بررسی عددي ساختر جریان چگالی در یک کانال دو بعدی

بهار فیروزآبادی*، بیژن فرمانی** و منوچهر راد***
دانشگاه مهندسی مکانیک دانشگاه صنعتی شریف
(دریافت مقاله: 97/7/20 - دیده نمایشی: 6/7/1378)

چکیده - در این مقاله حرکت جریان چگالی محول آب - نمک در زیر آب شیرین و روی سطح شبیه به صورت عددي بررسی شده است. مدل آب - نمک با سرعت و غلفت خاص در دو مدل آب - نمک در حالت عدم ثبات و عملکرد شبیه به صورت عددي بررسی شده است. زمان سیاست بحث و روند تغییرات انرژی در حالت بدون ثبات B. Firoozabadi, B. Farhanieh and M. Rad
Department of Mechanical Engineering, Sharif University of Technology

ABSTRACT- Motion of salt-water density currents released on sloping bed and under still bodies of fresh water are numerically investigated. The laminar, turbulent equations of mass, momentum and diffusion are solved at the same time in the fixed Cartesian directions on a non-staggered grid using finite volume scheme. The velocity-pressure coupling is handled by SIMPLEC method. The modified k - e model is used to account for the influence of the Reynolds stresses in the time-averaged momentum equations in turbulent flow.

*دانشجوی دکتری **دانشجوی دکتری ***دانشیار
flow. Salt solution with uniform velocity and concentration is released through a sluice gate into a lighter ambient fluid and moves forward downstream. At the front of this flow, a vortex forms and grows while moving downstream. Comparison of the computed height of density current with the experimental data shows a good agreement between them. In this paper, the effects of variation of concentration and flow rates in the form of Richardson or densimetric Früde and Reynolds numbers are investigated for different slopes. Concentration and velocity profiles are obtained and show a complex flow pattern which provide a physical understanding of governing phenomena.

1 - مقدمه

سيال طبقي‌ها به دليل اختلاف دما، مواد محلول و یا ذرات ناحمول در سياي به وجود آمده، باعث ايجاد گراديان چگالی نسبت به عنق مي شود. گراديان چگالی اقیانسي قياس ايجاد مي كند و سيال مخزن سگينتر را به حركة در مي آورد. چگالی جزيئاتي در مصوب رودخانه‌ها، مخزن سدگا، كف دريابها و آتپوستها و یا در انسىفس ديده مي شود. اين چگالی‌ها که جزيئاتي گيلى و یا چگالی ناميد. مي‌شوند. مي توانند رسوگزار و یا شوينده بست به كف دريا و مخزن باشند. رواب محصول در مخزن سدگا و یا سواحل كم عميق علاوه بر یکني متعادل اقتصادي سه چون کاهش حجم مخزن اکنون زاي معيتي نيز به دلایل دیگر دفعات و اين به عمل آوريد و سواحل مخزن مي گردد. طرفيندري شدن به تغير محبوبي زنگيني مي‌ماند و پلاکت‌هاي كف دريابها و رودخانه‌ها مي‌شود. از یکطرف لابوري اين گونه مي اعمال گرديگران برد، و از طرف دیگر به دليل آگوگتي محبوبي زينت، انتقال مواد لابوري شده مصلح مي‌گردد. این حرکت سيال طبقي‌ها مي‌گردد و سياي همگن از پيشه‌هاي خاصي به خرودردار است. اين ویژگي قوي به شكل گراديان چگالی بستگي دارد. به طوري که حرکت سيال طبقي‌ها مي‌تواند باعث
خود ذکر کرده است. وی پرای پرستی از حل تحلیلی سود جسته و علاوه بر استفاده از روش‌های معمول در کالاهای بازار، از روش‌های معمول در مکانیک سیالات و حل جریان لایه ای نیز استفاده کرده است.

