طرح خمیده تمام احتمالاتی مقاطع بتن آرزمه به کمک شبیه‌سازی

محمد صادق معرفت و حسن وقاری
گروه هندسی عمران، دانشگاه تهران
(دریافت مقاله: ۶/۲/۱۳۷۶ - دریافت نسخه نهایی: ۶/۲/۱۳۷۸)

چکیده - امروزه؛ روش حالت‌های حادت ۱ برای طراحی بتن آرزمه مورد کمیابی چهارنگا واقع شده و درآیند نامه بتن ایران ۶۱ نیز به کار گرفته شده است. در روش حالت‌های حادت، شاخص ایمنی یکی که به صورت غیر مستقیم با اعمال ضربه‌بندی و مقاومت در معادله طراحی تضمن می‌شود. به دلیل ثابت بودن ضربه‌بندی و مقاومت، امکان برای گردیدن یک کچک گردیدن سطح ایمنی در روش حالت‌های حادت وجود ندارد. این در حالی است که الزامات پروژه‌ها در بسیاری از موارد ممکن است افزایش که باعث سطح ایمنی را ضروری می‌سازد. در این مقاله روش ارائه شده که به‌جای استفاده از ضربه‌بندی، شاخص ایمنی به صورت مستقیم و به کمک شبیه‌سازی بر طراحی اعمال می‌شود. چارچوب جدید، طراح را قادر می‌سازد که شاخص ایمنی مطلوب را انتخاب کند و سطح ایمنی یکنواختی را در طراحی بتن آرزمه به وجود آورده و هزینه‌های غیر ضروری را کاهش دهد. در مثال حلال شده، مصرف نوآوری با کاهش متوسطی بیش از ۱۰٪ مواجه شده است.

Direct Probabilistic Design of Reinforced Concrete Flexural Sections Using Digital Simulation

M.S. Marefat and M. Vafaei
Department of Civil Engineering, University of Tehran

ABSTRACT- At present, the method of "limit states" for designing reinforced concrete sections is widely used in most universally accepted codes; this method is used by the Iranian national code for reinforced concrete buildings design, "ABA", as well. In this method, a margin of safety is assured by applying specific factors on the load and resistance terms in the design equations. Since these load and resistance factors are constant, the designer is not able to change the level of safety in the design procedure. In practice, it may become necessary to reduce or increase the level of safety to account for specific conditions of a project. In this paper, a method for direct application of a safety index in the design equations has been presented, which is based on digital simulation. By means of this method, it is possible to apply a desired safety index in the design

- استادان
- کارشناس ارشد

ب. استقلال، سال ۱۳۷۸ شماره ۲، اسفند ۱۳۷۸

۱۷۱
اموزه روش حالت‌های حدی برای طراحی مقاطع بتن آزمایش مورد قبول آبین نامه‌ای معنی‌گذار و قرار گرفته، و در آیین‌نامه بتن ایران، آبی نیز به کار گرفته شده است. روش حالت‌های حدی یک روش نهایی احتمالاتی است که در آن حساسیت‌های ایمنی به مقدار غیرمستقیم و با استفاده از ضریب بار و مقاومت در طراحی اعمال می‌شود. در این روش ضریب بار و مقاومت متوسط آبین نامه معرفی شده و دارای مقادیر ثابت‌اند و سطح ایمنی خارج از اختیار طراح اعمال می‌شود. در پروژه‌های معین سیستمی‌های متفاوت به‌کار رفته که بزرگ‌ترین واقعه طراحی اعمال به عنوان تعداد در طراحی یک سد با یک نیروگاه امکان می‌سازد. در مقایسه با یک ساختمان دیگر عادی مورد نیاز باشد. اما در یک ساختمان مواکب، می‌توان است که شرط ایمنی و صرفه جویی به همراه باشد. به دلیل مبتنی‌های فیزیکی، مدل‌سازی و پیاده‌سازی، مکانیک ضریب بار و مقاومت، روش آبین نامه‌ای نمی‌تواند این امکان را به طراح دهد. تا سطح ایمنی را یکی با کوچک کند.

