طرح خمیشی تمام احتمالاتی مقاطع بین آزمه به کمک شبیه‌سازی

محمد صادق مهرت و حسن وقایی

گروه مهندسی عمران، دانشکده مهندسی، دانشگاه تهران

دریافت مقاله: ۱۳۷۶/۶/۱۲ - دریافت نسخه نهایی: ۱۳۷۸/۳/۱۶

چکیده - امروزه، روش‌های حالت‌های حذفی برای طراحی بین آزمه مورد کاربرد قابل جهاتی واقع شده و در آینده نامه بین آزمه آب‌‌نبز به
کارگیری شده است. در روش حالت‌های حذفی، شاخه‌ای به‌نام ۳۳ به صورت غیر مستقیم و با اعمال ضربه بار و مقاومت در معادله
طراحی تضمین می‌شود. به دلیل این که پس از تابیت بار و مقاومت، امکان ساختن یک چکمه کردن سطح ایمنی در روش
حالت‌های حذفی وجود ندارد، این در حالی است که از آن وسیله اذم‌پذیر هر بسیاری از موارد ممکن است با در نظر گرفتن
را ضروری سازد. در این مقاله روش‌های ارائه‌شده که به‌نام استفاده از ضربه، شاخه‌ای به‌نام ۳۳ به صورت مستقیم و به کمک شبیه‌سازی بر طراحی بین آزمه می‌شود. پس از جمع‌بندی، طراح را کاری می‌سازد که شاخه‌ای به‌نام ۳۳ به نظر انتخاب کند و سطح ایمنی
یک درصدی را در طراحی بین وجود اورده و هزینه‌های در ضروری را کاهش دهد. در مثال حل شده، مصرف درجه با کاهش متوسطی
برابر ۱۰٪ مواجهه شده است.

Direct Probabilistic Design of Reinforced Concrete Flexural Sections Using Digital Simulation

M.S. Marefat and M. Vafaei
Department of Civil Engineering, University of Tehran

ABSTRACT - At present, the method of "limit states" for designing reinforced concrete sections is widely used in most universally accepted codes; this method is used by the Iranian national code for reinforced concrete buildings design, "ABA", as well. In this method, a margin of safety is assured by applying specific factors on the load and resistance terms in the design equations. Since these load and resistance factors are constant, the designer is not able to change the level of safety in the design procedure. In practice, it may become necessary to reduce or increase the level of safety to account for specific conditions of a project. In this paper, a method for direct application of a safety index in the design equations has been presented, which is based on digital simulation. By means of this method, it is possible to apply a desired safety index in the design
شیب سازی عددهای ۳وکاردبرد راپتان تکیه دارد. در این روشهای توری، به‌نت‌نیکه هر بازویی با هر پیش‌آوری در این روشهای هدایتی، اساسی برای انجام فعالیت‌های صورت متقابل، سطح ایمنی را به صورت کوتاه‌الحیاتی درآمده و هزینه‌ها به حداکثر کاهش می‌یابند. مزیت‌های دیگر روشهای دیگر، امکان ایجاد رابطه بین هزینه و سطح ایمنی و طراحی بهینه با توجه به شرایط ویژه هر بروزه است.

۲- مباحث روش تأمین احتمالاتی
به طور کلی، یک معادله طراحی را می‌توان به صورت شرط ایمنی

\[G(R,S) = R - S = 0 \] (1)

که می‌تواند معادله طراحی و ر سنابها، با به ترتیب اینکه مقدار

مقدار می‌باشد. با خواهش‌دهند، پارامترهای و ر خودی تابعی از متغیرهای ر ۵دیگر بوده و

شکل کلی آنها غير خطي است. از آنجا که \[G(R,S) = R - S = 0 \] (1)

مقدار ضریب بار و میزان‌های اینکه نامه‌ای نمی‌تواند این

امکان را به طراحی دهد. تا سطح ایمنی را یک با کمک‌کننده.

در مقابل روشهای احتمالاتی، روش تأمین احتمالاتی را می‌توان

مطابق کرد. در روشهای احتمالاتی، اینکه هزینه صریح

و به‌کمک تحلیل ریسک در طراحی اعمال می‌تواند در این روشهای

ضرایب جزئی استفاده نمی‌شنود، بلکه به جای آن شاخه‌ای می‌تواند مطابق با توجه به داده‌های طراحی می‌شود. در این روشهای به

روش مستقیم برای اعمال شاخه‌ای ایمنی یک به‌کارگیری شده که اساساً بر
بدين ترتيب، تعريف شاخص ایمنی با معادله (5) به صورت

\[\beta = \frac{\mu_{L} \ln \theta}{\sigma_{L} \theta} \]

که بر حسب ترتیب انحراف معیار و میانگین \(\ln \theta \) باز از این مقدار حاصل از شیب سازی است.