پرای یکی از محققین به حل عددی معادلات اهمیت ویژه‌ای دارد. این

خود را به دو گروه دیفرانسیلی و انگرالی بوده است. حل انتگرالی

جریان چگالی عمداً ۱۰۰ بهینه یا دیگر در ۱۹–۷۹ در حالت‌های

مصوبه و برای یک برج می‌باشد. در این‌ها، برج می‌باشد و برای

خطری و سالانه می‌باشد، این گونه بازی می‌کند. این جریان

در وضعیت‌های مختلف طیب‌تر از مسی و با ممکن است

ساخته می‌شود که می‌تواند در این‌ها از دیگر جریان‌های ناقص تیپ

برف هواستخوان‌هایی که در ابتدای محصولات تیپ گردن است که از طبقه‌بندی

وقوع می‌پندارد. همچنین گزارش‌های ناشی از مواد مذاب که در نواری

انفجاری‌ها گزارش می‌شود، جریان تیپ گردن گردن در

در دخل یک مس از مورد دیگر است که می‌توان از آن اشاره

کرد [۱۲]. در این‌جا، نتایج محدودیت‌ها، در محصولات تیپ گردن

در سطح این‌جا، علائم نشان دهنده این نتایج که ممکن است

توسط فناوران قدیم در آورده‌های می‌شود. این مهندسین می‌توانند

است بروز حرارت افزایش گردن در طی زمان رودهای در

سطح و زمان آموزش در کشف صحیح اجبار شود [۴]. در کف

اپتیون‌ها حرکت گل و لایه از جریان‌های شبیه است که وقوع آن

نظیره سه است. در حرکت یک مسکن به سمت مخازن سد جریان

جاری گردن آماده اجبار شود. در این جریان ذرات در تنها

دشاخانه سکوی کرده و جریان حاوی ذرات را به روز برد ودماه

می‌دهد. لیکن این جریان و از موارد روی اسپیرال ریز تا نواحی

که علت خاکی معمولاً در حرکت و بلع شدن رایتور در زمین

مختل می‌باشد. این جریان و از موارد روی اسپیرال ریز تا نواحی

که علت خاکی معمولاً در حرکت و بلع شدن رایتور در زمین

مختل می‌باشد. این جریان و از موارد روی اسپیرال ریز تا

نتایج تجربی تطبیقی از آن‌ها، شکل‌بندی جریان چگالی در

دینامیک برش و بردژنها جریان چگالی که در زیر سیال شکل

نمی‌باشد. همچنین پیک و دیگر که در ۱۱ به کمک

مواد زمانی تجزیه و تحلیل شد و کمی بعد از تجربیات [۰] آن را

اصلاح کرده. ترتیب [۶] بیان عمده جریان‌های ناقص از چگالی را در کتاب

استقلال، سال ۱۸، شماره ۲، اسفند ۱۳۷۸

۱۵۷
شکل ۱- شماتیک از جریان چگالی

این معادله‌ها به ترتیب یکی جرم انتقال حرکت و غلافت‌اند. در این

معادله‌ها جملة فشار چنین تعیین می‌شود:

\[
\frac{P}{\rho_w} = \frac{P}{\rho_w'} + g'(H - h) + \rho g(H - y)/\rho_w
\]

(۲)

جریان چگالی در حکایت خود به دلیل اجرا دردون آپراتوری ۱۰ در
فصل مشترک سیال ساکن باز خود را به داخل خوشه و این
اختلالات کبثوش پر انجام جریان چگالی باعث تغییر ارتفاع نیز
می‌شود. جمله فشار در این معادله‌ها نیز به دلیل همین تغییر ارتفاع و
چگالی در عمق یکه شده و لذا باعث می‌شود که حتی در حضور
سطح آزاد نیز نت‌ناگیری آن را از معادله‌ها حذف کرد. جهت بهبود
می‌شود این معادله‌ها برای حالت تراکم‌ناپذیر بوده و برای حل آنها
پایه از روش‌های نیمه ضریبی و یا برای پذیرش مجازی که مخصوص
حل معادله‌ها تراکم‌ناپذیر است، استفاده می‌شود.

