بررسی چرخان سه بعدی هوا در یک محفظه

احمد رضا عظیمیان* و سیامک محمدی وند**
دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان
(دریافت مقاله: ۱۳۷۷/۶/۲ - دریافت نسخه نهایی: ۱۳۷۸/۶/۷)

چکیده - آگاهی از وضعیت چرخان هوا در یک محفظه در مسائل تهویه مطبوع از اهمیت ویژه‌ای برخوردار است. در روشهای سنتی، با برگرفتن و با استفاده از جدول‌های موجود به دست می‌آید و سیمای چرخان سیال به تصویر کشیده می‌شود. با حل عددی چرخان سیال در داخل یک فضای خاص می‌توان تصویر کامل و جامعی از چرخان هوا را ارائه کرد. برای انجام این مهم، معادله‌های ناویر - استوکس به سه بعدی و معادله‌های لام یرای مدل کردن افتشار دوری می‌باشند. نتایج حاصله در فضاهای داخلی تشکیل‌دهنده چرخان‌های سیال را به روش سبیل حل می‌کنند. نتایج به دست آمده تصویر جامعی از وضعیت چرخان را ارائه می‌کند که با تأثیر عددی و تجربی موجود قابل مقایسه و در استفاده بهینه از فضاهای داخلی می‌تواند کمک شایانی باشد.

Investigation of 3-D Flow in a Chamber

A.R. Azimian and S. Mohammadi vand
Department of Mechanical Engineering, Isfahan University of Technology

ABSTRACT- Information about the flow conditions in a chamber is crucial in air conditioning problems. In conventional methods, the heating or cooling loads of the buildings are estimated through existing charts and no analysis of the flow structure is done. The numerical solution of flow equations provides a complete picture of the flow behaviour. This method requires the prior solution of Navier-Stokes equations. To model the Turbulence behaviour of the flow, the so called k-ε equations are also solved.

The predicted results are comparable with the existing numerical and experimental results and could be used in optimum design of indoor areas.
2- معادله‌های حاکم برای حل این میدان جریان مغناطیس از معادله‌بندی چرم و معادله‌های مبتنی در جهتهای \hat{r} و $\hat{\phi}$ استفاده می‌شود. همچنین معادله‌های k- استاندارد برای مدل‌کردن انتقالات به کار می‌رود.

بدین‌ویژه هر کیه این معادله‌ها را متوسط‌گیری کرده و جملات نوسانی را حساب مقداری منطقه مدل می‌کنند. شکل نهایی معادله‌ها به صورت است

$$\frac{\partial}{\partial x} \left(\rho u_i \phi \right) = \frac{\partial}{\partial x} \left(\rho u \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\rho u \frac{\partial \phi}{\partial y} \right) + \frac{\partial}{\partial z} \left(\rho u \frac{\partial \phi}{\partial z} \right)$$

در این پوشه به دلیل یافتن روند سرعت جریان از تغییرات خفیف مصرف نظر کرده و بنا بر این نویسی که در معادله (1) استفاده شده است برای حالت تئوری محوری در مسائل دو بعد است و یافته‌های نهایی در این گونه مسائل است. مقداری از نسبتهای محوری و منصوبات استاتیکی یک بال و در دیجیتال مدل (دو و سه بعدی) دکتری و همکاران. مقداری و ϕ برای هر یک از معادله‌های حاکم به دست آمده از معادله (1) در جدول (1) و ضرایب مربوط به در جدول (2) آمده است.

$$G = \mu_1 \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial z} + \frac{\partial w}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial y} + \frac{\partial v}{\partial x} \right)^2$$

$$\mu_{eff} = \mu_1 + \mu$$

$$\mu_1 = c_0 \mu_k$$

3- روش حل معادله‌های جریان و شرایط مرزی

پس از تبدیل معادله‌های دیفرانسیل به معادله‌های جریان ساده، این معادله‌ها به هم ویستگی پایه از روش‌های تکریزی حل شود. در اینجا از روش گوس - سایدل خیز به استفاده می‌شود که سرعت همگرایی آن زیاد است. همگرایی در حالت وقیتی حاصل

به راحتی آن محل را مکان‌ها به
جدول ۱

<table>
<thead>
<tr>
<th>(\phi)</th>
<th>(\Gamma_\phi)</th>
<th>(S_\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

\[
\mu_{\text{eff}} = \frac{\partial p}{\partial x} + \frac{\partial (\mu_{\text{eff}} \cdot \partial u)}{\partial x} + \frac{\partial (\mu_{\text{eff}} \cdot \partial v)}{\partial y} + \frac{\partial (\mu_{\text{eff}} \cdot \partial w)}{\partial z}
\]

