Ductility Evaluation of Prestressed Concrete Members

Ali R. Khaloo, and P. Bagheri,
Department of Civil Engineering, Sharif University of Technology

ABSTRACT - In this paper, moment-curvature behavior and ductility of prestressed concrete members based on nonlinear analysis is investigated. Influence of various design parameters on ductility of flexural members is determined according to appropriate materials models for stress-strain curves of concrete, prestressing steel and conventional reinforcement. Parameters studied include reinforcing index (w), compressive strength of concrete, partial prestressing ratio, effective prestressing stress, confinement, compressive steel ratio, type of prestressing steel and cross-sectional shape of members. The reinforcing index is the most influential parameter on ductility of prestressed members. This variable contains the influence of several other parameters, such as compressive strength of concrete and reinforcing ratio, and links prestressed, ordinary reinforced and partially prestressed concrete sections. For maximum permissible reinforcing index of 0.36β₁₁ based on ACI design code, curvature ductility is between 1.5 to 3.0 and for w=0.2, which is the maximum value allowed for moment redistribution, ductility is greater than 4.0, and for w less that 0.1, a ductility of greater than 10.0 is achievable. Influence of magnitude of ultimate strength of prestressing steel and cross-sectional shape on ductility is insignificant. Confinement has considerable effect on ductility.
فهرست علائم

\[\begin{align*}
A_p & \quad \text{نری سطح فولادی پیچ تیزگی} \\
A_s & \quad \text{نری سطح فولادی کشویی} \\
A'_s & \quad \text{نری سطح فولادی کشوری} \\
b & \quad \text{عرض بان در مقاطع بالا} \\
b' & \quad \text{عرض بان در مقاطع قمی} \\
d & \quad \text{فصل بین دو رنگ} \\
d_e & \quad \text{فصل بین دو رنگ کشوری} \\
d_f & \quad \text{فصل کشوری در فولاد کشوری} \\
d_f' & \quad \text{فصل دو رنگ فولاد کشوری} \\
x_f & \quad \text{نری سطح فولادی کشوری} \\
x'_f & \quad \text{نری سطح فولادی کشوری}
\end{align*} \]

1- مقدمه

علاوه بر مقاومت و قابلیت بهره‌وری در طراحی سازه‌ها توجه به فرمایشاتی در مکان‌های زیادی سازه در حال بارگیری نهایی هشدار قابلی و جلوگیری از خرابی و ایجاد توزیع نری‌ها در فولاد می‌آورد. اکثر بخش‌های جدایگانی را به تن مصالح و بین پیشینه‌ها اختصاص داده‌اند در حالی که به اعمالی تا حذف کننده پیشینه‌ای می‌شود. همچنین تحقیقات متعددی در مورد پروری نری در سازه‌های بین مصالح معمولی به عمل آمده است [1-2-3]. درحالی که در رابطه بین پیشینه‌های عمومی به مقاومت و کمک به نری پرداخته شده است [4-5-6]. کاربرد روزافزون اعمالی بینی به صورت بینی پیچ تیزگی احتیاج به مطالعه بیشتر بر این موضوع اشاره می‌شود. در این راستا به واسطه اساسی مؤثر بر رفتار مقاطع پیشینه‌های پرداخته شده است. در این راستا به واسطه اساسی مؤثر بر رفتار مقاطع پیشینه‌های پرداخته شده است.

2- موروری بر کارهای انجام شده تاکنون

عمدتاً تحقیق و مقاومت بینی پیچ تیزگی توسط محققین مختلف بر اساس همکاری گروه‌های جدید نری مورد بررسی قرار داده است. این محققین در دو مدل به صورت کشوری و پیچ تیزگی به هم مرور نمودند. تحقیقات این امر برای حل شیلی و حذف شکل‌دادن مشابه دو رنگ فولاد سلمند کننده، نسبت فولاد پیچ تیزگی به گی کل ساخته فولاد، مقدار

پارامترهای مورد تحلیل و فرضیات مربوطه است.
شکل ۱- نموداری از منحنی‌های تنش-کرش پین همان‌گونه که برای محصول و محصول با درصدی‌های مختلف نولاد محصول کنده

شکل ۲- رابطه تحلیلی تنش- کرش برای فولاد پیش تهیه

این برنی پیش تهیه‌گو و نوع و مقدار بازکردنی بوده است.