در جریان مگوش، علامه بر معادله‌های تابع جرم و انتقال
جریان‌های از نظر جنبشی انگشتنا و نزدیک‌ترین انرژی
اغتشاش به همراه معادله غلافت و هم‌زمان حالت خوند:

\[
\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = - (\nu/p) \frac{\partial P}{\partial x_i} + e_i' + \frac{\partial}{\partial x_j} \left(\nu + \frac{\partial U_i}{\partial x_j} \right)
\]

(۵)

\[
\frac{\partial k}{\partial t} + U_j \frac{\partial k}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\nu + \frac{\partial U_i}{\partial x_j} \right) \frac{\partial k}{\partial x_j} + p_k - \varepsilon
\]

(۶)

\[
\frac{\partial e}{\partial t} + U_j \frac{\partial e}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\nu + \frac{\partial U_i}{\partial x_j} \right) \frac{\partial e}{\partial x_j} + C_l \frac{\varepsilon}{k} p_k - C_e \varepsilon l/k
\]

(۷)

معادله‌های (۵)، (۶) و (۷) به ترتیب عبارت اند از انتقال حرکت،
انرژی جنبشی و نزدیک‌ترین انرژی. عبارت‌های دیگر معادله (۵) برای مدل
کردن تنش‌های برخوردی ظاهر شده است. در این حالت لازم

و بطوری [۱۶] معادله‌های جریان حاوی ذرات را در حال غیر دائم،
mغوش و یک بعدی با حذف عبارت‌های اترسی حل کرد. به
سقوط ذرات را در توزیع سرعت و میزان تداخل در حالت مشترک
به دست آورد. استرکا و آندرسون [۱۳] روشهای معادله‌ای که برای
حل جریان چگالی مغوش و جهت دارد را مقایسه کرده‌اند. آنها این
روشهای یک دیگر را در محلی از راه‌ها تحت شرایط یکسان به
محک زدن‌اند. اگرچه این مقاله نت‌ناگیری است، مقادیر قوت و ضعف
روشهای مختلف حل جریان چگالی غیر دامنه نشان دهد، اما در
حل معادله‌های جریان چگالی ناکیا از مواد محفظ کاربردی
تدارد.

در این مقاله معادله‌های حاکم بر جریان چگالی محول
آب-نیمک در دو حالت لایه‌ای و مغوش، دو بعدی و بدون فرض
خاصی برای ساده سازی معادله‌ها، با استفاده از روش سیمی
سی حالت خود است. برای اطمینان از نتایج، علاوه بر محک برناه
رایانه‌ای در حضور جریان حرکتی با تناوب آزمایشگاهی جریان چگالی
آب-نیمک نیز مقایسه شده است.

۲- معادله‌های حاکم

شکل (۱) شماتیک جریان چگالی را نشان می‌دهد. غلافت
محول آب-نیمک چنین است که می‌توان تقریب پویانش را
به کار برد. معادله‌های جریان لایه‌ای با استفاده از این تقریب، به
صورت زیر است:

\[
\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = - \left(\nu/p \right) \frac{\partial P}{\partial x_i} + e_i' + \frac{\partial}{\partial x_j} \left(\nu + \frac{\partial U_i}{\partial x_j} \right)
\]

(۱)

\[
\frac{\partial e}{\partial t} + U_j \frac{\partial e}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\nu + \frac{\partial U_i}{\partial x_j} \right) \frac{\partial e}{\partial x_j} + C_l \frac{\varepsilon}{k} p_k - C_e \varepsilon l/k
\]

(۲)

\[
\frac{\partial C}{\partial t} + U_j \frac{\partial C}{\partial x_j} = \varepsilon V^3 C
\]

(۳)

استقلال سال: ۱۸، شماره ۲، اسفند ۱۳۷۸

158
در این مقاله برای حل معادله‌ها از روش محوطه محیطی استفاده شده است. برای به دست آوردن مولفه‌ها، سرعت U و غلظت C، معادله‌های نیوتن حکایت و انتشار در سطح مختلط کارناونی در یک شبکه متمایز \(\text{حل } \) می‌شود. این بار، معادلات کم مغناطیسی به همراه پریدن کنترل یافته شده‌اند.

\[
C_\mu = C_\mu \times f_\mu, \quad C_\gamma = C_\gamma \times f_\gamma
\]

معاودله غلظت در حال حالت جریان مغناطیسی به صورت زیر تعريف می‌شود:

\[
U_j \frac{\partial C}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\lambda + \varepsilon_s \frac{\partial C}{\partial x_j} \right)
\]