در مقابل روش احتمالاتی، روش تمام احتمالاتی را می‌توان مطابق کرد. در روش تمام احتمالاتی حساسیت به مقدار صریح و به کمک تحلیل ریسک در طراحی اعمال می‌شود. در این روش از ضریب جزئی استفاده می‌شود، به یک آن شاخص ایمنی مطرح می‌شود. در این نوعی که بین روش استفاده‌کننده‌ای اگزجنامه شده که اساساً بر

شایع می‌گردد کشور یا سطح ایمنی

\[
\begin{align*}
\mathsf{A}_G & = \text{مساحت میلی‌گرد کشور} \\
\mathsf{B}_G & = \text{خودشیت}
\end{align*}
\]

\[
\begin{align*}
\beta & = \text{تنبای طراحی}
\end{align*}
\]

\[
\begin{align*}
\gamma & = \text{نسبت مقاومت به بار}
\end{align*}
\]

\[
\begin{align*}
\theta & = \text{انحراف معیار بار}
\end{align*}
\]

\[
\begin{align*}
\Delta \theta & = \text{انحراف معیار بار}
\end{align*}
\]

\[
\begin{align*}
\mu_{\Delta \theta} & = \text{میانگین انحراف معیار بار}
\end{align*}
\]

\[
\begin{align*}
\frac{\sigma_{\Delta \theta}}{\mu_{\Delta \theta}} & = \text{نسبت میانگین انحراف معیار بار}
\end{align*}
\]

\[
\begin{align*}
\mathsf{G} & = \text{مقاومت بار}
\end{align*}
\]

\[
\begin{align*}
\mathsf{M}_D & = \text{مقاومت بار}
\end{align*}
\]

\[
\begin{align*}
\mathsf{M}_L & = \text{مقاومت بار}
\end{align*}
\]

\[
\begin{align*}
\mathsf{G}_M & = \text{مقاومت بار}
\end{align*}
\]

\[
\begin{align*}
\mathsf{M}_n & = \text{مقاومت بار}
\end{align*}
\]

\[
\begin{align*}
\mathsf{M}_m & = \text{مقاومت بار}
\end{align*}
\]

\[
\begin{align*}
\mathsf{G}_m & = \text{مقاومت بار}
\end{align*}
\]

\[
\begin{align*}
\mathsf{G}_f & = \text{مقاومت بار}
\end{align*}
\]

\[
\begin{align*}
\mathsf{S} & = \text{مقاومت فشاری}
\end{align*}
\]

\[
\begin{align*}
\mathsf{f}_{c'} & = \text{مقاومت}
\end{align*}
\]

\[
\begin{align*}
\mathsf{f}_{c'} & = \text{مقاومت}
\end{align*}
\]
بنیان ترتیب، تعريف شاخص ایمنی \(\beta \) برای معادله (5) به صورت

\[
\beta = \frac{\mu_{\text{Ln} \theta}}{\sigma_{\text{Ln} \theta}}
\]

که به ترتیب انحراف معیار و میانگین \(\text{Ln} \theta \) به ازای مقادیر حاصل از شیب سازی است.

3- طراحی خمیق مقاطع بتن آرمه
در این قسمت طراحی خمیق مقاطع بتن آرمه به روش تجام‌های اجتماعی بررسی می‌شود. رابطه ایمنی در مود خمیق به صورت زیر بیان می‌شود.

\[
M_s = M_n
\]

(7)

در معادله بالا، \(M_s \) و \(M_n \) به ترتیب عیاراند از مساحت میلگرد کششی خمیق، عمق تسیلیم کششی میلگرد، میانگین و مقدار مقطع مستطیلی (طبق آیین‌نامه‌های آمریکا) (ACI-89) تابعی به صورت زیر است.

\[
M_s = A_{fy} (d - d_f) \frac{A_{s_f} f_y}{
u_{sf} b_t}
\]

(8)

در معادله بالا، \(A_{s_f} f_y \) عبارت است از

\[A_{s_f} = a_s A_s \]

که \(a_s \) به ترتیب عیاراند از مساحت میلگرد کششی خمیق، عمق تسیلیم کششی میلگرد، مقاومت فشاری 28 روزه، میانگین روزه مقطع مستطیلی و عمق موثر مقطع مستطیلی در رابطه (7) پارامتر بیان نشده و به شکل زیر است.

\[
M_s = M_D + M_L
\]

(9)

در صورتی که رابطه (5) در قابل معادله (5) بازنویسی شود، شکل زیر حاصل خواهد شد.

\[
L_{\theta} = L_{\text{in}} \left(\frac{M_s}{M_n} \right)
\]

(10)

حالا به کمک معادله (11) و با استفاده از شیب سازی عدید، می‌توان فرآیند طراحی را به شرح زیر انجام داد.

\[M_s \text{ و } M_D \text{ به } \beta \text{ و } \Delta \text{ مقداری تصادفی } \]

در این معادله، این متغیرها

\[
G(\phi R_n, \gamma S_n) = \phi R_n - \gamma S_n \geq 0
\]

(2)

که \(\phi \) و \(S_n \) نس مشترک هستند و \(R_n \) به معادله (3) با استفاده از شیب سازی است.

