Estimation of Induction Motor Speed by EKF In Stationary Frame and Use of Rotor Flux and Study of Parameter Variations

M. Milimonfared, K. Abbaspazadeh, M. Menhaj and H. Kazemy

Department of Electrical Engineering, Amir Kabir University

ABSTRACT- This Paper presents a new methods (EKF) for vector control in induction motors. EKF stands for Extended Kalman Filter, which is used in speed estimation in a stationary reference frame. It has been shown that the method works accurately even at low speeds. The estimation method introduced in this paper takes into view such constraints as switching time and sampling limits. The novelty with the method is that samples are taken only from stator phase currents; in other words, there is no need for speed sensors.

1- مقدمه

1. استفاده از سنسور است اما در بعضی از شرایط امکان استفاده از سنسورهای سرعت وجود ندارد. بنابراین پایه به جستجوی روشنایی برای کنترل موتورهای الکتریکی نیاز به اندکوهای دیفی سرعت با

دانشیار ** دانشجوی ذکر

استقلال، سال 138، شماره 3، اسفند 1378
۲- معادله‌های EKF در فرآیند کلی می‌باشد که از تخمین پارامترها در معادله‌های فضایی حالت سیستم استفاده می‌شود. یک کلیه از معادله‌های به شکل فضایی حالت تعریف شده و دوطرفی که معادله‌های بین متغیرهای حالت خطران باشد برای تخمین از روش فیلتر کالمن EKF گسترش یافته است. در این روش، معادله‌های EKF به‌طور یکسانی تحت دو شرایط تخمین می‌باشند: 

\[ X(t) = f[X(t), U(t), t] + W(t) \] (1) 

\[ Y(t) = f[X(t), t] + V(t) \] (2)

که در آن \( W(t) \) مدل ماتریسی نویز حالت‌های سیستم و \( V(t) \) مدل ماتریسی نویز خروجی سیستم و خطا از انتخاب‌گیری است. \( X(t) \) و \( Y(t) \) به ترتیب ورودی و حالت‌ها و خروجی‌های سیستم‌های در خلال معادله‌های EKF از نوع نویز سفید و EKF است. می‌تواند به سیستم‌ها و معادله‌های EKF تعریف شده باشد.

با توجه به اینکه در معادله (1) و (2) نیاز به تخمین داده می‌شود، در مقاله اثر تغییر می‌کند از پارامترهای موتور در خطای تخمین سرعت و تابعیابی حلقه کنترلی شدن داده می‌شود.

و موارد دربرگویش خواهد شد.

معادله‌های EKF

- تعریف معادله‌های تخمین سرعت.
3- تعیین معادله‌های تخمین سرعت

برای تخمین سرعت با استفاده از EKF، تعیین معادله‌های موتوری‌الی‌ای در فضای حالت مناسب مطالعه‌های (1) و (2) که بینان با آن سرعت موتور را در شرایط مختلف تخمین X به‌دست آمده‌است. بردار EKF حالت X از هماهنگی فاصله بردار با این‌که X و Y خروجی‌های سیستم اند. حالت‌ها باید به گونه‌ای انتخاب شوند که الگوریتم بتواند سرعت موتور را به خوبی تخمین بزند. با توجه به اینکه استفاده از این الگوریتم رؤیای خطای حاصل از مناسبی و اندما‌گیری خاصی از این سیستم اند، بنابراین معادله‌های حالت موتور باید از توابعی را به عنوان خروجی سیستم محاسبه کنند که توسط سنسور می‌توانیم آنها را اندما‌گیری کنیم.

با توجه به اینکه جریان با ورود سیستم از این مدتگری به [iqs, ids] و دیگر مشخص می‌کنیم که با اندما‌گیری از جریان دو فاز استاندارد و تبدیل پارک، آنها را به ساده با دستی آوریم. بردار U را به عنوان [iqs, ids] و بردار سیستم با ورودی [vqs, vds] به عنوان خروجی و [iqs, ids] به عنوان ورودی است، که در آن Ts زمان نمونه برداری است.

اهداف محرک برهه فیلتر کالمن

K(k + 1) = P(k + 1|k).H^T(k + 1)[H(k + 1).P(k + 1|k).H^T(k + 1) + R(k + 1)]^{-1}.

P(k + 1|k) = [I - K(k + 1).H(k + 1)].P(k + 1|k).

X(k + 1|k + 1) = X(k + 1|k) + K(k + 1).E(k + 1|k)

E(k + 1|k) = Z(k + 1) - H[X(k + 1|k) + 1].

