ارزیابی مقررات بیچمه آین نامه‌های لرزه‌ای با توجه به تأثیر اندکنش خاک - سازه

حمزه شکیب و مهراز صدرنیشَن

پیش‌تمامی عمران دانشکده فنی و مهندسی دانشگاه تربیت مدرس

چکیده - در این مطالعه اثر پارامترهای سازه‌ای در پاسخ‌‌سازی‌ها تأمین‌کننده استفاده از تحلیل غیرکشان دینامیکی و با در نظر گرفتن تأثیر اندکنش خاک - سازه برای گروه‌های زیرلرزه‌های واقعی ایران مورد بررسی قرار گرفته است. سپس خروج از مرکزیت طراحی حاصل از تحلیل با خروج از مرکزیت طراحی آین نامه‌های لرزه‌ای ایران، آمریکا، نیوزیلند، کانادا، مکزیک، استرالیا و اروپا مقایسه شده و با استفاده از نظر به‌طور مثالی مه‌سازه‌های با محالفه کردن انعطاف‌پذیری پایه‌ی پایه، مسافت‌های خروج از مرکزیت طراحی پیشنهاد شده است.

Evaluation of Torsional Provisions of Seismic Codes Considering Effects of Soil-Structure Interaction

H. Shakib and M. SadrNeshin

Department of Civil Engineering, Tarbiat Modarres University

ABSTRACT- In this study, the effective parameters on the inelastic response of asymmetric buildings is evaluated for an ensemble of real Iranian earthquake records by considering soil-structure interaction. Then, the design eccentricity obtained from the inelastic dynamic soil-structure analysis is
مقدمه
در هنگام وقوع زلزله، به دلیل تغییر شکل‌های لحظه‌ای که درون خاک زیرزمین اتفاق می‌افتد، ممکن است حرکت یک سازه حداکثر زمانی در یک فاصله تندیزی از سازه متفاوت باشد. این اختلاف مشخص کننده تاثیر اندرکش خاک-سازه است. تاثیر اندرکش خاک-سازه مهم این تانسته که پاسخ دینامیکی یک سازه ساختمانی هر زمینه نه تنها به خصوصیات حفرات سیلیکون آزاد وابسته است، بلکه به خواص دینامیکی سازه و خاکه که در زیر سازه قرار گرفته است، نیز بستگی دارد.

معادله اول، خروج از مرکزیت طراحی اولیه و معادله دوم:

\[e_{D1} = \alpha e_s + \beta b \]
\[e_{D2} = \delta e_s - \beta b \]

معادله اول، خروج از مرکزیت طراحی اولیه و معادله دوم:

\[e_{D1} = \alpha e_s + \beta b \]
\[e_{D2} = \delta e_s - \beta b \]

compared with the design eccentricity of seismic codes of Iran, ATC-3, New Zeland, Canada, Mexico, Australia and EC8. Finally, a formula for design eccentricity is proposed, regarding some important structural parameters.
جمله اول این معاوضه خروج از مرکزیت دینامیکی و جمله دوم آن خروج از مرکزیت انتگرال نامیمده، $x, \beta \beta$ برای پارامترهای نامیمده، دو، متفاوت می‌باشد.

$e_D = e_q \pm e_x \quad (3)$

m مکریکی، در مورد تأثیرات پیچش در ساختارهای نامیمده، یافته که e_q یکی

5 ساختار 5 طبقه را با خروج از مرکزیت یک طبقه در توجه به تأثیرات در نظر گرفته می‌باشد.

α به علت عضوی بسیاری از مرکزیتیکی به طور کلی توجه ساختارها را با تأثیر

β به نوعی تلفت ویژه ساختارها مطرح است. به این ترتیب، در این مطالعه، مطرحی را به انجام

Y مطالعه‌ای خروج از مرکزیت مورد تجزیه و تحلیل قرار داده است.

اما اخیراً در مطالعه‌ای با ملاحظه داشتند، انعطاف‌پذیری پایه

سیستم در این پارامترها ارزیابی شده‌اند، در این مطالعات نشان داد

که این مطالعات به خصوصیات دینامیکی سازه و نیروی بلندی

واستگنیزد. به توجه به نتایج این مطالعات از مقدار α و نتایج

اندرکنش خاک و سازه بر اثر خصوصیات دینامیکی سازه و

وزلل از طرف دیگر، اندرکنش خاک - سازه می‌تواند اثرات قابل

توجهی بر پارامترها خروج از مرکزیت طراحی داشته باشد.