اندازه‌سنجی دره‌های x

\[
\mu_{\text{eff}} = \frac{\partial p}{\partial y} + \frac{\partial (\mu_{\text{eff}} \cdot \partial u)}{\partial x} + \frac{\partial (\mu_{\text{eff}} \cdot \partial v)}{\partial y} + \frac{\partial (\mu_{\text{eff}} \cdot \partial w)}{\partial z}
\]

اندازه‌سنجی دره‌های y

\[
\mu_{\text{eff}} = \frac{\partial p}{\partial z} + \frac{\partial (\mu_{\text{eff}} \cdot \partial u)}{\partial x} + \frac{\partial (\mu_{\text{eff}} \cdot \partial v)}{\partial y} + \frac{\partial (\mu_{\text{eff}} \cdot \partial w)}{\partial z}
\]

اندازه‌سنجی دره‌های z

\[
k \cdot \frac{\mu_{\text{eff}}}{\sigma_k} = G - \rho_e
\]

از ارزی افتتاح

\[
\varepsilon = \frac{\mu_{\text{eff}}}{\sigma_e} \cdot \frac{e}{k} (c_{\mu} G - c_{\varepsilon} \rho_e)
\]

از این افتتاح

جدول ۲

<table>
<thead>
<tr>
<th>(c_\mu)</th>
<th>(c_{\varepsilon})</th>
<th>(c_{\sigma_k})</th>
<th>(\sigma_k)</th>
<th>(\sigma_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.۸۹</td>
<td>۱۴۹</td>
<td>۱۹۲</td>
<td>۱۷۴</td>
<td>۱۷۷</td>
</tr>
</tbody>
</table>

روی داده‌های تجربی تخمین می‌زنند. در اینجا از نتایج تجربی کاتار [۶] استفاده می‌شود. شرط مزی خروجی با فرض جویان توسعه یافته، گرادیان صفر است. برای جریان توسعه یافته باید آن چند از میدان جریان اصلی فاصله گرفته که تأثیر شرایط موجود بر روی جریان خروجی به حد قابل صرف نظر کردن برسد که در این حالت داشته باشد. برای مثال مسافت و زمان کافی در اختیار جریان باشند تا بدون مواجه شدن با موانع و تغییر جهت آن در حال توسعه یافته زعید که با ادامه شبکه در خروجی این کار عملی می‌شود. بنابراین

\[
\frac{\partial \phi}{\partial \eta} = 0
\]

می‌شود که مجهول محاسبه شده در دو تکرار متوازی به عدد ثابتی رسیدگی پایداری است. با این تفاوت نسبی مجهول در دو تکرار و تساوی دو طرف معادله می‌تواند نوعی همگرایی باشد. برای افزایش سرعت همگرایی پیش از محسوب مجهول در هر تکرار شرطی از مجهولات در معادله‌های حاکم قرار می‌گیرد و سپس معادله‌ها حل می‌شوند شرایط مرزی مختلف به کار رفته شامل ورودی جریان، خروجی جریان و دیوار صلب اند. در ورودی کلیه اطلاعات و مشخصات سیال با این معلوم باشند، این اطلاعات شامل پرایل اعداد است. از ارزوی افتتاحی و خواص اولیه سیال انت‌آم. در این پرایل پر ارزش ورودی سرعت یکنواخت فرض می‌شود ولی جهت آن می‌تواند متغیر باشد. ارزی افتتاحی k و ترخ افتون آن k مقداری ورودی آن معلوم نیستند را از
که در هر متغیر مجهول و جهت خروج جریان است، اعمال شرط مولفه دیوار سطح برای معادله‌ها مختلط به صورت منفی‌تی است. بر روز دیوار صفحه مولفه‌های سرعت صفر هستند.

