانگ ناب و شبکه تطبیق یافته نشان داده شده‌اند.

۹- خلاصه و نتیجه گیری
توزیع شبکه تطبیقی بی‌سازمان معادله‌ها اولیه در حالت دائم حل شده و نتایج متفاوت برای جریان‌های داخلی و خارجی به دست آمده. جمله‌ای که امتحان شدند شامل جریان فراصوت و گذر صوتی حول ایزوفیل و جریان داخلی فراصوت درون کانال بود. با استفاده از نتایج به دست آمده نشان داده شد که عمل تطبیق تا چه
شکل ۹- شبکه و خطوط مانگ ثابت برای شبکه‌ی پنج بار تطبیق یافته

شکل ۱۰- تغییرات ضریب یا بر حسب تعداد سلول

استقلال، سال ۱۷، شهره ۲، اسفند ۱۳۷۷

۹۳
شکل 11- شیبک و خطوط مانگ ثابت حول ایرفویل از مرحم [4]

شکل 12- شکل شیبک و خطوط مانگ ثابت برای جریان فراصوت خارجی

شکل 13- شکل شیبک و خطوط فشار ثابت برای جریان داخلی درون کانال
قدّردادی
از حمایت‌های معاونت پژوهشی دانشگاه صنعتی شریف و مجمع
صنعتی شهید باقری در انجام این پروژه قدردادی و تشکر می‌شود.

1. Mach stem
2. slip line

مراجع

9. مظاهری، ک. جدیدی، م., "نوتید شبکه ی سازمانی با ترکیبی از مختل بندی دوبل و چند جهت پیش‌ورشانده", سومین کنفرانس دینامیکی شاره‌ها، دی ۵۷، دانشگاه صنعتی شریف، ۱۳۶۰.