در مطالعه حاضر از ارزیابی پارامتری جامع از ترمی در مقاطع بین پیش تهیه و به صورت جزئی پیش تهیه براساس یک تحلیل غیرخطی انجام شد است. همچنین از مدل‌های دقیق رفتار مصالح و پارامترهای بیشتر وفاضل مناسب و محاسبه کاربردی استفاده به عمل آمد است.

شکل ۳- تحلیل غیرخطی

برای ارزیابی دقیق نرمی مقاطع بین پیش تهیه کامل و به صورت جزئی پیش تهیه یک تحلیل غیرخطی انجام شده است که جزئیات آن در زیر آورده شده است.

۳-۱-۱ فولاد پیش تهیه

در سال ۱۹۷۳ میلادی و پیشرویهای را برای فولاد مسلح کنده ارائه دادن که می‌توان از آن یک مجانب غیرقابل به دست آورده. برای این منظره‌ای‌ها از دو پارامتر Q و K که در Q تابع شبیه قسمت دوم

F = Ee \left[Q + \frac{1 - Q}{1 + \left(\frac{Ee}{kf} \right)^N \frac{f_y}{f_p}} \right]^N

Q = \frac{f_u - kf_y}{Ee - kf_y}

Ee = \frac{15100}{\sqrt{f_c}} \quad (1)

f_r = \frac{f_c}{f_p} \quad (2)

که در آنها f_c مقاومت فشاری بین برحسب

کیلوگرم در سانتی‌متر دوم است.
جدول ۱- ضرایب مورد استفاده در روابط تحلیلی تنش - کرنش برای چند نوع فولاد پیش تیزیده متجاوز

| نوع و مقاومت فولاد | پیش تیزیده | محدوده
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ارائه ارزشی حداقل ارائه شده در استانداردهای ASRM 1</td>
<td></td>
</tr>
<tr>
<td>میلدها</td>
<td>سیم</td>
<td>رشته (ج)</td>
<td></td>
</tr>
<tr>
<td>(MPa)</td>
<td>(162 MPa)</td>
<td>(186 MPa)</td>
<td></td>
</tr>
<tr>
<td>N = 3/423</td>
<td>N = 7/81</td>
<td>N = 8/77</td>
<td></td>
</tr>
<tr>
<td>K = 1/7437</td>
<td>K = 1/147</td>
<td>K = 1/1337</td>
<td></td>
</tr>
<tr>
<td>Q = 0/018</td>
<td>Q = 0/127</td>
<td>Q = 0/119</td>
<td></td>
</tr>
<tr>
<td>N = 7/1</td>
<td>N = 9/45</td>
<td>N = 9/234</td>
<td></td>
</tr>
<tr>
<td>K = 1/041</td>
<td>K = 1/035</td>
<td>K = 1/0418</td>
<td></td>
</tr>
<tr>
<td>Q = 0/0175</td>
<td>Q = 0/003</td>
<td>Q = 0/0117</td>
<td></td>
</tr>
<tr>
<td>برای یک از این</td>
<td>Eps = 1947</td>
<td>Eps = 19420</td>
<td></td>
</tr>
<tr>
<td>ارائه ارزشی حداقل</td>
<td>fpy = 980</td>
<td>fpy = 1980</td>
<td></td>
</tr>
<tr>
<td>ارائه شده در استانداردهای ASRM</td>
<td>fp = 1970</td>
<td>fp = 1970</td>
<td></td>
</tr>
<tr>
<td>ارائه ارزشی حداقل</td>
<td>fpu = 1100</td>
<td>fpu = 0/087</td>
<td></td>
</tr>
<tr>
<td>ارائه شده در استانداردهای ASRM</td>
<td>εpu = 0/041</td>
<td>εpu = 0/041</td>
<td></td>
</tr>
</tbody>
</table>

\[f_s = E_s \epsilon_s \] \[f_y = \epsilon_y \leq \epsilon_{sh} \] \[Y = \frac{AX + BX^T}{1 + CX + DX^T} \]

که در آن \(E_s \) کرنش \(E_s \) مدول کشسانی و \(\epsilon_{sh} \) کرنش تسلم

۱- محاسبه و ارزیابی نرمی اعضای پیش تیزیده مبتنی بر انتخاب

۲- تحلیل مقطع

۳- فولاد مسطح کننده معمولی

مدل منحنی کامل تنش - کرنش فولاد مورد استفاده براساس روابط پیشنهادی توسط ونگ، شاه و نعمان [12] است. این مدل بر پایه توده‌گیری خوشه‌های بالایی آزمایشگاهی بر روی تعداد زیادی میله آزمایشگاه فولادی با تشکیل تسمیع مختلف به دست آمده است.