4- نتایج

برنامه‌ را برای هندسه‌های مختلف اجرا کرده و نتایج آن را با کارهای تجربی و عدیدی تا حدی که اطلاعات مربوطه در دسترس بود مقایسه کردیم. این هندسه، انتخاب آن برای ابعاد [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)۱۹۴۶(۲)۱۹۴۶(۲)۱۹۴۶(۲)] که به ترتیب در وسط سقف و نیز در مرکز تجربی و عدیدی در رم [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] ارائه شده است. برای به نتایج آزمایشات تجربی همان کانتور که در مرجع [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] آباده انتقال در ابعاد کلیبا صفحات چربی و توپس ساکاتومو ساختمان و سرعت متوسط و توسعی حنایی امکان‌پذیر با دادن اولتراپوکت اندازه‌گیری شد. نتایج برنامه‌ حاضر و نتایج عدیدی تجربی مرجع [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] تطبیق خوبی را نشان می‌دهد که به عمل محدودیت صفحات مقاله از ارائه آنها خودداری می‌شود. پس از مقایسه نتایج حاصل از اجرای برنامه، با نتایج مرجع [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)] و کسب اطلاعاتی از صحت کار برنامه را برای هندسه‌های اجرا کردیم.

مصرف مورد پرستی انتخاب است به ابعاد [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] با در دو دریچه‌ ورودی به ابعاد [۲۴۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] و خروجی به ابعاد [۲۴۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] که به ترتیب در صفحات [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] ورودی هوا و دیگری داری به سرعت شریکی با [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] و [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] است، میدان جریان‌ بر اساس [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] صورت پدیدار می‌شود استرخ جریان و در غنی‌هایی در فراوانی معادله‌ها (زکی رومات) (زکی رومات) (زکی رومات) (زکی رومات) (زکی رومات) (زکی رومات) (زکی رومات)

افزونه در مورد دیوار روز و روزی است، در صفحه ۱۷۸، شماره ۲، استفاده

مصرف مورد پرستی انتخاب است به ابعاد [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] با در دو دریچه‌ ورودی به ابعاد [۲۴۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] و خروجی به ابعاد [۲۴۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] که به ترتیب در صفحات [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] ورودی هوا و دیگری داری به سرعت شریکی با [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] است، میدان جریان‌ بر اساس [۲۸۲۴۲۴(۲)۴۶۶۶۴(۲)۱۹۴۶(۲)] صورت پدیدار می‌شود استرخ جریان و در غنی‌هایی در فراوانی معادله‌ها (زکی رومات) (زکی رومات) (زکی رومات) (زکی رومات) (زکی رومات) (زکی رومات) (زکی رومات)
شکل 1- بردارهای سرعت در سطح

مشک ورودی و در دبیر حاوی می‌شود. در شکل (2-ب) با مانندی گرداگردگی اصلی به جریان دیده می‌شود. در شکل (2-ج) با دارای آرایشی مانند شکل (3-ب) است. ملاحظه می‌شنود که گرداگردگی اصلی ان صفحه در این مقطع تقید با تشکیل شده است. شکل (2-ب) با

چپ، گرداگردگی به وجود آمده ناشی از دمای گرداگردگی بالایی و پایینی است که در اثر نزدیکی مستقیم به محل برخورد توده هوا وی ورودی با کف و برخورد جریان ایجاد شده است. در شکل (3-ج) با یک عبور از محل برخورد خروجی، گرداگردگی اصلی شکل گرفت وی در گرداگردگی بالایی و در سمت چپ هنوز شاید برخورد و جریان پیش فرسته شدهای مرکز گرداگردگی اصلی در نزدیک

صفحه بالایی و نزدیک در جریان خروجی است. در شکل (3-ج) با رسیدن به مانند، گرداگردگی در پشت آن تشکیل می‌شود وی در محل گرداگردگی اصلی هنوز برقرار است و گرداگردگی اصلی بر جریان برخورشیده، از گرداگردگی بالایی از قسمت سمت چپ و نزدیک هسته، جریان دیده می‌شود. در شکل (2-ه) با

گرداگردگی بالا و سمت چپ مسیم: جریان در پایینی دارای اثر برخورد جریان فاقد اثر، دو دیگر شرطی ایجاد می‌شود. در شکل (3-ف)

دامنه آرایشی مانند شکل (3-ب) است.
شکل ۲- پردازش سرعت در صفحه $X-Y$

شکل ۳- پردازش سرعت در صفحه $X-Z$

استقلال، سال ۱۸، شماره ۲، اسفند ۱۳۷۸

۱۹۶
جابه‌جایی‌هایی لازم در موقعیت دریچه‌ها، تغییر جهت و یا سرعت جریان و غیره... اثرات آنها را پروری میدان جریان برسی کرد. در هر حال از تناوب چنین هالی‌سی می‌توان در بهتر تهیه کردن انتخابی کار نشیمن، خواب، کارگاه‌های کوکچک و یا دیگر فضاهای بهترین به‌جای ممکن استفاده کرد.

1. partially - parabolic