در معادله (9) خطا بین خروجی واقعی سیستم و خروجی تخمین است.
کرد ویلی در اکثر موارد ماتریس Q(k) نیز به صورت تجربی تعیین می‌شود. این ماتریس بایانگر خطای مدل‌سازی است که به صورت معادله (21 – ب) در نظر گرفته شده است.

\[
Q(k) = \int Q(t_k, r)Q(r) Q^T(t_r, r)dr
\]  \hspace{1cm} (21 - ألف)

\[
Q(k) = \begin{bmatrix}
1/5 & \cdots & \cdots & \cdots & \cdots \\
\cdots & 1/5 & \cdots & \cdots & \cdots \\
\cdots & \cdots & 1/5 & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & 1/5 \\
\end{bmatrix}
\]  \hspace{1cm} (21 - ب)

- تعبین سرعت و اثر پارامترها
برای تعبین سرعت موتور و کنترل آن فقط احتمال به انداده‌گیری جریان ذوب فاز استاندارد، این عمل توسط سنسورهای صوتی می‌گردد و با استفاده از جریان ذوب فاز می‌توان جریان‌ها iqs و ids می‌گیرد. در معادله (22) در سکن به اساس ماتریس چرخش ذوب شده، خواصی داشت

\[
\begin{bmatrix}
\frac{a_r}{a_1} & \frac{a_r}{a_1} & \frac{a_r}{a_1} & \frac{a_r}{a_1} \\
\end{bmatrix}
\]  \hspace{1cm} (15)

\[
ids + iqs = \sqrt{r} \left( \frac{ib + ic}{\sqrt{r}} \right) + j \sqrt{r} \left( \frac{ib - ic}{\sqrt{r}} \right)
\]  \hspace{1cm} (22)

\[
\begin{bmatrix}
a_1 & \frac{L_m}{L_r} \\
\frac{L_m}{L_r} & a_1 \\
\frac{L_m}{L_r} & a_1 \\
\frac{L_m}{L_r} & a_1 \\
\frac{L_m}{L_r} & a_1 \\
\end{bmatrix}
\]  \hspace{1cm} (16)

\[
\begin{bmatrix}
a_0 & -a_r & a_r & a_r \\
-\frac{a_r}{a_1} & a_1 & a_r & a_r \\
\end{bmatrix}
\]  \hspace{1cm} (17)

که در آن Mاتریس (k) را با استفاده از تقریب دو جمله اول سری تیلور محاسبه می‌کنیم و خواهیم داشت

\[
Q(k + 1, k) = \exp(F(k), T) = I + F(k).T
\]  \hspace{1cm} (19)

در محاسبه الگوریتم EKF در ماتریس R(k) بایانگر خطای انداده‌گیری سنسورهای جریان است که به صورت معادله (14) با سعی و خطای مشخصات سنسورهای مورد استفاده تعیین شده است.

\[
R(k) = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \sqrt{1} & 0 \\
0 & 0 & 0 & 0 & \sqrt{1} \\
\end{bmatrix}
\]  \hspace{1cm} (20)

برای تعیین ماتریس Q(k) می‌توان از معادله (21 - ألف) استفاده کرد.
شکل 1- نمودار کنترل موتوری القایی به روش کنترل برداری بدون سنسور

گشتابور کامل را نشان می‌دهد عملیات سرعت در تنظیم‌های مختلف سرعت می‌باشد. به خوبی صورت گرفته است. اما دارای نوسانات است، این نوسانات ناشی یابد محاسبات ریاضی فیلتر کامل در شیپسازی است که در عمل چون تابه این موتور بار مدار نوسانات سرعت سیستم می‌باشد از مصداق شیپسازی خواهد بود. برای اطمینان از دقیقه عملکرد روش پیشنهادی در یک مرحله تغییر سرعت در 140 rpm و 500 rpm در گشتاور کامل و 210 degree تغییر در 140 rpm و 500 rpm پس از کنار شدن Tlod به نمایه اعمال شده است. شکل‌های 2 و 3 نشان می‌دهند که تخمین سرعت و کنترل موتور بر اساس روش پیشنهادی به خوبی صورت می‌گیرد.