مدل پیشنهادی سه محدوده کرنش را در نظر می‌گیرد.
فشاری بین است که با نریزان کششی خالص در اعضای که به طور خارجی تحت تنش محوری نبایستند برای است که تغییر مقدار است. تغییر مقدار است که به طور پایه شکل روابط ممانان و هاراجی [9] برای انتحال تسلیم (φ) که بر پایه شکل روابط ممانان و هاراجی [9] برای انتحال تسلیم استوار است استفاده به عمل آمده است. انتحال تسلیم از نقاط در حالت نهایی داده شده در شکل (2) به دست می‌آید که خط اول از امتداد قسمت خطی ایجاد منحنی نهایی - انتحال و خط دوم از امتداد قسمت نهایی منحنی به دست می‌آید.

3-2 انتحال تسلیم و نهایی

در این مطالعه از تعبیر پیشنهادی نمایان و هاراجی [9] برای انتحال تسلیم (φ) که بر پایه شکل روابط ممانان و هاراجی [9] برای انتحال تسلیم استوار است استفاده به عمل آمده است. انتحال تسلیم از نقاط در حالت نهایی داده شده در شکل (2) به دست می‌آید که خط اول از امتداد قسمت خطی ایجاد منحنی نهایی - انتحال و خط دوم از امتداد قسمت نهایی منحنی به دست می‌آید.

3-2-1 انتحال نهایی (φn) در این مطالعه مبتنی بر انتحال منحنی با حداکثر لیگار مساوی است. این می‌کند است انتحال به مقدار محافظه کارتانی در نرمی عضو شود به این علت که ظرفیت تغییر مکان قابل توجهی به مقدار حداکثر می‌تواند وجود داشته باشد. برای بررسی فرآیند این پارک و بالای [13] پیشنهاد کردند که انتحال نهایی منحنی با حداکثر لیگار مساوی است. در این تحلیلها تغییری به تدریج به مقاومت 85% لیگار حداکثر در تغییر شکل‌ها با می‌رسید. بدین معنی که بخش بعد از لیگار حداکثر عمداً به صورت انتقال به یک نیرو مورد با شیب کمی به طرف بالاست. لذا نتایج به دست آمده از این مطالعه در جهت محافظه کاران خواهد بود.

\[
\omega = \frac{A_{sfy}}{bdf_c^2} \quad \omega' = \frac{A_{sfy}'}{bdf_c' \rho_p} \quad \rho_p = \frac{A_{ps}}{bdf_p}
\]

برای پیشنهاد تنشی φp در فولاد پیشنهادی در ظرفیت نهایی یک مقعنه بینی از فرمول زیر می‌تواند در آزمایش‌های استفاده شده است.

\[
f_{ps} = f_{pu} \left(1 - \frac{\omega'}{\omega_0'} \right) \left(1 + \frac{d}{\rho_p} (\omega - \omega_0) \right)
\]

که در آن

\[
\frac{A_{sfy}}{bdf_c^2} \quad \omega' = \frac{A_{sfy}'}{bdf_c' \rho_p} \quad \rho_p = \frac{A_{ps}}{bdf_p}
\]

برای یک مقعنه حتمی m مثبت مناسب با پرایند نیرو در ناحیه

\[
\text{شکل ۲-۲} \text{ فشاری بین است که با نریزان کششی خالص در اعضای که به طور خارجی تحت تنش محوری نبایستند برای است که تغییر مقدار است. تغییر مقدار است که به طور پایه شکل روابط ممانان و هاراجی [9] برای انتحال تسلیم (φ) که بر پایه شکل روابط ممانان و هاراجی [9] برای انتحال تسلیم استوار است استفاده به عمل آمده است. انتحال تسلیم از نقاط در حالت نهایی داده شده در شکل (2) به دست می‌آید که خط اول از امتداد قسمت خطی ایجاد منحنی نهایی - انتحال و خط دوم از امتداد قسمت نهایی منحنی به دست می‌آید. انتحال نهایی (φn) در این مطالعه مبتنی بر انتحال منحنی با حداکثر لیگار مساوی است. این می‌کند است انتحال به مقدار محافظه کارتانی در نرمی عضو شود به این علت که ظرفیت تغییر مکان قابل توجهی به مقدار حداکثر می‌تواند وجود داشته باشد. برای بررسی فرآیند این پارک و بالای [13] پیشنهاد کردند که انتحال نهایی منحنی با حداکثر لیگار مساوی است. در این تحلیلها تغییری به تدریج به مقاومت 85% لیگار حداکثر در تغییر شکل‌ها با می‌رسید. بدین معنی که بخش بعد از لیگار حداکثر عمداً به صورت انتقال به یک نیرو مورد با شیب کمی به طرف بالاست. لذا نتایج به دست آمده از این مطالعه در جهت محافظه کاران خواهد بود.