مطالعات انجام شده برای ارزیابی مقتررات پیچش و بررسی اثر

پارامترها در مثال‌های در پاسخ ساختارهای نامیمده، با استفاده

از مدل‌های ایندیکال شبکه برق طبقه‌بندی صورت گرفت است [1-4]. در

تحقیقی که توسط کاندیت و گروپ [5] انجام شده، از مدل ایندیکال شبکه

پایه این مطالعه شده است. این محقق برای بررسی مقتررات

پیچش در ارزیابی تمامی ساختارهای نامیمده از همان مدل ایندیکال شبکه

پایه این مطالعه استفاده کرده و آن را پیچش نامیمده گردیده

تاکنون پیچش نامیمده قابل ملاحظه‌ای در کاربرد مدلهای تحلیلی

برای تعیین اندرکنش خاک و سازه بر پاسخ پیچشی

ساختارهای نامیمده حاصل شده است [6]. گشتاور پیچشی،

منابع از دینامیکی‌های ارتفاع جانی و پیچشی است که

سبب ایجاد تشدید نیروهای زلزله در حالت محیط سازه می‌شود.

در اغلب آینده ساختارهای این تأثیر دقت گزینه شده است.

با ورود تأثیر زلزله سیستم در مکریکی، شکست شدکه این بسیار

1985 مکریکی شکست شدکه این بسیار

β با ورود به جنگ اول در کنارنگی خاک در پاسخ دیگرینگ گرفته و با استفاده

مطالعه‌ای برای خروج از مرکزیت طراحی پیچش نامیمده شده است.

2 مقایسه خروج از مرکزیت طراحی در آین نامیمده

لرزه‌ای

به منظور مقایسه مطالعه خروج از مرکزیت طراحی

1378 استلال، سال 18، شماره 1، شریروی
آین نامه های ۲۸۰۰ ایران، آمریکا، نیوزیلند، کانادا، استرالیا، مکزیک و او آپایی EC8، تغییرات آنها نسبت به E5 در شکل (1) نشان داده شده است. در این شکل مربوط به آین نامه EC8 برای حالت \(\Omega = 1 \) است. این شکل نشان می‌دهد که هر جز آین نامه EC8 و استرالیا، تغییرات E5 نسبت به E5 خطر است. خطی نیبود 4 در آین نامه EC8 و استرالیا با علت در نظر گرفتن خروج از مرکزیت اضافی ۱ است که خورده تابعی از E5 و نسبت سختی پیچش به سختی جانبی ۲ نسبت ابعاد بیان است. چنانچه ملاحظه می‌شود، مقادیر E5 در آین نامه EC8 مخصوصاً در خروج از مرکزیت‌های حدود ۵۰\% تا ۶۰\% پیچش از مقادیر آین نامه‌های دیگر بوده و در این شیب تابی نیست، طوری که در ابتدا دارای شیب به \(\alpha = 1/5 \) بیشتر است. مقادیر آین نامه‌های مکزیک و کانادا با \(\alpha = 1/5 \) تندپگی‌تر است. مقادیر آین نامه EC8 مربوط به آین نامه‌های آمریکا با \(\alpha = 1 \) کمترین مقدار را نسبت به E5 سایر آین نامه‌ها دارد. بنابراین با توجه به این مقایسه و مقادیر E5 در آین نامه‌های بالا، پرسی و تجدید نظر خروج از مرکزیت طراحي آین نامه ۲۸۰۰ ایران ضروری به نظر می‌رسد.