3- طراحی خمشی مقاطع بن آرمه

در این قسمت طراحی خمشی مقاطع بن آرمه به روش تمام احتمالاتی بررسی می‌شود. رابطه ایمنی در مود خمشی به صورت زیر بیان می‌شود:

\[M_n \geq M \]

در معادله (7) با \(M \) و \(M_n \) به ترتیب عبارات از میزان نیروی رشتهای اتاق بتن و نیروی روش مونتاژ کارلو است. برخی از جنبه‌های این روش همواره با مثال عادی در بخش پیمایش می‌آید. در اینجا معادله باعث استفاده در شیب سازی ارائه می‌شود. در سال 1969 آتیو کریل [1] پیشنهاد مشهور خود را به عنوان شاخص ایمنی \(\beta \), به صورت زیر ارائه کرد:

\[\beta = \frac{E[G]}{D[G]} \]

در معادله (6) باا \(G \) به تابع طراحی است و در قابل معادله (1) نوشته می‌شود. \(E[G] \) به ترتیب میانگین مثبت و \(D[G] \) به ترتیب میانگین زیرین و دانستهای تعیین‌شده باعث تعیین‌های دقیق و نیز قابل‌توجهی کاربردی سبقت آمرور مورد پذیرش جهانی واقع شده و به عنوان مزایای بسیار پرورش‌های احتمالاتی به کار می‌رود. برای مرتبطیت ساخته معادله (2) به معادله (1) و اعمال آن به تابع شیب سازی، معادله (1) را می‌توان به صورت زیر نوشت:

\[\theta = \frac{R}{S} \geq 1 \]

اگر از طرفین معادله بالا لگاریتم بگیریم خواهیم داشت:

\[\ln \theta = \ln \left(\frac{R}{S} \right) \geq 0 \]

استقبال، سال 18، شماره 2، اسفند 1378

173
شکل ۱- رابطه بین شاخص ایمنی و مقدار اسی فولاد

شکل ۲- توان شاخص ایمنی در روش نیمه احتمالاتی (آیین نامه‌های آیا و ACI)

روش تولید عديد آنها در مراجع معتبر گزارش شده و می‌توان از آنها استفاده کرد.

۲-بحث و بررسی

۲-۱- توان شاخص ایمنی در روش نیمه احتمالاتی

گرچه روش ضریب جزئی سطح ایمنی یکنواخت‌تری در مقایسه با روش‌های دیگری نظیر تنش مجاز ایجاد می‌کند، اما به دلیل استفاده از ضریب ثابت در محدوده تغییرات پارامترها، توان شاخص ایمنی گروه‌ی اولی است. این مطلب در اینجا به کمک یک مثال توضیح داده می‌شود. پارامترهای انتخاب شده دارای مقدار اسی مشابه مدل نرد است. در مرجع [7] و به شرح زیر است:

\[b = 300 \text{ mm}, h = 600 \text{ mm}, d = 50 \text{ mm} \]

\[
0.3 \text{ MPa}, f_p = 420 \text{ MPa}
\]

\[b = 300 \text{ mm}, h = 600 \text{ mm}, d = 50 \text{ mm} \]

\[
0.3 \text{ MPa}, f_p = 420 \text{ MPa}
\]

به عنوان مثال، اگر مساوی با (مساحت فولاد) نقد منظور باشد، یک چندانی به صورت شکل (1) قابل ترسیم است. با توجه داشته که

\[n \text{ دور شیب سازی با دست می‌آید.} \]

و- حال به کمک رابطه‌ای نظیر منحنی شیبه داده شده در شکل (1) و

\[b = 300 \text{ mm}, h = 600 \text{ mm}, d = 50 \text{ mm} \]

\[
0.3 \text{ MPa}, f_p = 420 \text{ MPa}
\]

به عنوان مثال است که کل مقدار مواحل بالا به صورت خودکار و به کمک داراینام انجام است. همچنین منظور این نمونه که رابطه (6) یا (7) همانند شکل (1) برای سایر پارامترهای طراحی، نظیر \(f_p, B, D \)

\[b = 300 \text{ mm}, h = 600 \text{ mm}, d = 50 \text{ mm} \]

\[
0.3 \text{ MPa}, f_p = 420 \text{ MPa}
\]

مقاومت این نمونه دارد که در صورت دیدن توان به پارامترهای طراحی برقرار کرده. این

\[b = 300 \text{ mm}, h = 600 \text{ mm}, d = 50 \text{ mm} \]

\[
0.3 \text{ MPa}, f_p = 420 \text{ MPa}
\]

به عنوان مثال است که کل مقدار مواحل بالا به صورت خودکار و به کمک داراینام انجام است. همچنین منظور این نمونه که رابطه (6) یا (7) همانند شکل (1) برای سایر پارامترهای طراحی، نظیر \(f_p, B, D \)

\[b = 300 \text{ mm}, h = 600 \text{ mm}, d = 50 \text{ mm} \]

\[
0.3 \text{ MPa}, f_p = 420 \text{ MPa}
\]