\[
\omega = \frac{A_{sfy}}{bdf_c^2} \quad \omega' = \frac{A_{sfy}'}{bdf_c' \rho_p} \quad \rho_p = \frac{A_{ps}}{bdf_p}
\]

برای پیشنهاد تنشی φp در فولاد پیشنهادی در ظرفیت نهایی یک مقعنه بینی از فرمول زیر می‌تواند در آزمایش‌های استفاده شده است.

\[
f_{ps} = f_{pu} \left(1 - \frac{\omega'}{\omega_0'} \right) \left(1 + \frac{d}{\rho_p} (\omega - \omega_0) \right)
\]

که در آن

\[
\frac{A_{sfy}}{bdf_c^2} \quad \omega' = \frac{A_{sfy}'}{bdf_c' \rho_p} \quad \rho_p = \frac{A_{ps}}{bdf_p}
\]
فشاری و کششی و پیش تنیده قابل محاسبه می‌شود. سیس نیروهای بوجود آمده در فولادهای معمولی و پیش تنیده با توجه به روابط نش- کرنش در مدل اتخابی‌پردازی آنها و مطلوب مقدار هر کدام محاسبه می‌شود. مدل مقدار بن در قسمت‌هایی تاختیپش به تعداد محدودی نوار هم ضخامت به مراحل تاریک خیاطة این فرض که در هر نوار تنیده کرنش خاصی نشان دهنده نیروی فشاری محاسبه می‌شود.

پس از محاسبه تمامی نیروهای فشاری و کششی در مقطع، رابطه تعادل مورد بررسی قرار می‌گیرد و در صورت مقدار تا نیل به تعادل نیروی خارجی می‌شود. انتهای مقطع در حد کمترین کرنش در بن و یا فولاد پیش تنیده انجام می‌گیرد. پایان محاسبه نیروی تنشی یکی از محاسبه نیروی تنشی و سپس کل نیروی فشاری محاسبه می‌شود.

برنامه‌برداری پس از خوادن فاصله ورودی تامام مشخصات مقطع و نوع مدلسازی برای مصالح مورد استفاده تحریک مقطع را تا مقدار تناوبی کرنش در بن و یا فولاد انجام داده و سپس مقدار نرمی و اعداد مربوط نمودار تا نیل به تعادل خروجی داشته باشد. می‌شود. این برنامه قاری استمانه نیروی تنشی یا با (10) اشکال مستطیلی، I، T، شکل و جعبه‌ای، (2) مدلی به مبحور نشده به دو صورت استفاده از روابط محاسبه و با کمک محاسبه واقعی تنشی-کرنش بین تا مقاومت مقدار معتبر را در حدود محدودیت به همراه حاصلات کننده می‌شود و پس از آن با فرض گسترده ترکیبی این خاننده مقاومت سرعت در نظر گرفته شده است. در هر متر بغل از بارگذاری برای هر مقدار از کرنش در دوربین نار فشاری بین (C) و فرض یک مقاومت اولیه برای p منطقه کرنش در مقطع، مقدار کرنش در فولادهای استاندارد، کرنش، سیم و میله فولادی با مقاومت‌های مختلفی به ترتیب 1378، 735 و 160 کیلوسیکا (ksi) و همچنین (5) مدل فولاد مسجح کننده معمولی برای
شکل ۵- روند نمای کل نحوه تحلیل ضرخاطی

بازی بررسی آر اثر پارامتر روی رابطه معان - انتخاب و نرمی مقا伬
یک حالت ممنا در نظر گرفته شده و فقط پارامتر مورد مطالعه تغییر کرده است. حالت مبانی مقعفل مستطیل R
شکل با مشخصات زیر است

- فولادهای کششی و فشاری با مقاومت تسیم

\[
f_y = 60 \text{ ksi (416 MPa)}
\]

- تاندون پیش نهاییی با مقاومت نهایی

\[
f_{pu} = 270 \text{ ksi (1863 MPa)}
\]

فولاد کششی و فشاری با استفاده از روابط ونگ، شاه و تمام تحمل
کنند. روند نمای کل نحوه تحلیل مقعفل در شکل (5) را ارائه شده است.