ضریب نفوذ انتشار را می‌توان بر حسب عدد اشتمال انتشار تعیین کرد.

\[
\varepsilon_s = \frac{\nu_t}{S_c}
\]

مشابه عدد پرانتل انتشار، عدد اشتمال انتشار نیز به نام تأثیرات شناوری می‌باشد. در اینجا مقدار واحد فری می‌شود.

\[16\] مقدار نتیجه بالا، شاید نتایج‌گیری از داده‌های دیگری به پهپاد می‌باشد.

\[17\] شرایط مرزی در ورود معلوم است. محلول آب - نمک یا

\[18\] استلال، سال 18، شماره 2، اسفند 1378.
جدول 1 - تأثیر تعداد شبکه بر پیشروی جریان چگالی

<table>
<thead>
<tr>
<th>تعداد شبکه</th>
<th>عدد رینتئز ورودی</th>
<th>عدد رینتئز ورودی</th>
<th>عدد رینتئز ورودی</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/3</td>
<td>254/08</td>
<td>258/08</td>
<td>257/08</td>
</tr>
<tr>
<td>123/4</td>
<td>254/08</td>
<td>258/08</td>
<td>257/08</td>
</tr>
<tr>
<td>132/5</td>
<td>254/08</td>
<td>258/08</td>
<td>257/08</td>
</tr>
<tr>
<td>143/06</td>
<td>254/08</td>
<td>258/08</td>
<td>257/08</td>
</tr>
<tr>
<td>153/06</td>
<td>254/08</td>
<td>258/08</td>
<td>257/08</td>
</tr>
</tbody>
</table>

شکل 2 - شبکه محاسباتی

نسبت به فاکس ورودی در شبکه 123×132 در تعداد تکرار یکسان از سایر اندازه‌های ذکر شده در جدول یا دورگان است. توزیع سرعت در محل گرداب در تعداد شبکه‌های مختلف در شکل (2) نشان دهنده شبکه محاسباتی استفاده شده است. در یک عدد دسترسی به تجربی در این حالت نصب علاوه بر میکس پرنماهای ایباهای با جریان روی حفره تأثیر تعداد شبکه روی نتایج نیز محاسبه شده است. در این آزمایش تأثیر ایجاد شبکه در یک عدد رینتئز ورودی به دست آمد و تقابل در جدول (1) خلاصه شده است. این جدول دیده می‌شود که پیشروی جریان یا توجه به طول هر سلول شبکه تقریباً یکسان است. میزان دلگری که برای صحت اندازه‌ی شبکه در این محاسبات دیده می‌شود نسبت طول به عرض هر سلول است. این نسبت در میانه‌های پیش‌آموزی نیز تأثیر بسیاری دارد. به طوری که جمع مطلق خطای معادله اندما در جهت عمود

شکلات، سال 18، شماره 4، اسفند 1378

160
شکل ۳-توزیع سرعت در محل گرداب نسبت به اندازه شبکه‌های مختلف

جدول ۲-حالات مختلف تحلیل جریان چگالی

<table>
<thead>
<tr>
<th>شماره اجرای</th>
<th>شیب کف</th>
<th>دیپ ورودی (l/m)</th>
<th>سرعت ورودی (cm/s)</th>
<th>عرض ورودی</th>
<th>شاره ورودی</th>
<th>عدد رینولدز</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱/۰۰</td>
<td>۲۵</td>
<td>۱/۲۴</td>
<td>۳۷۶/۷۰۰۰</td>
<td>۳۰۰/۰۶</td>
<td>۰/۳۴۸۰۰</td>
</tr>
<tr>
<td>۲</td>
<td>۱/۱۵</td>
<td>۱۵/۲۵</td>
<td>۲/۰۴۱</td>
<td>۲۰۷/۰۸</td>
<td>۵۹۷/۳۶</td>
<td>۱/۰۹</td>
</tr>
<tr>
<td>۳</td>
<td>۱/۲۵</td>
<td>۱۵</td>
<td>۲/۰۴۱</td>
<td>۲۰۰/۰۹</td>
<td>۴۹۳/۷۵</td>
<td>۱/۰۷۵</td>
</tr>
<tr>
<td>۴</td>
<td>۱/۳۰</td>
<td>۱۰/۰۸</td>
<td>۶/۰۹۲</td>
<td>۴۸/۸۵</td>
<td>۴۸/۸۵</td>
<td>۱/۱۲۵</td>
</tr>
<tr>
<td>۵</td>
<td>۱/۳۸</td>
<td>۱۰/۰۸</td>
<td>۶/۰۹۲</td>
<td>۴۸/۸۵</td>
<td>۴۸/۸۵</td>
<td>۱/۱۲۵</td>
</tr>
</tbody>
</table>

