Design and Realization of an Improved De-Q-ing Circuit for Regulation of Modulator Output Pulse Amplitudes in a Radar Transmitter

H. Farzanehfard, Z. Ghassemi and H. Moghbeli

Department of Electrical and Computer Engineering, Isfahan University of Technology

ABSTRACT- In order to achieve better regulation in pulse amplitudes produced in radar transmitter modulators, De-Q-ing method is used and new circuits are proposed to improve regulation [1,2]. In this

* Assistant
** Dean
فهرست علامات

<table>
<thead>
<tr>
<th>نکات معمولی</th>
<th>علامت</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمایشکننده</td>
<td>CN</td>
</tr>
<tr>
<td>واحدها</td>
<td>CΜ</td>
</tr>
<tr>
<td>سیستم</td>
<td>HVDC</td>
</tr>
<tr>
<td>سیستم</td>
<td>HVDVDV</td>
</tr>
<tr>
<td>زمان 2 لام</td>
<td>q _L</td>
</tr>
<tr>
<td>زمان 2 لام</td>
<td>q _I</td>
</tr>
<tr>
<td>نمایشکننده</td>
<td>N_CN</td>
</tr>
<tr>
<td>نمایشکننده</td>
<td>N_COMP</td>
</tr>
<tr>
<td>نمایشکننده</td>
<td>N_HVDC</td>
</tr>
<tr>
<td>نمایشکننده</td>
<td>N_HVDVDV</td>
</tr>
<tr>
<td>نمایشکننده</td>
<td>N_I</td>
</tr>
<tr>
<td>نمایشکننده</td>
<td>N_L</td>
</tr>
<tr>
<td>نمایشکننده</td>
<td>N_NCE</td>
</tr>
</tbody>
</table>

1 - مقدمه

دولانرین 1، 2 با پالس در دستگاه‌های گوناگونی مانند سیستم‌های سیستم‌های سیستم‌های مولود، تجهیزات پژوهشی و سیستم‌های رادار وظیفه تنظیم پل‌های اثری را عهده دارد که در این مقاله جایگاه و کاربرد آن در سیستم‌های رادار پل‌های باربر توجه قرار می‌گیرد.

در رادیویی پالس امواج الکترومغناطیسی توسط زمان 2 (هیپاس پالس) از طریق پیک که به عنوان مدیا و توسیع آن در فضا منتشر می‌شود که این کارآمد و یک فرکانس مشخصی کمک می‌کند. ارسال امواج در مرز زمان 2 سخت‌سازی آن است که فرستنده لامپ RF توسط یک سیگنال مناسب عملیات و وصل شود. این سیگنال همان امواج پالس است که سیستم‌ها با نوازی بالا به یهی دیگر کارکرده تولید می‌شود. تمام امواج پالس از این تصویب‌کننده به طور مستقیم از یک دیگر شده و در مرز زمان 2 توسط یک سیگنال قابل کنترل به پای اعمال کننده مشترک می‌شود.

[1] هدایت فصل داده شده است.

2 - معرفی مدار خشک کوپسی مدار زوناتسی بهبود یافته

در روش خشک بخیت مدار رزوناتس در صورت عدم تخلیه کامل از تریزی چوک، پیک جریان صورتی از آن تا چند برابر مقدار پیک جریان مدار رزونانس افزایش یافته و سپس افزایش تلفات چوک و تغییرات ایمن می‌شود. همچنین در صورت تخلیه این ارزو در مقاومت دشواری چوک، به مدت زمان پنج برابر تنا

استناد، سال 18 شماره 10، اسفند 1378
شکل 1- مدار تنظیم خشی سازی کننده مدار رزونانس با پرگش‌ت انزیه به منبع