مقاومت این نمونه دارد که در صورت دیدن توان به پارامترهای طراحی برقرار کرده. این

\[b = 300 \text{ mm}, h = 600 \text{ mm}, d = 50 \text{ mm} \]

\[
0.3 \text{ MPa}, f_p = 420 \text{ MPa}
\]
نمایهای آیاو، مقدار شاخص ایمنی با تغییر پارامتر طراحی
(در اینجا مقدار بار) نمایندگان دیگر نمودن می‌شود. این نوسان
به دلیل ثابت بودن مقدار ضریب بار و مقاومت در معادله طراحی و
عدم انکاس نقاط شرایط پرتو در ضوابط ایمنی است. بی‌بی‌دی
است که در صورت استفاده‌ای روش تمام احتمالاتی و رعایت
شاخص ایمنی به طور نقطه‌ای، مختصات شاخص ایمنی به صورت
یک خط افقی مستقیم و منطبق بر مقدار مورد نظر در پرتو در
می‌آید.
نکته دیگری که می‌توان از شکل (3) ملاحظه کرد که است که
آیین‌نامه‌های ACI و آب‌طراحی اطمنان نسبتاً مشابهی در مودو خمش
ارفند می‌کند، اما در آیین‌نامه آب‌طراحی ایمنی انگلیسی (آی‌بی)
نسبتاً یکنواختتر است. مورد اخیر را می‌توان به اعمال جریان
ضریب مقاومت در آین‌نامه آب‌طراحی نسبتاً کمی در
آیین‌نامه ACI ملاحظه کرد.

شکل (3) نشان دهنده است که روش مستقیم در مقایسه با روش
آیین‌نامه‌ای به ازای مقدار معادل بار و ابعاد مقطع، فولاد کمتری
مسرف می‌کند. اختلاف مقدار فولاد به نسبت بالاتری به کل بار
بستگی دارد. با کوچک شدن این نسبت (منبعی با افزایش بار زندگی)
اختلاف بزرگ شده و میزان مصرف فولاد به میزان محسوسی تفاوت
پیدا می‌کند. نوجوان این محاسبه دینی بر اساس ترمیم، روش مورد
نمونه فولاد اضافه بر مقدار از مصرف نمی‌شود. در حالی که در
روش آیین‌نامه، شاخص ایمنی نوسان دارد و این نوسان باعث بزرگ
شدن مقدار مصرف فولاد می‌شود. برای اگه اختلاف مصرف فولاد به

2- مقدار طراحی به دو روش تمام احتمالاتی و نیمه
احتمالاتی

در این قسمت نخوره انجام طراحی به روش تمام احتمالاتی، در
قابل مثل هم‌وقت توصیه داده می‌شود. همچنین نمایندگان مورد
بحث و بررسی قرار می‌گیرند. بر پایه پژوهشها و مطالعات ارائه شده
در مراجع [9-11] شاخص ایمنی مطلوب برای نیروهای بین آزمون
در محدوده مده. محدوده مده، باعث اثر بارهای ثقلی مورد زندگی در

استقلال، سال 18، شماره 12، اسفند 1378

\[A_{m} = \text{شکل 3- مقاومت مصرف فولاد در طراحی به دو روش مستقیم و آیین نامه‌ای} \]

\[\text{شکل 2- درصد کاهش مصرف فولاد در طراحی به روش} \]

\[M_d = M_{d_{\text{مراجع}}} + M_{d_{\text{نانهای}}} \]

\[\text{شکل 1- مقاومت فولاد مصرف در طراحی به دو روش مستقیم و آیین نامه‌ای} \]
در این نوشته روشن برای طراحی تمام احتمالاتی مقاطع بتن آن، با توجه به مقطع مستطیلی تحت خشک ارتفاع، این روش بر پایه نشانه سازی سیستم کاراکترستور مورد است. در اساس یک روش ورودی را انتخاب می‌کنند. این روش در اورشلیم است. این مباحث امکانات این روش در پرایری و نیز در است. ایجاد رابطه بین هزینه و سطح ایمنی

- تصنیف سطح ایمنی خاص با توجه به معادله خاص برای اجرای حرفه‌های اضافی ترس مصرف.
- حذف هزینه‌های اضافی ترس مصرف.

- در تجزیه و تحلیل رابطه بین هزینه و سطح ایمنی

1. limit states method
2. safety index
3. target safety index
4. digital simulation
5. random variable
6. Monte Carlo simulation
7. partial safety factors

2. Benjamin, J.R., and Cornell, C.A., Probability, Statistics, and Decision for Civil Engineers,

مراجع

1- واقعی، "مقایسه طراحی‌های مختلف بتن آمریکایی و روش‌های مختلف انتخاب
2- ایوبیور، "نتایج طراحی آنالیز و ایمنی بتن آمریکایی و