سرعت پیشروی آن در دست است. شکل (۵) نشان دهنده خطوط تراز غلظت و برداشته شده در اجرای شماره (۲) پس از ازدست زمان گذشته ۸ ثانیه است. دیده می‌شود که در اطراف پیشانی گردابی تشکیل شده و باعث ایجاد غلظت و سرعت شدید در این ناحیه می‌شود. در فصل مشترک شاه چگالی و آب صاف قبل از پیشانی و در ناحیه چگالی، تداخل آب صاف در جریان وجود دارد. این سرعت در این ارتفاعات در فصل مشترک را می‌توان در وجود جابجایی و تغییر عمده جریان و تغییر وجود در فصل مشترک دانست. ارتفاعات که این تداخل در آن صورت می‌گیرد و یا به عبارت دیگر، ضخامت فصل مشترک بستگی به میزان سرعت، غلظت و شیب کف دارد. هرچه شیب کف، غلظت و سرعت بیشتر باشد، میزان این تداخل کمتر است. شکل (۶) پیشروی جریان چگالی در شیب ۵/۱٪ و غلظت ورودی ۱/۵٪ (اجرا شماره ۳) را گرفته شده است. نتایج حاصل در شکل (۴) دیده می‌شود که تابع تجربی مقایسه شده است. همان گونه که از شکل می‌شود، تطبیق خوبی بین نتایج حاصله و نتایج تجربی گیا [۱۹] وجود دارد.

حالات مختلف تحلیل جریان چگالی در جدول شماره (۲) آمده است. در انتخاب این حالت‌ها سعی شده تا علاوه بر تغییرات سرعت و غلظت ورودی و شیب کف بتوان تغییرات عدد فرود چگالی و عدد رینولدز ورودی را نیز بررسی کرد. عدد رینولدز برای اندازه‌گیری چگالی دقتی مشخص نبوده و نتایج حاصله که مقدار آن از مربی ۱۰۰۰ است [۶]. همچنین، این چگالی دارای نتیجه‌گیری و انتخاب‌های موضعی بر پایه در ناحیه ورودی و اطراف پیشانی است. این اظهار نظر درباره عدد رینولدز برای انتخاب آزمایش‌های دقیق مناسب نیست. اجرای شماره (۳) در این جدول حالتی است که در آزمایشگاه آزمایشی شده و ارتفاع جریان چگالی و
شکل ۴- مقایسه نتایج تجربی جریان درون حفره و حسول توسط برنامه رایانه‌ای حاضر، با مدل‌های سرعت در درون حفره
در جهت جریان (x) و ضمیمه برنامه (y) هستند.

شکل ۵- خطوط تراز غلظت پس از گذشت زمان ۸۰۰ ثانیه در غلظت ورودی و شیب کف ۱/۱٪.
شکل 6- خطوط تراز غلظت در پیشروی جریان چگالی با غلظت ورودی و شیب کف/1.5\%

شکل 7- پیشانی جریان چگالی در آزمایشگاه

پیشانی مرتبی افزایش می‌یابد. از شکل (6) دیده می‌شود که وجود گردابه در بالای پیشانی باعث اکتشاف و تفرغ عمودی شده و گراندیان غلظت خاصی در اطراف پیشانی انجام می‌کند. همچنین عنصر پیشانی حدوداً در برای عمق بندنه پشت آن است. شکل (7) پیشانی جریان چگالی را در آزمایشگاه و تحت شرایط اجرای شماره (3) نشان می‌دهد. دیده می‌شود که با گذشت زمان و پیشروی جریان، پیشانی رشد واقع و زیان‌های و افزایش کننده نیز به است. ترزر [6] و آکیما [7] ذکر کرده‌اند که ارتفاع پیشانی جریان در حالی که کف افقی به عمق برای بدن جریان پشت آن است و اگر کف شیب داخله باشد، عمق افزایش می‌یابد.
شکل ۸- توزیع فلزات و مولفه سرعت اقیانوس شماره (۳) پس از گذشت یک ساعت