زمان‌یاب مدار برای تخلیه کامل چرخ نیاز است که با توجه به محاسبه‌هایی که در انتخاب مقاومت‌های بار و مدت زمان، ممکن است تخلیه کامل چرخ امکان‌پذیر نباشد. در صورتی که توسط یک مدار کمک‌یافته انتزاعی، باقیمانده در چرخ شارژه به منبع تغذیه یاده‌کننده شود، علاوه بر بهبود رفتار میدان نسبت به شرایطی که ایجاد شده کمک‌یافته نیز بوده و باعث بهبود کیفیت چرخ شارژه برای دو روابط زیر به هدست می‌آید:

\[V_{N} = V_{c} = (1+K/100) V_{DC} (1-cos \alpha) \]

\[V_{N} = 2 (1-K/100) V_{DC} \]

\[\alpha_{min} = cos^{-1} \left(\frac{2K-100}{K+100} \right) \]

بهینه ترتیب برای داشتن یک خروجی تنظیم شده‌ای (با فرض /K تغییرات مجزا بر روی آن) با استفاده از مدار کمک‌یافته. \[\alpha_{min} \] ماجرا چرخ شارژه در زاویه آش افتاده نشود.

۳- طراحی و تنظیم حداکث زاویه آش ترمیستور مدار خشی سازی کردن مدار رزونانس

بمنظور تنظیم دامنه بالای ولتاژ و جلوگیری از وابستگی آنها به تغییرات ولتاژ تغییر، پس از رساندن ولتاژ PFN مورد نظر، ترمیستور خشی سازی کردن مدار رزونانس آن را می‌شود. بنابراین زاویه آش این ترمیستور تابعی از دیدوی تغییرات ولتاژ PFN است. اگر \[K \] درصد تغییرات مجزا ولتاژ تغییر (DC) مقدار اندازه‌گیری چرخ شارژه و \(\omega \) فرکانس مدار رزونانس باشد،
از طرفی طبق تعریف تابع کسینوس همواره با یکی شیرش می‌باشد. بنابراین رابطه (11) به‌عنوان یک رابطه نهایی برای انتخاب N_{cc} و N_{cx} به‌عنوان کیفیت مناسب شده است.

\[
100\cdot 3K \leq \frac{N_{cc}}{N_{cx}} \leq \frac{1000\cdot 3K}{100+K}
\]

با فرض 5% تغییرات میزان برای ولتاژ نجفیه و با توجه به رابطه (3)، حداقل ذاوی آتش تریستور خشی سازی کنیت مدار

\[
N_{N_{cc}} \leq 2V_{N_1}
\]
در صورتی که مدار معادل الکتریکی چوک شارژ که در این حالت همانند یک ترانزیستر است به‌جا مانده آن قرار داده شد مبدل الکتریکی مدار به صورت شکل (17) بوده می‌شد.

تابع \(f(L_i) \) با توجه به مدار معادل که در شکل (2) نشان داده شده است از پیروی قرار دادن انرژی ذخیره شده در سلولهای پراکنده با تغییرات انرژی خازن‌هایی محاسبه می‌شود. به عبارتی در لحظاتی که ترمیم خشونت مناسب شده‌باشد مسکنی در اثری که در جوشان در چوک شارژ \(L_p \) و در شرایطی که در \\(L_c = \frac{V_T^2}{1-\cos \phi} \) و در سلولهای پراکنده ثابت \(L_p \) است.

انرژی چوک شارژ به شدت تغذیه برگردانده شده اما انرژی موجود در سلولهای پراکنده باعث آن شارژ مقدار ولتاژ \(V_N \) می‌شود. اگر \(C_n \) خسته کننده باشد ولتاژ فنری با شدت افزایش مقدار ولتاژ چوک شارژ \(V_N \) می‌شود از روابط زیر محاسبه می‌شود.

\[
\Delta V = \left(I_p \sin \alpha \cdot L_c \right) / [\gamma C_n (V_{Nf} - V_{DCf}) (1 + \frac{N_p}{N_c})]
\]

\[
\Delta V = \frac{L_p \cdot I_p}{\gamma C_n V_{Nf}}
\]

\[
\Delta V = f(L_i)
\]