۴- ارزیابی پارامترهای مؤثر روی نرمی

از سه شکل متدول برای مقعفل بنتی پیش نهاییی به صورت
مستطیل R، \(I \), \(T \) شکل در این تحلیل استفاده شده است.
مشخصات مقعفل در شکل (6) و ابعاد آن در جدول (2) آمده است.
ین میانگین اصلی (سانتی‌متر مربع یک آزمایش معمولی) کاملاً متفاوت باشد. (۲) در صورت فرمول (۱) با توجه به اینکه یک، با محتوای منفی اعمال یافته و پس از افزایش در (که افزایش در این معنی که با تقویت ناحیه فشاری مقطع، ظرفیت ناحیه کشنده نیز افزایش پیدا می‌کند) برای این نرخ مقطع با بررسی اثر این نرخ تفاوت خواهد بود.

$ f'_{c} = 52 \text{ MPa}
\gamma = 0
\text{PPR} = 1
$

- نتیجه نشان داده شده است. با توجه به اینکه در معادله (۲) مقدار $ f'_{c} $ در مخرج قرار داده به ازای یک $ f'_{c} $ قابل مقایسه ولاد کشنده یک می‌باشد. به همین دلیل نتایج به دست آمده از مطالعه ارث از $ f'_{c} $ در نرم‌سی مقطع می‌تواند با نتایج انتظاری از تحلیل با فرض $ \rho_{p} = \frac{A_{ps}}{bd_{p}} $ است. سال ۱۳۷۸، شماره ۱، شهریور
شکل 7- اثر مقاومت بتن روی منحنی ممان - انتحا برای اندازه‌های فولادگذاری مختلف

مقادیر f'_c آن یافته در مقاومت بتن یوز 2/0، نرمی از افزایش یافته و طول قسمت غیرخطی منحنی یا نرمی کاوش می‌یابد. حداقل نرمی بتن یوز 3/0 است. مقدار کاوش بتن نرمی کاوش می‌یابد لیکن به طور کلی مقدار این کاوش کمتر از افزایش نرمی ناشی از افزایش در f'_c است. لذا از دید طراحی در موارد استفاده از بتن با مقاومت بالا بسته به مقدار مقاومت بیرای حفظ نرمی یا باید از میزان f'_c کاست.

مقدار f'_c در مقاومت بتن مقدار لنگر نهایی و لنگر تسیم افزایش یافته و طول قسمت غیرخطی منحنی یا نرمی کاوش می‌یابد. همچنین در مقادیر بالای f'_c مقدار کاوش بتن نرمی کاوش می‌یابد لیکن به طور کلی مقدار این کاوش کمتر از افزایش نرمی ناشی از افزایش در f'_c است. لذا از دید طراحی در موارد استفاده از بتن با مقاومت بالا بسته به مقدار مقاومت بیرای حفظ نرمی یا باید از میزان f'_c کاست.

مقدار f'_c در مقاومت بتن مقدار لنگر نهایی و لنگر تسیم افزایش یافته و طول قسمت غیرخطی منحنی یا نرمی کاوش می‌یابد. همچنین در مقادیر بالای f'_c مقدار کاوش بتن نرمی کاوش می‌یابد لیکن به طور کلی مقدار این کاوش کمتر از افزایش نرمی ناشی از افزایش در f'_c است. لذا از دید طراحی در موارد استفاده از بتن با مقاومت بالا بسته به مقدار مقاومت بیرای حفظ نرمی یا باید از میزان f'_c کاست.
در شکل (۹) معنی‌های ممکن - انتخاب برای یکی از مقادیر فشار ۶۵ MPa و با هم سطحی از محصول‌شگی که به نسبت حجم‌های خاموش محصول‌کننده به حجم‌های ناشا داده شده‌اند آمده است. برای هر یک از مقادیر \(\sigma \) بخش اولیه محصول‌ها بر هم منطبق است.

برای مقادیر کم \(\sigma \) محصول‌شگی اثر ناب‌توجهی روی منحنی لنگر- انتخاب و لنگر نهایی ندارد و برای مقادیر بالاتر \(\sigma \) بیشتر

از ۱/۱۰ با اندازه \(n \) محصول‌شگی بسیار قابل توجه شده و طول قسمت غیرخطی منحنی در مقایسه با منحنی بدون محصول‌شگی انفراش چشم‌گیری بی‌پدید می‌آید و دارای شبیه کمتری می‌شود.

نرمی مقطع در حالت محصول‌شگی به‌دست می‌آید.