۱- مدلسازی سیستم شاخ - سازه

سیستم شاخ - سازه انتخابی، یک مدل چک طبقه سه بعدی است که روی سطح یک تیپی فضای کسینومینکه در شکل (2) نشان داده است، قرار گرفته است. جرم سازه در سطح طبقه به

\[
\delta u_x = \delta u_{gx} + \delta u_{sc} + \delta u_{v} + \delta u_x
\]
\[m\ddot{u}_y + m \left(\dot{u}_g \right)_y + \ddot{u}_y = 0 \] (ب)

\[h\ddot{u}_y + I_x \ddot{\theta}_x + hM_x(t) = 0 \] (ج)

\[h\ddot{u}_x + I_y \ddot{\theta}_y + hM_y(t) = 0 \] (ج)

\[L_2 \ddot{\theta}_z + I_{oz} \left(\ddot{\theta}_g z + \dot{\theta}_g z \right) + \dot{T}(t) = 0 \] (ب)

\[\delta\dot{u}_y = \delta u_g + \delta u_y + h\dot{\theta}_x + \delta u_y \] (5)

\[\delta\dot{u}_y = \delta u_g + \delta u_y + h\dot{\theta}_x + \delta u_y \] (5)

\[\delta\theta_x = \delta\theta_x + \delta\theta_x + \delta\theta_x \] (6)

\[\delta\theta_x = \delta\theta_x + \delta\theta_x + \delta\theta_x \] (6)

\[[M] \delta\{u\} + [C]\delta\{\dot{u}\} + [K]\delta\{u\} = \{0\} \] (7)

به طوری که به طوری که
 Nirouhae shekarooxani yazehi dast avtor dar namo shemset waliye ba kadon kardan.

\[
\begin{align*}
\delta V(t) &= C_p \delta u_{ox} + K_p \delta u_{ox} \\
\delta V(t) &= C_q \delta u_{cy} + K_q \delta u_{cy} \\
\delta M_x(t) &= C_c \delta \theta_{ox} + K_c \delta \theta_{ox} \\
\delta M_y(t) &= C_d \delta \theta_{cy} + K_d \delta \theta_{cy} \\
\delta T(t) &= C_z \delta \theta_{oz} + K_z \delta \theta_{oz}
\end{align*}
\]

(18)

\[
\begin{align*}
K_t &= \frac{\tau t}{(V-L)G_{ts}} \\
K_r &= \frac{\tau t}{(V-L)G_{rs}} \\
K_s &= \frac{\tau t}{(V-L)G_{ss}}
\end{align*}
\]

(19)

\[
\begin{align*}
C_t &= \sqrt{K_t m_t} \\
C_r &= \sqrt{K_r m_r} \\
C_s &= \sqrt{K_s m_s}
\end{align*}
\]

(20)

\[
\begin{align*}
D_t &= \frac{1}{\sqrt{B_t}} \\
D_r &= \frac{1}{\sqrt{B_r}} \\
D_s &= \frac{1}{\sqrt{B_s}}
\end{align*}
\]

(21)

\[
\begin{align*}
\{I_x\}^T &= \{1 \ 0 \ 0\} \\
\{I_y\}^T &= \{0 \ 1 \ 0\} \\
\{I_z\}^T &= \{0 \ 0 \ 1\} \\
\{h_x\}^T &= \{h \ 0 \ 0\} \\
\{h_y\}^T &= \{0 \ h \ 0\}
\end{align*}
\]

(22)

\[
\begin{align*}
\text{که دن نهایی یکینه فنر فرکانس مستقل به صورت زیر داده می‌شوند:} \\
\text{که می‌تواند به شکل استاندارد مجدداً می‌شود:}
\end{align*}
\]

(13)
<table>
<thead>
<tr>
<th>پایین‌ترین</th>
<th>بالاترین</th>
<th>میانه</th>
<th>حداقل</th>
<th>مقادیر]</th>
</tr>
</thead>
<tbody>
<tr>
<td>915</td>
<td>1357</td>
<td>N</td>
<td>1/4W</td>
<td>1</td>
</tr>
<tr>
<td>862</td>
<td>1357</td>
<td>S</td>
<td>1E</td>
<td>2</td>
</tr>
<tr>
<td>791</td>
<td>1356</td>
<td>V</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>605</td>
<td>1356</td>
<td>T</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>512</td>
<td>1359</td>
<td>L</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>492</td>
<td>1359</td>
<td>T</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>218</td>
<td>1360</td>
<td>L</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>240</td>
<td>1368</td>
<td>L</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>172</td>
<td>1369</td>
<td>T</td>
<td>8</td>
<td>8.2</td>
</tr>
<tr>
<td>125</td>
<td>1389</td>
<td>L</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>95</td>
<td>125</td>
<td></td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