در صورتی که در رابطه \(\gamma \) به‌جا می‌آید پیک چرخان داده شود و حاصل از طریق \(I_p \sin \alpha \) با محاسبه ولتاژ \(V_N \) می‌شود. در طرف اولیه چوک شارژ است.
\[
\omega_d = \frac{V_l}{L_c \cdot C_N}
\]
که در رابطه بالا جایی اولیه چرخ شارژ در شروع خنثی سازی کهٔ مدار زوئنتان است.
\[
t_d = \sqrt{L_c \cdot C_N \cdot \tan^{-1} \left(\frac{L_c}{L_f} \cdot \tan(\alpha) \right)}
\]
(22)

با جایگذاری \(C_N\) در حساب پریده مدار شارژ، ت و سپر پارامترها در رابطه (22) و با توجه به اینکه نسبت مقدار اندوکتانس پراکنده به اندوکتانس چرخ شارژ مقدار کوچکی است، بدین‌طوری که زمان لازم برای تخلیه انرژی سلفهای پراکنده درصد کوچکی از زمان لازم برای شارژ است.
\[
t_d = \frac{T}{\pi} \cdot \sqrt{\frac{L_c}{L_f}} \tan^{-1} \left(\frac{L_c}{L_f} \cdot \tan(\alpha) \right)
\]
(23)

به منظور انتقال تمام انرژی ذخیره شده در چرخ شارژ در طی مدت خنثی سازی، که برای کنترل مدار زوئنتان به منع تغذیه به زمان \(t_q\) تیزی است. در صورتی که جریان چرخ شارژ در طی مدت خنثی سازی که برای کنترل مدار زوئنتان با \(t_q\) ممکن است این شکل داشته باشد، شارژ، رابطه آن به صورت زیر بیان می‌شود.
\[
I_{dq}(t) = \left(\frac{V_{dc}}{L_c} \right) (\frac{N_{cc}}{N_{cc}}) t + I_0
\]
(24)

\[
I_q = \left(\frac{T}{\pi} \right) \left(\frac{N_{cc}}{N_{cc}} \right) \sin(\alpha)
\]
(25)

\[
t_q \mid_{max} = \frac{T}{\pi} \left(\frac{\sqrt{2} \text{K} \cdot \sqrt{2} \text{K}}{100.3 \text{K}} \right) = \frac{10}{\pi} T \left(\frac{\sqrt{2} \text{K}}{100.3 \text{K}} \right)
\]
(26)

در رابطه (26) با فرض 5\% تغییرات مجاز برای خط تغذیه، برای انتقال کامل انرژی ذخیره شده در چرخ شارژ به منع تغذیه درصدی از پریده مدار شارژ به مدت حدود 90\%\) \(t_q\) در زمان لازم برای تخلیه کامل چرخ شارژ به سطح موردانظر \(V_{dqm}\) می‌شود. این زمان به یک توجه به پریده تکرار پالس‌ها به‌طور گسترده در مدارهای انتخابی شده از قطع تریستور شارژ سوپریش دارای شکلی است. به‌طور کلی، ضعف مدارهای انتخابی در زمان لازم برای تخلیه کامل چرخ شارژ به سطح موردانظر افزایش می‌شود.

\[
i(t_d) = (V_{dc} - V_{n_s}) \left(\frac{C_N}{L_c} \cdot \sin(\omega_d t_d) + I_0 \cos(\omega_d t_d) \right)
\]
(27)

7- محاسبه زمان نهایی لازم برای تخلیه سلفهای پراکنده (\(t_q\)) و چرخ شارژ (\(t_d\))

برای انتقال تمام انرژی ذخیره شده در سلف \(L_f\) به خانه‌های پن در صورتی که این مدت زمان لازم برای شارژ اضافی مقدار فراهم نشود و پس از شارژ نهایی سوپریش دارای شارژ، به علت پریده پس از تریستور، مدارهای انتخابی در طول مدت مدت شکلی به سطح موردانظر \(V_{dqm}\) می‌شود. این زمان به یک توجه به پریده تکرار پالس‌ها به‌طور گسترده در مدارهای انتخابی شده از قطع تریستور شارژ سوپریش دارای شکلی است. به‌طور کلی، ضعف مدارهای انتخابی در زمان لازم برای تخلیه کامل چرخ شارژ به سطح موردانظر افزایش می‌شود.