این اثر در \(m \) های بین ۱۰/۱ تا ۴۰/۰ بیشتر و مطلوب‌تر است.

\(m = \frac{\rho_{pi}}{\rho_{f}} \)

که در انتخاب \(n \) بر اساس شکل (۱۱) مقدار \(\rho_{pi} \) از ۲/۰ تا ۱/۰ و \(\rho_{f} \) از ۲/۰ تا ۰/۵، انتخاب می‌شود.

\[d_{c} = PPR \times d_{p} + (1 - PPR) \times d_{s} \]

در شکل (۱۰) بر اساس شکل (۱۱) مقدار PPR از ۱/۰ تا ۱/۰ و \(d_{s} \) از ۲/۰ تا ۱/۰، انتخاب می‌شود.

\[F_{s} = \frac{A_{ps} f_{ps}}{A_{ps} f_{ps} + A_{s} f_{s}} \]

در شکل (۱۲) بر اساس شکل (۱۱) مقدار PPR از ۱/۰ تا ۱/۰ و \(d_{s} \) از ۲/۰ تا ۱/۰، انتخاب می‌شود.

\[F_{s} = \frac{A_{ps} f_{ps}}{A_{ps} f_{ps} + A_{s} f_{s}} \]

در شکل (۱۳) بر اساس شکل (۱۱) مقدار PPR از ۱/۰ تا ۱/۰ و \(d_{s} \) از ۲/۰ تا ۱/۰، انتخاب می‌شود.

\[F_{s} = \frac{A_{ps} f_{ps}}{A_{ps} f_{ps} + A_{s} f_{s}} \]

در شکل (۱۴) بر اساس شکل (۱۱) مقدار PPR از ۱/۰ تا ۱/۰ و \(d_{s} \) از ۲/۰ تا ۱/۰، انتخاب می‌شود.

\[F_{s} = \frac{A_{ps} f_{ps}}{A_{ps} f_{ps} + A_{s} f_{s}} \]

در شکل (۱۵) بر اساس شکل (۱۱) مقدار PPR از ۱/۰ تا ۱/۰ و \(d_{s} \) از ۲/۰ تا ۱/۰، انتخاب می‌شود.

\[F_{s} = \frac{A_{ps} f_{ps}}{A_{ps} f_{ps} + A_{s} f_{s}} \]

در شکل (۱۶) بر اساس شکل (۱۱) مقدار PPR از ۱/۰ تا ۱/۰ و \(d_{s} \) از ۲/۰ تا ۱/۰، انتخاب می‌شود.

\[F_{s} = \frac{A_{ps} f_{ps}}{A_{ps} f_{ps} + A_{s} f_{s}} \]

در شکل (۱۷) بر اساس شکل (۱۱) مقدار PPR از ۱/۰ تا ۱/۰ و \(d_{s} \) از ۲/۰ تا ۱/۰، انتخاب می‌شود.

\[F_{s} = \frac{A_{ps} f_{ps}}{A_{ps} f_{ps} + A_{s} f_{s}} \]

در شکل (۱۸) بر اساس شکل (۱۱) مقدار PPR از ۱/۰ تا ۱/۰ و \(d_{s} \) از ۲/۰ تا ۱/۰، انتخاب می‌شود.

\[F_{s} = \frac{A_{ps} f_{ps}}{A_{ps} f_{ps} + A_{s} f_{s}} \]

در شکل (۱۹) بر اساس شکل (۱۱) مقدار PPR از ۱/۰ تا ۱/۰ و \(d_{s} \) از ۲/۰ تا ۱/۰، انتخاب می‌شود.

\[F_{s} = \frac{A_{ps} f_{ps}}{A_{ps} f_{ps} + A_{s} f_{s}} \]
شکل 9- اثر محصور شدگی روتی منحنی سمان- انتقال برای اندازه‌های نولادگذاری مختلف (منحنی‌های با نرمی کمتر دارای مقدار \(\varphi \) پایین‌تر)،

کاوش در فولاد معمولی را با برای \(m \) ثابت در پرداز. منحنی‌ها نشان می‌دهند که برای تمامی مقادیر \(m \) با کم شدن PPR به حداکثر نظریت نگر مقطع اضافه شده و به لگل تسلیم نقطه اضافه می‌شود و این در حالی است که از طول قسمت غیرخطی (مومسی) منحنی کاسته می‌شود.

\[f_{p0} = 0.4 - 0.7 \times \varphi \]