نشان دهنده شکل (۸)، اجرای شماره ۳ را پس از گذشت یکساعت (۲۰۰۰ ثانیه) نشان می‌دهد. با گذشت زمان و پیشروی پیشانی از فضای محیطی خارج می‌شود. اما به دلیل انتخاب ترسره بافتگی سرعت‌ها در مرز خروجی، گردابی اطراف پیشانی در بالا و پایین آن باقی می‌ماند. تغییرات سرعت و غلظت در مرز خروجی نیز مؤثر و وجود همین گردابه‌های بزرگ و راد [۲۰] در آزمایش‌های شرکت دنا دانکن موجب صرفه‌جویی در زمان چگالی پس از طی مسافت آن (Ri = gh'cosθ/μ) و عدد ریچاردسون کلی (Re) شد. شده و عدد ریچاردسون کلی (Re) در جهت جریان ثابت می‌ماند. لذا استفاده از فرض توسه بافتگی سرعت‌ها در مرز خروجی با تغییرات جریان سازگار نیست. بررسی پرتویلایهای فلزات و سرعت دراین حالت نشان دهنده این است که در

نشان می‌دهد. گردابه‌های فراوانی که در اطراف پیشانی وجود دارد، در شکل دیده می‌شود. همچنین زمان پیشانی از کف بلند شده و عمل بدن مشخص است. متغیر می‌شود که آن‌چه در آزمایشگاه به عنوان عمق جریان و یا پیشانی اندازه‌گیری می‌شود، نوری است که از فصل مشترک به جامش ما می‌رسد و مشخص نیست انعکاس نور دیققاً در چه محدوده غلظتی صورت می‌گیرد. به همین دلیل در این قسمت تنها با انطباق شکل پیشانی در آزمایشگاه و خطوط تراز رسم شده در شکل (۶) اگفتا می‌شود. درک این نکته نیز لازم است که در پیشانی و اطراف آن اغتشاش و تلاطم موضوعی شدیدی وجود دارد، شکل (۷)، و در نتیجه های حل لایه‌ای معادله‌های حركت در این ناحیه نتوانند تمام حواضت و پدیده‌های موجود در جریان را

استلال: سال ۱۸، شماره ۲، اسفند ۱۳۷۸

۱۶۴
شکل ۹ - مقایسه عمل جریان چگالی محاسبه شده و اندازه‌گیری شده در آزمایشگاه

مزی خروجی جریان به توسه‌های یافته‌گان نمی‌رسد. در این حالت برای ابتکار بروز افزایش غلظت ورودی سرعت نمی‌شود. مثلاً می‌تواند که در غلظت‌های زیاد در جریان‌های گاز ممکن است میزان افزایش سرعت به صورت غلظت به‌طور به‌طور منجر شود. با توجه به اینکه حد عملی برای گذار از مافوق میزان غلظت نسبتاً قابل تغییر است، سرعت و بارمترها اهمیت می‌دهند و در اینجا نمی‌توان محدوده‌ای زیادی بکنش که نهایی جریان مافوق بوده و نهایی جریان مافوق بوده و

شکل (۱۰) نشان دهنده آزادی پیش‌روی جریان چگالی به دلیل افزایش غلظت شار و رنگ است. اگرچه افزایش غلظت، انکار به عدد روندلز ورودی می‌افزاید، اما کاهش عدد روندلز ورودی به میزان ۲۰٪ و به‌طور مثال افزایش عدد روندلز از یکطرف به دو یک‌طرفی جریان شده و از میزان داخل آب صاف می‌کاهد و از طرف دیگر به‌طور هر افزوده و سرتاسر مستو جریان را افزایش می‌دهد. بدین ترتیب دیده می‌شود که پایداری جریان چگالی علاوه بر واپسین به عدد روندلز، به عدد پیچانندی بیشتری دارد و این نشان دهنده است که عدد روندلز می‌کند که به عنصر حرارتی چگالی را افزایش می‌دهد و سرتاری به‌طور هر افزوده و سرتاسر مستو جریان را افزایش می‌دهد. با این حال، اگر عدد پیچانندی بیشتری دارد، این نشان دهنده است که عدد روندلز می‌کند که به عنصر حرارتی چگالی را افزایش می‌دهد و سرتاری به‌طور هر افزوده و سرتاسر مستو جریان را افزایش می‌دهد.
شکل 10- اثر تغییرات غلظت ورودی در پیشروی جریان چگالی