برخی جزئیات این روش همواره با مثال عددی در بخش بعد می‌آید.

در اینجا معادله‌های اساسی مورد استفاده در شیب سازی ارائه می‌شوند. در سال 1972 آقای کریول [3] پیشنهاد مشاهدات خود را به عنوان شاخص ایمنی، \(\beta \) به صورت زیر ارائه کرد.

\[
\beta = \frac{E[G]}{D[G]}
\]

(3)

که تابع طراحی است، و در قابل معادله (11) نوشته می‌شود.

\[\text{D[G] در معادله (3)} \]

به ترتیب میانگین و دارای D[G] و E[G] و هستند. تعیین بالای شاخص ایمنی، به دلیل مزایای متعدد نسبت به تعیین‌های فنی و نیز قابلیت‌های کمپرسی بسیار، هم‌وقت حمایت و ترویج شده و به عنوان سایری برای پرداختن اجتماعی به کار می‌روید. برای مثابه ساخت معادله (3) به معادله (1) و اعمال آن به تایپ شیب سازی، معادله (1) را می‌توان به صورت زیر تکمیل کرد.

\[
\theta = \frac{K}{S} \geq 1
\]

(4)

اگر از طرفین معادله (بلا لگاریتم بگیریم خواهیم داشت.

\[
L_n = \frac{L_n(R/S)}{2} \geq 0
\]

(5)

استقلال، سال 1378، شماره 24، اسفند
4-بحث و بررسی

1- نوسان شاخص ایمینی در روش نیمه احتمالاتی

گرچه روش ضریب جیبی γ سطح ایمنی یکنواخت تری در مقایسه با روش‌های قدمی نظیر نش مجاز ایجاد می‌کند، اما به دلیل استفاده از ضریب ثابت در محدوده تغییرات پارامترها، نوسان در شاخص ایمینی گران‌تر است. این مطلب از اینجا به کمک یک مثال توضیح داده می‌شود. پارامترهای انتخاب شده دارای مقادیر اساسی مشابه مال مورد استفاده در مرجع [8] و به شرح زیر است.

$\beta=b=300\,\text{mm},\,b=600\,\text{mm},\,d=540\,\text{mm}$

$\gamma=11\,\text{MPa},\,\gamma=22\,\text{MPa}$

2- نوسان شاخص ایمینی در روش نیمه احتمالاتی

ماقی (نوسان) با توجه به اینکه $M_d=60\,\text{KN.m}$ نوسان اساسی پارامتر β است که این مقادیر با زاویه $\psi=0$ پایکوبناگهانی γ ضریب شیب سازی $100\,\text{KN.m}$ خم شود. در هر سیکل تکرار (مشخص از 2000 دور شیب سازی) زنده بودن نسبت به مجموع زنده و زنده دارای نسبت به 3/4 در صورت خروج از شرایط ایمنی ضریب این تابع به ترکیب نهایی نمودار می‌گردد.

β- نمودار اساسی پارامترهای طراحی برقرار کرد. به عنوان مثال اگر معادله A_{δ} (مساحت فولاد) مقدار نظری باشد، یک نمودار میدانی می‌باشد که از آن با توجه به شکل (1) قابل ترسیم است. با توجه به نتایج سومی، مقدار اساسی β نمودار سازی به کمک n و δ کلیه ابزارهای نظری می‌باشد. داشته که در صورت خروج از شرایط ایمنی β نمودار میدانی می‌باشد.

3- نوسان شاخص ایمینی و مقدار اساسی فولاد

و روش‌های دیگر آنها در مراجع معتبر گزارش شده و می‌توان از آنها استفاده کرد [8].

ب – در هر دور شیب سازی، مقادیر صادف را در معادله (10) قرار داده و مقادیر حاصل ذخیره می‌شود.

ج – پس از n دور شیب سازی به کمک معادله (6) شاخص ایمنی β به مسجدت به ماهیت تنگی و شرایط پروژه انتخاب می‌شود.