با کاوش در مقدار نیروی پیش‌تنگی مؤثر، از مقدار انحنای منحنی اولیه \(f_{p0} \) کاسته می‌شود. دیگر اینکه تقرباً تمامی منحنی‌های با \(\varphi \) پایین‌تر در حوالی نگر جداییک به منحنی‌های با \(\varphi \) بالاتر.
شکل ۱۰- اثر محصول شناختی روی رابطه بین نرمی و انرژی فولادگذاری

۴-۵- نسبت نبرور در فولاد فشار (۷)
ین نسبت نشان دهنده نسبت نبرور در فولاد فشاری در حالت تسلیم به کل نبرور کششی مقعط است و طبق رابطه زیر تعریف می شود.

\[
\gamma = \frac{A_s f_y}{A_p f_{pu} + A_s f_y} \quad (10)
\]

که مقادیر \(\gamma\) می توانند حداقلی برای صفر (حالت بدون فولاد فشاری) داشته باشند.

اثر مقادیر \(\gamma\) به نسبت نبرور در فولاد فشاری، در محاسبه نسبت نبرور در فولاد فشاری (۱۵)

یاد شده است. در این شکل یکی از افزایش در \(\gamma\) نتیجه های پس از لغو حداکثر یا اضافه شده در \(\gamma\) با رفتار مقاومت خمشی کامپرتی به نماینده به طور کلی اثر \(\gamma\) بر روی شکست محصول نسبت به عنوان میانگین برای گروه نرمی در طراحی عضو به حساب نمی آید. نرمی در \(\gamma\) های بزرگتر از ۱/۱ تقریباً هیچ گونه دیگری از \(\gamma\) و فقط برای \(\gamma\) های کوچکتر با افزایش در \(\gamma\) نرمی کاهش پیدا می کند، شکل (۱۶).

*می‌پیونددن، شکل (۱۳). برای هر مقادیر ثابت \(\gamma\) به ویژه برای مقدار بزرگتر از ۰/۵ اختلاف بین قابلیت لنگری‌پذیری برای یک انحنای خاص قابل توجه است. مثلاً برای \(\gamma = 50/25/30\), \(\gamma = 0/25/50\) و \(\gamma = 0/25/0\) به ترتیب برای ۵۵, ۷۲ و ۷۷ های پایین کمتر است، البته از نظر عادی قابل توجه است. با افزایش مقادیر \(\gamma\) نسبت \(\gamma\) منطقه موسمان منحنی \(M_{\gamma}\) مستقل از \(\gamma\) افزایش می‌یابد.

نرمی مقایسه شده در شکل (۱۲) نشان دهند در کلاً این مسئله است که به عمل آفایی بیشتر کمپرسیون در محیط کمپرسیون در محیط کمپرسیون با کامپرتی این نسبت کوچک تر می‌باشد و نرمی کمتری به دست می آید. به عبارت دیگر با افزایش مقادیر \(\gamma\) نرمی نیز افزایش می‌یابد. مقدار کامپرتی نرمی از طول قسمت شیرخیکی و بعد از لغو حداکثر با اضافه شده در \(\gamma\) با رفتار مقاومت خمشی کامپرتی به نماینده به طور کلی اثر \(\gamma\) بر روی شکست محصول نسبت به عنوان میانگین برای گروه نرمی در طراحی عضو به حساب نمی آید. نرمی در \(\gamma\) های بزرگتر از ۱/۱ تقریباً هیچ گونه دیگری از \(\gamma\) و فقط برای \(\gamma\) های کوچکتر با افزایش در \(\gamma\) نرمی کاهش پیدا می کند، شکل (۱۶).
شکل 11- اثر نسبت پیش تیزیگی جزئی روی منحنی ممان انتحاری برای اندازه‌های فولادهای مختلف

شکل 12- اثر نسبت پیش تیزیگی جزئی روی رابطه بین نرمی و اندازه‌های فولادهای مختلف

استقلال، سال 18، شماره 1، شهریور 1378
شکل 11- اثر تنش پیش تیدیگی مؤثر روی منحنی ممان - انتخاب برابر انداشتهای نولادگذاری مختلف

شکل 12- اثر تنش پیش تیدیگی مؤثر روی رابطه بین نرمی و انگیزه نولادگذاری
شکل 15 - اثر نسبت فولاد نشانی روی منحنی میان - احنا برای انیسیهای فولادگذاری مختلف

شکل 16 - اثر نسبت فولاد نشانی روی رابطه بین کربن و انیسی فولادگذاری

استقلال: ۱۳۷۸، شماره: ۱، شهروند
نرمی اعضای پیش تهیه‌کننده کامل و جزیی پیش تنیزه بتنی پرداخته شده
است. بر اساس یک تحلیل غیرخطی انجام شده، نتایج زیر حاصل
شد است.