یک جدول مشخصات شیب‌گذاری‌های ززله‌ای اعمالی بر سازه

در جهت عمومی بر صفحه خود و نیاز از سختی ایزی آنها صرف ضرر شده است. خروج از مرکزت بین مرکز جرم و مرکز سختی با تغییر سختی عناصر به وجود می‌آید. پرامترهای مناسب برای سیستم عبارت از G, T_y, η و α سختی خاک که با تغییر سرعت موج برخی خاک V_y صورت می‌گیرد، به طوری که با تأثیر هر یک از این پرامترهای پاسخ سیستم مورد مطالعه قرار گرفته است.

فصل 5- بررسی اثر پرامترهای سازه‌ای

به‌منظور مطالعه اثر زمینهای زمینهای نامتقارن با در نظر گرفتن اندرکنش خاک - سازه و بررسی پرامترهای مؤثر در پاسخ آن تحت اثر زلزله از سیستم‌های نامه‌ای شده در شکل (2) استفاده شده است. فرض می‌شود که کف صلب دارای چند میلی‌متر با توزیع یکنواخت باشد به طوری که مرکز جرم و مرکز مبنایی پلان که برای منطقی پاشند. از سختی عناصر مجاور

می‌باشد α شرایط پایداری روش اصلی، طبقات زمین T_y نسبت Δt, T_y نسبت Δt, T_y نسبت Δt, T_y نسبت Δt
نیروی زاوله در دو جهت به طور همزمان را دارد، اما در این مطالعه، سیستم تمام‌پارسی بی‌طرفی از مرکزیت یک‌طرفه در یک جهت در معرض شتاب‌گذاری واقعی زاوله‌های ایران مطابق جدول (1) قرار داده شده و تحلیل صورت گرفته است. از ناحیه که یک سیستم در معرض هر شتاب‌گذاری پاسخ منفی و گرفته است، به منظور استفاده از راه‌های بکارگیری قابلیت در این مطالعه به پاسخ اشاره می‌شود، منظور می‌شود، پاسخ می‌گیرد. پاسخ‌های به دو زاوله‌ای واقعی ایران است.

شکل 3- تغییرات خروج از مرکزیت دینامیکی نسبت به خروج از مرکزیت استاتیکی با توجه به ضریب پواسون خاک برابر 0.33 در بزرگ‌ترین شدت است. برای نیل به هدف این مطالعه باتوجه به این که این به دست آمده است. 3-اهمیت راه‌های ایجاد شده است. 3-اهمیت راه‌های ایجاد شده است. 3-اهمیت راه‌های ایجاد شده است.
شکل ۴ - تغییرات خروج از مرکزیت دینامیکی نسبت به پریود سازه با توجه به شرایط متفاوت خاک

شکل ۵ - تغییرات خروج از مرکزیت دینامیکی نسبت به فرکانس پیچشی به جابجایی با توجه به شرایط متفاوت خاک

افزایش این نسبت می‌کاهش می‌یابد (در حداکثر در = ۱ = اتفاق

خاک نرم بزرگتر از خاک سخت و متوسط است و همچنین با افزایش
نسبت فرکانس پیچشی به جابجایی تا = خروج از مرکزیت دینامیکی
افزايش می‌یابد، برای خاکهای سخت و متوسط با

دینامیکی افزایش می‌یابد، برای خاکهای سخت و متوسط با

استقلال، سال ۱۳۸۸، شماره ۱، شهريور ۱۳۷۸

۹۷
شکل ۷- مقایسه تأثیر تحلیل دینامیکی با معادله خروج از مرکزیت طراحی چند این نامه

کاهش نسبت ابعاد پلان تا ${\frac{a}{b}} = 1$, خروج از مرکزیت دینامیکی کاهش می‌یابد و سپس تقریباً ثابت می‌ماند، اما برای خاکهای زمین، با $a = \frac{a}{b}$ خروج از مرکزیت دینامیکی کاهش می‌یابد و آنگاه تقریباً ثابت باقی می‌ماند.