د – مقادیر اساسی پارامترها را تغییر داده و مراحل (الف) تا (ج) تکرار می‌شود. بدین ترتیب برای مقادیر اساسی جدید پارامترها، شاخص ایمنی نظری آنها به دست می‌آید.

- یا انتظار از الاطفال به دست آمده می‌توان رابطه بین شاخص ایمنی β و مقادیر اساسی پارامترهای طراحی برقرار کرد. به عنوان مثال اگر معادله A_{δ} (مساحت فولاد) مقدار نظری باشد، یک نمودار میدانی می‌باشد که از آن با توجه به شکل (1) قابل ترسیم است. با توجه به نتایج سومی، مقدار اساسی β نمودار سازی به کمک n و δ کلیه ابزارهای نظری می‌باشد. داشته که در صورت خروج از شرایط ایمنی β نمودار میدانی می‌باشد.
نمادهای آیا (ACI)، مقدار شاخص ایمنی با تغییر پارامتر طراحی در اینجا مقدار بار (ثابت نماید) و دیگر نوسان می‌شود. این نوسان به دلیل ثابت بودن مقدار ضریب بار و مقاومة در معادله طراحی و عدم انکاس نقاط شرایط پروژه در ضرایب ایمنی است. بدیهی است که در صورت استفاده از روش تمام احتمالاتی، رعایت شاخص ایمنی به طور نقطه‌ای منحنی شاخص ایمنی به صورت یک خط افقی مستقیم و منحنی بر مقدار سورد نظر در پروژه در می‌آید.

نتکه دیگری که می‌توان از شکل (2) ملاحظه کرد این است که آیینه‌های آیا (ACI) و آب سطح اطمنان نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در آیینه‌های آیا (ACI) نسبتاً با تغییر مقاومت و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3، نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کنند، اما در روش مستقیم و آیینه نامه‌ای، مقایه می‌شوند و در شکل 3 نشان می‌دهد که روش مستقیم در مقایسه با روش آیینه‌های آیا (ACI) نسبتاً مشابهی در محدوده مخصوص ارائه می‌کر
در این نوشتار روشی برای تخمین توان روش‌های مورد نیاز در روش‌های معمول استفاده در دسته‌بندی‌ها و در اساس یک روش ابدیت‌آمیزه‌ای است. اهمیت افزایش و روش‌های تکمیلی‌ای از این روش در پردازش روش‌های ابدیت آمیزه‌ای، شما نمایان است. این موارد به‌ویژه در منابع آماده‌ای که دلخواه تعبیر کننده در حالت که در روش ابدیت‌آمیزه‌ای چنین مکانی وجود ندارد. در واقع انجام توانایی با شاخص‌های متریک یا نوکیشریز غیر محدودیت رقابت در شیوه‌ای محاسبات ارائه شده در پرونده‌های مهندسی گاه اتفاق می‌افتد که یک طرح خاص با سطح اپنین بالایی طراحی شود (مثل اخراج‌های ورود نیروگاه‌های امی). گاهی نیز کاهش سطح اپنین مطلوب است (مثل اخراج‌های موثر). به‌طور کلی شرایط استفاده به روش پیشنهاد شده در این مقاله، نه اعمال شاخص اپنین مورد نظر یا ممکن‌ساز کلیه سطوح اطراف یک‌تکه از اجرا اعمال کرده واز هزینه‌های اضافی غیر ضروری نیز می‌کاهد.

هامیونی، مصوب‌گیری‌ها و مشخص شود. بدین معنی که یک طرح مایل است داده‌گیری به ازای افرادی سطح اپنین، چه مقدار هزینه‌ای اضافی به وجود آمیزد. یا به معنی پایه‌بوده موجود، حداکثر ایمنی قابل حصول چقدر است. روش مستقیم تمام احتمال‌ها با برقراری

واژه نامه

7. partial safety factors

مراجع

3- واقعی، م، "مقایسه طراحی مقاطع بین آماده به دو روش اعمال مستقیم شاخص اپنین و روش استفاده از ضریب آن‌نامه‌ای"، پنجمین سمینار کارشناسی ارشد دانشگاه فنی دانشگاه تهران، پاییز ۱۳۷۶.

4- ایران‌نورون، ف. "تعمیم شاخص اپنین برای آن‌نامه بین ایران و

1. limit states method
2. safety index
3. target safety index
4. digital simulation
5. random variable
6. Monte Carlo simulation