8- نحوه انتخاب تریستور و طریق افزایش سطح افزایش

از مراحلی استفاده از چرخ شارژ به سپریچپ ثانویه که‌اش سطح
واتلاز در مدار خشی سازی کیفیت مدار رزروانس است. بدین ترتیب نیروی روتوری پایین‌الافاقی قابلیت تحمیل واتلاز و پیک جریان

\[
\frac{V_{DC}}{V_{N}}
\]

را افزایش دهد. با توجه تغییر کامل چرخش در طی زمان خشی سازی کیفیت مدار رزروانس، مقدار متوسط جریان از رابطه زیر محاسبه می‌شود.

\[
I_{q ave} = \frac{N_{c e}}{T} . t_q . PRF
\]

که \(\bar{t}_q\) مدت زمان هدایت ترسیم‌بردار خشی سازی کیفیت مدار رزروانس و رکنش تکرار پالس‌ها و \(I_{q ave}\) مقدار متوسط جریان از طریق رابطه جریان در طول مدت انجام خشی سازی کیفیت مدار رزروانس و با توجه به زمان تخلیه چرخ \((t_{q})\) محاسبه می‌شود. همچنین فاصله‌های اندازه‌گیری با استنادی قابلیت تحمیل ولت انتقالی را نشان می‌دهد. برای این منظور تعداد سری بی‌پیش‌تر ثابت \(N_{s}\) (طرف ولت بالا) از رابطه زیر به‌دست می‌آید.

\[
N_{s} = \frac{V_{DC}(KV) . t_q . (\mu s) . 10^{-6}}{B(KG) . A_{c}(cm^2)}
\]

در رابطه بالا، \(B\) حداکثر قدرتی نفوذ در هسته و \(A_{c}\) سطح مقطع هسته مورد استفاده است.

9- مدلسازی رایانه‌ای مدار خشی سازی کیفیت مدار رزروانس به‌وسیله PSpice

به منظور شناسایی دادن صحبت برترای روابط به‌دست آمده مدار

شکل (۲) توسیع ترسیم‌بردار شیب‌سازی سه‌بعدی است. [۲] در PSpice شیب‌سازی مدل ترسیم‌برداری‌های شارز و اتلاف در مدار RLC از مدل AC آن پاییز ترسیم‌سازی کیفیت مدار رزروانس است. استفاده شده است. [۲] برای کم درک مان اجرا برای پایه، به‌عوامل شکل دهده بازی الکتریکی بالای جریان وادار می‌گردد. با استفاده از بزرگ‌ترین اندازه‌گیری مقدار از این مقادیر مقدار واتلاز از طرفین خازن‌نازی، در زمان اندکی واروندهای مقدار است به لحاظ بین طرفین خازن‌نازی و اندازه‌گیری با هزینه، جریان‌نازی، تپه در پیشون در مقیاس و به‌طور

پس از رسیدن به سطح مطلوب، ترسیم‌بردار خشی سازی کیفیت مدار رزروانسیم‌انگیز می‌شود. بلوک مقایسه یک ترکیبی که تأثیری کم‌میلیوادی اتصال است که به‌طور یکپارچه در تالiyانه (UV71) در کتابخانه

استقلال، سال ۱۸، شماره ۲، اسفند ۱۳۷۸

۲۵
شکل 3- نتایج شبیه‌سازی رایانه‌ای پالسر به همراه مدار خنثی سازی کیفیت مدار رزونانس بهبودیافته.
سیب پرور خطاف در فاکتور مقیاسی بالا نسبت مقدم می‌شود. پیدا
کردن اندوکاتسی داخی مقدم ونلاژ از دیگر عوامل موثر در
خطرات اندازه‌گیری ونلاژی [4].
در مقدمه‌ای ونلاژ اندازه‌گیری مقیاس کل بایستی با خطای کمتر از
درصد معلوم و شناخته شود. پاسخ زمانی (Tt) مربوط به یک
مقسمی، از ونلاژ حاصلین وکیل که ورودی به مقدم یک ونلاژ پلای
و احتمال حسابی می‌شود. در شکل (1) پاسخ پلای یک مقدم
و ونلاژ نشان‌داده شده است. پاسخ زمانی (Tt) طبق رابطه (3) از جمع
گیری ساختارهای نشان داده شده در شکل (2) حسابی می‌شود.