۶- مقایسه خروج از مرکزیت طراحی با نتایج حاصل از تحلیل

در شکل (۷) تغییرات خروج از مرکزیت طراحی آسیب‌ناهایی در ایران، آمریکا، استرالیا، نروژ و نیوزیلند نسبت به خروج از مرکزیت استاتیکی دیده می‌شود. حاصل از تحلیل غیرکسانی دینامیکی نشان داد که برای خاک بسیار نرم $V_s = 0.5 \text{ m/s}$ در حالت $T_y = 1$, $\Omega = 1$ و $\frac{a}{b} = 1$ نشان داده شده است. به منظور مقایسه مقدار حاصل از تحلیل دینامیکی با روابط آسیب‌ناهایی برای خروج از مرکزیت اتفاقی در این مطالعه برای تحلیل دینامیکی پرتاب با $a = \frac{a}{b}$ در نظر گرفته شده است. این مقایسه از معادله زیر بدست می‌آید.

$$e_D = \frac{T}{V_s} + \frac{a}{b}$$

(۲۳)

به طوری که در این معادله T نگری پیچش سیستم درای خروج از مرکزیت و V_s نوری پیچش سیستم بدون خروج از مرکزیت است. V_s ردیابی و T میانگین حداکثر پاسخ سیستم نشان دهنده گناه‌گزار است. ۵-۱۴ اثر ابعاد پلان (a/b) تغییرات خروج از مرکزیت دینامیکی دیده شده که نسبت ابعاد پلان a/b, در شکل (۶) نشان داده شده است. همچنین که مشاهده می‌شود برای خاکهای سخت و متوسط با

استقلال، سال ۱۸، شماره ۱، شهریور ۱۳۷۸

۹۸
مقایسه آن با مقادیر پیشنهادی آیین‌نامه‌های مختلف در این قسمت سعی می‌شود، معادلهای برای خروج از مرکزیت طراحی ارائه شود به‌طوری که دارای شکل کلی مشابه معادله پیشنهادی آیین‌نامه‌های ولزی‌ها بوده و بر تابع تحلیل دینامیکی، در حالت قابل قبول منطبق باشد.

از طرفی، با توجه به بررسی نقش پارامترهای مختلف سازه‌ای در پاسخ ساختمان‌های نامتقارن با پایه انتقال‌ذابز مشخص شده که خروج از مرکزیت طراحی علاوه بر ویژگی‌های پارامترهای دیگر، سیستمی از جمله نسبت فرکانس چپ‌چشی به جنوبی و نسبت ابعاد پلان بستگی دارد. بنابراین، برای ارزیابی مقادیر منطقی‌تر پیچشی حاصل از عدم تقارن، لازم است که پارامترهای ضریب الذکر در محاسبه خروج از مرکزیت طراحی منظور شوند. در اینجا با استفاده از نتایج حاصل از تحلیل دینامیکی بررسی می‌شود، که برای به‌طوری که پیشنهاد می‌شود، این مدل به شیب ممای مقدار منحنی‌ای که بر اساس تحلیل رایانه‌ای بر اساس داده شده است، اندازه‌گیری و اصلاح شده است. با توجه به روند تغییرات تقبل به نسبت به و نسبت به پیشنهادی بی‌صرف‌بین بی‌شانس می‌شود

\[e_D = C_f C_a \left[\frac{\mu_1}{c_y} + \frac{\mu_2}{c_y/b} + \frac{\mu_3}{V_{c_y}/b} \right] e_S + \frac{b}{a/b} \] (22)

به‌طوری که \(C_f \) ضریب مربوط به تأثیر فرکانس چپ‌چشی به

\[C_f = \left(\frac{1}{1 + \Omega} \right)^{1/4} \Omega \leq 1 \] (22-الف)

\[C_f = \left(\frac{1}{1 - \frac{b}{a/b}} \right)^{1/4} \Omega > 1 \] (22-ب)

در معلولیت (22) ضریب مربوط به تأثیر نسبت ابعاد پلان

\[C_a = \left[\frac{\mu_1}{c_y} + \frac{\mu_3}{a/b} \right] \] (24)

ویژگی‌های (8) تغییرات تقبل به نسبت به و نسبت به پیشنهادی بالا ناشان می‌دهد. این شکل به شکلی دهد که روند تغییرات پیشنهادی، مشابه و نزدیک مقادیر حاصل از تحلیل رایانه‌ای و پیشنهاد بالا ناشان می‌دهد. این نشان می‌دهد که روند تغییرات مشابه و نزدیک مقادیر حاصل از تحلیل طراحی خروج از مرکزیت طراحی