۱- اندازه فولاد کنار (MP) مناسب‌ترین متغیر مستقل برای بیان
رفتار نرمی شکنی است. این متغیر از چندین متغیر اساسی
دیگر مانند مقاومت فشاری بتن و نسبت فولادگذاری را در
برنامه‌ریزی علاوه بر این چون بخش کننده نتیجه بتنی شاخ
در فولاد به نیروی فشاری در بتن است، اثر فولاد فشاری نیز در آن
محل‌های شده است.

۲- نرمی برای تهیه انواع مقطع، مقادیر نیروی پیش تنیدنی مؤثر
(fpc) نسبت فولاد فشاری (σ) و نسبت پیش تنیدنی جزئی
(PPR) با یک رابطه شدیدا، که ردیابی می‌باشد. در طراحی برای بهره‌برداری
در نرمی بالایی فولادگذاری را کاهش داده است. این عمل ممکن است
با اضافه کردن به پرفورماتیوی A1 برای صورت بی‌پریشی
به طور کلی اگر چه با کاهش مقدار مقاومت های‌ای فولاد، نرمی
از افزایش می‌باید با توجه به اینکه برای انجام پیش تنیزه بتن
چنین اتفاوهای مختلفی نیز تولید آن که باعث قربانیت
لذی معادلات نرمی و ضعف موسمی بخود مشاهده شده آمده برای
برخورد این در پس کلیه مقادیر m را برای نرمی بالاتری است.

۳- افزایش به مقاومت فشاری بتن از 26/7 تا 80 میلی
کاهش در نرمی تا حدی اثبات می‌شود. این کاهش به مقاومت
اندیس فولادگذاری پایین بستگی است.

۴- نرمی عضای سازه‌ای بتن آرمز و پیش تنیزه و انجام
محصورشدنی به نحو قابل توجه‌تر کربن‌سی ایجاد می‌شود. اثر صورت
پیش تنیزه بر تغییر فولادگذاری می‌باشد. از طریق این
ترک‌خوردگی سیستم به هم توده‌کننده.

۵- برای تهیه مقدار مساوی از اندیس فولادگذاری که افزایش
در ورود نرمی با تغییر دادن (m) با توجه آرم معمولی اجاه
از 50/0 تا 50/1، نرمی پیش تنیدنی (fpc) با به‌طور انتخاب از مقدار
کاهش در نرمی مخازن پیش تنیدنی (PPR) که به اینکه
بینی دارد. این امر برای نیروهای با
۷- برای مقادیر ثابت اندازه‌گیری فولادگذاری با افزایش در نسبت
فولاد (A) مقدار قطعی‌تر خشکی لگر در مقع در نقطه به نظر قابل
ملاحظه‌ای افزایش یافته‌ای باید در حالت که تاثیر قابل توجهی در نرمی
برای 81/0/10 دارد. دلیل این امر به تغییر در
رنگ بُری گردیده، بدین
صورت که در m ثابت با افزایش در A1 مقدار
اجا در نقطه به نظر قابل توجهی در نرمی
مقطع بدون کاهش قابل توجهی در نرمی می‌شود.
شکل 17- اثر مقاومت نهایی فولاد پیش تزیده روی منحنی مماس - انحنا برای فولادگذاری مختلف

شکل 18- اثر مقاومت نهایی فولاد پیش تزیده روی رابطه بین نویم و اندرس فولادگذاری
شکل ۱۹ - اثر شکل مقطع روی مانندی ممکن - انحنا برای اندازه‌های فولادگذاری مختلف

شکل ۲۰ - اثر شکل مقطع روی رابطه بین نرمی و اندازه فولادگذاری

استقلال، سال ۱۳۷۸، شماره ۱، شهريور
مقادیر بالاتر از ۲/۵ در این مطالعه به دست آمده است. نریمی خمشی ۱۰ و بالاتر برای مقادیر ۳۳/۷ درصد از ۱۰۰۰ قابل حصول است.

قدراتی

پدید و سیله از حمایتهای معاونت پژوهشی دانشگاه صنعتی شریف در انجام این مطالعه قدردانی به عمل می‌آید.

مراجع

14. "Building Code Requirements for Structural Concrete (ACI 318-95)," American Concrete Institute, pp. 369, 1995.