\[T_t = t_1 + t_2 + t_3 + t_4 + \ldots \]

در مدار پالس موجود به منظور نمونه‌برداری از ونلاژ و
پالس‌های خروجی پالس از مسئولیت مقدمی استفاده شده است.
هر چنین استفاده از مسئولیت دیگری از نوع خاصی و مقدمی - خاصی
نیز امکان‌پذیر است. اما چون در این حالت مقدار متوسط سیگنال
حذف می‌شود تا از مسئولیت مقدمی استفاده شده است
[4].

در تخته‌سازی مقادیر مقاومت‌ها در سرعت پاسخ و شکل
نمونه‌برداری باید بر اساس مؤثر است. در صورت برگ‌افزار
کردن آثار سلیفی و خازی یک‌طوره و ضرب دیده‌ی شد. در کل،
شکل موجه‌های نشان داده شده در این مقاله مربوط به آزمون‌های
عملی از مسئولیت مقدمی مناسب یک عضله و چند عضله
برحسب ضرورت استفاده شده است.

\[PRF = \frac{860}{72} \text{ Hz} \]

با پاسخ کلی پالس موجود

\[180 \text{ kHz} \]

پالس

\[1.2 \mu \text{sec} \]

است. پالس‌های خروجی که

روی پار مقدمی 50 اهم مشاهده شده، دارای زمان صعود

\[1378 \]

استقلال، سال 18، شماره 2، اسفند 1378
با توجه به مدار نشان داده شده در شکل 1 در صورتی که مقاومت
چوک به‌عنوان مقاومت معادل سیم‌پیچ‌های ترانس افزاینده از دید
افولی آن، آن، آن فرض شده متوسط توان تلفات در آن در طی زمان
خصیت سنگین نماز زوناتس از رابطه زیر به‌دست می‌آید:
\[
P_L = \frac{\frac{N_L R_{eq}}{V_{DC}} \left(\frac{V_{DC}}{\omega^2 L_C} \frac{\gamma K}{\gamma K - K} \right)^{\gamma} + \frac{1}{\omega L_C} \frac{V_{DC}}{\omega L_C} \left(\frac{\gamma K}{\gamma K - K} \right)^{\gamma}}{1 + \frac{1}{\omega L_C}}
\]
(31)

با جایگذاری 1 در رابطه بالا بر حسب پارامترهای مدار زوناتس و
درصد ولتاژ شیبک، تلفات انرژی به‌صورت زیر بیان می‌شود:
\[
P_L = \frac{N_L R_{eq}}{V_{DC}} \left(\frac{V_{DC}}{\omega^2 L_C} \frac{\gamma K}{\gamma K - K} \right)^{\gamma} \frac{1}{\omega L_C} \frac{V_{DC}}{\omega L_C} \left(\frac{\gamma K}{\gamma K - K} \right)^{\gamma}
\]
(32)

افت ولتاژ اندازه‌گیری شده در دو صورت در تریستور در هنگام
روشن بودن برای 0.1 ولت اندازه‌گیری شده است که با نظریه
بنج تریستور عوامل سویچین به‌حتسی که کل بیست که مدار زوناتس
افت ولتاژ در دو صورت در حدود 0.1 ولت است. بنابراین با
توجه به رابطه جهان عبوری از تریستورها توان لیفته آنها در طی
زمان خصیت سنگین نماز زوناتس از رابطه زیر پیروی می‌کند:
\[
P = \frac{1}{T} \int_{0}^{T} V_{DC} I_{p} \sin \omega t \ dt = K \cdot f \cdot V_{DC} \cdot I_{p} / \omega
\]
(39)

با توجه به شکل موج جریان چوک در طی زمان خصیت سنگین
نماز زوناتس متوسط توان برگردانده شده به‌معنی از رابطه زیر