- پیشنهادی به نتایج حاصل از تحلیل غیر کشسان دینامیکی و

واقتی تزئین‌های نبوده است، جدول (1) نشان دهنده نسبت خروج از مرکزیت مؤثر \(\frac{\mu_1}{c_y} \) نسبت تداخلی می‌شود، که مقدار آن حمام طورا که بعضی از آیین‌نامه‌های پیشنهاد داده‌اند. برای \(\frac{\mu_1}{c_y} \) نسبت، بلکه نسبت به خواهد بود. در واقع تغییرات ضریب تشدید خروج از مرکزیت

\[\frac{\mu_1}{c_y} = \frac{\mu_1}{c_y} \] (25)

یعنی \(\frac{\mu_1}{c_y} = \frac{\mu_1}{c_y} \) نسبت به \(\frac{\mu_1}{c_y} \) خلا نیست. آیین‌نامه‌های کانادا و

مکزیک شیب ثابت 1/5 را برای آن ارائه کرده‌اند که هرچند نسبت به

نتایج تحلیل دست‌پدیدان است، اما نسبت به مقادیر آیین‌نامه‌های

آی‌آب و نیروی اندازه‌گیری تحلیل نسبی‌تر است. روند تغییرات

EC8 مشابه تغییرات منحنی حاصل از

پیشنهادی آیین‌نامه

نتایج تحلیل دینامیکی است.

اگر شکل منحنی نشان می‌دهد که رابطه پیشنهادی آیین‌نامه

EC8 2800 یا آی‌آب و نیروی اندازه‌گیری ATC-3 امریکا و نیوزیلند 92 برای تمام و

مقادیر کمتر از مقدار واقعی دارد. مطالعات گزارش نشان می‌دهد که

\[e_D = \frac{\mu_1}{c_y} \] (24)

روند تغییرات مشابه تحلیل دینامیکی بوده و

به مقادیر آن تطبیک است.
شکل 9- مقایسه تأثیر نسبت a/b بر حرارتی خروج

در تعیین دینامیکی است، به عنوان دلیل اینکه معادله پیشنهادی ساده‌تر و قابل قبول‌تر است، مقادیر با توجه به جدول تالی نتایج حاصل از تحلیل نتایج داده که می‌تواند نیازهای ویژه است که معادله پیشنهادی مالیات‌های معطوف کاران باندی، بإسرافی خاصه در پایین

برای تغییرات (9) نسبت با برای پیشنهاد بالا و نتایج حاصل از تحلیل دینامیکی را نشان می‌دهد. این شکل نشان می‌دهد که معادله پیشنهادی (b/a) های مختلف، مقادیر (10) را به صورت زیادی در عدد نیاز دارد. با توجه به دنیا واحدهای انجام جهاد شده، این معادله می‌تواند در ارزیابی منطقی از پیچش حاصل از عدم تقارن با توجه به تأثیر اندک‌تر

خاک - سازه داشته باشد.

قلب دانی

این مطالعه نتایج بخشی از طرح تحقیقاتی بررسی موقعیت

پیچش آینه‌نامه‌ای سازه‌های ایران است که با حمایت مرکز تحقیقات

ساختن و استحکام به انجام رسیده است و بدن به‌وسیله از مستقیم و

کلیه کارکنان مرکز تحقیق و قدردانی می‌گردد.

نتیجه‌گیری

به منظور بررسی تأثیر اندرکنش خاک - سازه بر رفتار لرزه‌ای

سازه‌های نامناسب اثر پارامترها مهم سازه‌ای در پاسخ و پیشنهاد

معادله‌ای برای خروج از مرکزیت طراحی به منظور محاسبه لنگر

پیچشی ناشی از عدم تقارن پاسخ غیر کسانی مدل ایجاد آن در طبقه

با 8 درجه آزادی تحت یک گروه دانشجو گروه زلزله‌های لبه

شدید ایران به روش تحلیل دینامیکی در دانشگاه زمان انجام و میانگین

استقرار. سال 1683، شماره 1، شهریور 1378

100