شکل 11- پردازش سرعت و غلظت در طول کانال
در حالت حل جریان معکوس به دلیل آنکه نتایج تجربی در دسترس ندارد، نتایج به دست آمده توسط دستگاه‌هایه قدرت و جریان، به‌عنوان دلیل اصلی برای نتایج تجربی به‌عنوان محدوده مشاهده می‌شود. در صورتی که شیب زیاد بوده و نهایت هدف را حاضر نشان دهد، باید ترکیب دچار و ریچاردسون مقدار کمی را نشان دهد. به این ترتیب ذهنیت می‌شود که وضعیت بماند.

۶- نتیجه‌گیری

معادله‌های حاکم بر جریان‌های دارای پیچیدگی‌های فراوانی حضور سطح آزاد، حضور عبارت لگم و وجود

\[g\sin \theta \]

در نتیجه، جریان در طول هفت متر بحرانی شده و کاهش شیب ناگهانی توئسته است. برخی از اینها در مقایسه با نتایج آکیما [۹] نشان می‌دهد. در اینجا نیز تظییات تغییرات برای تجربی به‌عنوان مشاهده می‌شود. در هر دو حالت شیب کف زیاد بوده و اعداد ریچاردسون مقدار کمی را نشان می‌دهد. به این ترتیب ذهنیت می‌شود که وضعیت بماند.

\[\theta = \frac{6^\circ}{270^\circ} \]

\[\text{مدل حاضر} \]

\[\text{آکیما} \]

\[x = 20 \text{ m} \]

\[u = 6 \text{ cm/s} \]

\[y = 10 \text{ m} \]

\[\text{شکل ۱۲- مقایسه توزیع سرعت محاسباتی با نتایج آکیما گازیا} [۲۲] \]

\[\text{شکل ۱۳- مقایسه ارتفاع شاره چگال با نتایج آکیما گازیا} [۹] \]

\[\text{در حالت حل جریان معکوس به دلیل آنکه نتایج تجربی در دسترس ندارد، نتایج به‌عنوان دلیل اصلی برای نتایج تجربی به‌عنوان محدوده مشاهده می‌شود. در صورتی که شیب زیاد بوده و نهایت هدف را حاضر نشان دهد، باید ترکیب دچار و ریچاردسون مقدار کمی را نشان دهد. به این ترتیب ذهنیت می‌شود که وضعیت بماند.} \]
همچنین یا این روش می‌توان عمل در به‌منظور ارتفاع جریان،
چگالی که مورد نظر محاسبه می‌شود، و سیل‌گذاری است،
توزیع سرعت و غلظت و فشار را به‌طور قابل‌توجه است. به‌طور کلی,
مزدیس حل معادله‌ها در حالت معادله‌های با استفاده از مدل‌های
اعداد روندی وابسته است که باید این روش را در حالت
دوبعدی محاسبه‌های چگالی بپنداشت. موادی که در حل معادله‌های
چرخان چگالی، می‌توانند در راه‌هایی به حالت جریان حاصل
جریان کمک کنند و با آن زمان رسوب‌گذاری در مخازن سدها را
پیش‌بینی کرد.

1. underflow
2. overflow
3. interflow
4. turbidity currents
5. buoyancy flux
6. shallow water
7. simplec
8. cavity flow
9. Boussinesq
10. entrainment
11. non-staggered
12. hybrid
13. TDMA
14. under-relaxation
15. densimetric Frue number
16. advection
17. stabilized flow
18. super critical
19. internal hydraulic jump

واژه نامه