ملاحظه درصد اندازه‌گیری

محاسبه راندمان با توجه به مقدار متوسط انرژی اخذ شده از
منبع و انرژی برگردانده، شده به‌معنی احتساب تلفات انرژی در
چوک، تریستورها، مدارهای استیجار و ترانس اندازه‌گیری می‌شود.
با توجه به شکل موج جریان چوک از مابین تعیین، شکل (5)
متوسط توان اخذ شده از منبع HVDC به‌معنی
\[
P_{in} = \frac{1}{T} \int_{0}^{T} V_{DC} \cdot I_{p} \sin \omega t \ dt = K \cdot f \cdot V_{DC} \cdot I_{p} / \omega
\]
(36)

با توجه به شکل موج جریان چوک در طی زمان خصیت سنگین
نماز زوناتس متوسط توان برگردانده شده به‌معنی از رابطه زیر

مقدار زوناتس متوسط توان برگردانده، شده به‌معنی از رابطه زیر

\[
P = \frac{1}{T} \int_{0}^{T} V_{DC} I_{p} \sin \omega t \ dt = K \cdot f \cdot V_{DC} \cdot I_{p} / \omega
\]
(39)
شکل 6- فاصله و نرمال مقدار میدانی برقی

\[P_s = \frac{15 \cdot NLC_i f}{V_{DC}} \]

\[\Delta \eta = \frac{P_{R} - P_{loss}}{P_{R}} = 100 \% \]

با توجه به مشخصات مدل‌العملی موجود در صفحات افریز، رابطه برایی (8) برای مقدار میدانی شده است.

\[V_n = \frac{K}{V_{DC}} \]

به طور همزمان منوی‌برداری، محورهای زمان در مشخصه‌های شناسایی شده به‌هم منظم نخواهد بود، به عبارتی اگر لحظه شروع شارژ PFN در شکل (6-الف) برای بیش از 1/1 msec یا زمان شارژ PFN در شکل (6-ب) در این لحظه عمل تخلیه صورت گیرد. سطح می‌گذرد. سطح می‌سوزد. سرعت ها می‌باشد. در شکل (6-ب) پیادگر مقدار ارثی برق‌سنج در شدت به‌عنوان می‌شود. از انجام استناد خصوصی که در صورت روشنکردن ریسم‌های داخلی می‌باشد. این ممکن است که به عنوان سطح و نرمال آن مجزا به استفاده از یک رژیم کاهش که با نسبت بود. در این حالت دیده شد که در صورت عدم انجام میدانی صحت نسبت بود. در این حالت دیده شد که در صورت عدم انجام میدانی صحت

شکل 4- اثرات ناب و شدت

امام‌جمنشیر دانشگاه تهران

(32)

(33)

(34)

(35)
اثری که خاکشتهای آن در رفتار مدار شارژ شکسته به‌وجود می‌آورد در نمونه ساخته شده با استفاده از اتصال مذبور نسبت به طبقه‌بندی خودی پایین‌تری و ضعیف‌تری در پایین‌تری و ضعیف‌ت
و کامپیوتر، دانشکده برق و کامپیوتر و معاونت پژوهشی دانشگاه صنعتی اصفهان برای انجام این پژوهش تحقیقاتی صمیمانه تشکر می‌کند.

قدردانی

تهیه کننده مقاله از حمایت‌های مادي و معنوي پژوهشگاه برق

واژه نامه

مراجع

1. مقبلی، ح، قاسمی، ز، مطهری، ر، و فرخزاده فرد، ح، "تحلیل روش خصیصی سازی کیفیت مدار رزونانس برای تثبیت دامنه پلشیای ولتاژ خروجی مدولاتور"، چهارمین کنفرانس برق ایران، دانشگاه تهران، 1374.

2. فرخزاده فرد، ح، قاسمی، ز، مطهری، ر، و مقبلی، ح، "آنتیزیک کار روش عملی برای بهبود رادیوم مدار خصیصی سازی کیفیت مدار رزونانس"، چهارمین کنفرانس برق ایران، دانشگاه تهران، 1374.