متصل می‌گذار در تخمینگرهای سرعت، پایداری و دقت تخمینگرهاینگام تغییر پارامترهای موتور به علتهای مختلف

دید و موتور را تحت کنترل درآورد. با توجه به اینکه در دیدن

شیپت، حداکثر زمان لازم برای همگراشدن تخمینگرهای با استفاده از

پردازشگر 250 میکروثانیه است، بنابراین در صورتی که از

پردازشگرهای 246 یا 586 پرای پایداری استفاده شود، سیستم

ساخته شده از پایداری محاسبه بوجود آید. با استفاده از

چنین سیستم‌هایی می‌توان به کنترل بلادنگ (ونلاین) (دسترسی

پیداکرد. شکل‌های 2 و 3 نشان می‌دهند که تخمین

سرعت و کنترل موتور در سرعت‌های کمیک از مهمترین مشکلات

تخمینگرهای سرعت است که باید برای دقت تخمینگرهای سرعت است

شکل 2- تخیم سرعت موتور در 140 rpm و گشتاور کامل

شکل 3- تخیم سرعت موتور در 140 rpm و گشتاور کامل
نتیجه‌گیری‌ها، اشتغال و یا اندازه‌گیری درست پارامترهای که این ایثار در سرعت‌های کم از هم‌بستگی بیشتری در پرپتارادار است، 

شکل‌های (8) تا (12) اثر تغییر پارامترها در تخمین و کنترل سرعت در روش پیشنهادی را نشان می‌دهند. شکل‌های (6) تا (8) نشان دهنده اثر تغییرات بالا و پایین در rpm و Lm ۱۴۰ درصد نامی در سرعت rpm و Lm.
شکل 10- اثر تغییر به درجه گرتی در رpm بر تخمین سرعت در رpm

شکل 9- اثر تغییر به درجه گرتی در رpm بر تخمین سرعت در رpm

شکل 11- اثر تغییر به درجه گرتی در رpm بر تخمین سرعت در رpm

شکل 12- اثر تغییر به درجه گرتی در رpm بر تخمین سرعت در رpm

شکل 13- اثر تغییر به درجه گرتی در رpm بر تخمین سرعت در رpm

برخورد از طرفی، شکل 10 و 11 نشان می‌دهد. همان طورکه ملاحظه می‌شود، اثر تغییرات در بهینه سرعت متوسط و سرعت تخمینی از دو رpm به ترتیب دو قسمت هماهنگی و طیف تخمین سرعت می‌باشد. اثر تغییر به درجه گرتی در رpm به تنهایی در دو طرف اثر به طوری که باید به نتیجه‌گیری‌های پیش‌تر نسبت به لیست Lm، شکل 11 نشان می‌دهد.

به طور کل، نتایج نشان می‌دهد که در مواردی که سرعت سنجش نسبت به سرعت موتور در قسمت هماهنگی تحت تأثیر اثرات مصداقی و/or اثرات غیر مصداقی و/or اثرات دیگر از طرفی رpm تغییر کرده و در بهینه سرعت متوسط و سرعت تخمینی از دو رpm به ترتیب دو قسمت هماهنگی و طیف تخمین سرعت می‌باشد. اثر تغییر به درجه گرتی در رpm به تنهایی در دو طرف اثر به طوری که باید به نتیجه‌گیری‌های پیش‌تر نسبت به Lm، شکل 11 نشان می‌دهد.

پنجمین گیرنده سرعت به روش پیشنهادی دارایی دقیق تر است. نتایج به دست آمده نشان می‌دهد که این روش در تغییرات شدید در بهینه سرعت و پیش‌تر در بالای پایداری و عملکرد دقیق دارد. در سرعینهای کم به نحوی مناسبی سرعت موتور و سرعت تخمینند. اثر تغییر به درجه گرتی در رpm به تنهایی در دو طرف اثر به طوری که باید به نتیجه‌گیری‌های پیش‌تر نسبت به Lm، شکل 11 نشان می‌دهد.

پنجمین گیرنده سرعت به روش پیشنهادی دارایی دقیق تر است. نتایج به دست آمده نشان می‌دهد که این روش در تغییرات شدید در بهینه سرعت و پیش‌تر در بالای پایداری و عملکرد دقیق دارد. در سرعینهای کم به نحوی مناسبی سرعت موتور و سرعت تخمینند. اثر تغییر به درجه گرتی در رpm به تنهایی در دو طرف اثر به طوری که باید به نتیجه‌گیری‌های پیش‌تر نسبت به Lm، شکل 11 نشان می‌دهد.

پنجمین گیرنده سرعت به روش پیشنهادی دارایی دقیق تر است. نتایج به دست آمده نشان می‌دهد که این روش در تغییرات شدید در بهینه سرعت و پیش‌تر در بالای پایداری و عملکرد دقیق دارد. در سرعینهای کم به نحوی مناسبی سرعت موتور و سرعت تخمینند. اثر تغییر به درجه گرتی در رpm به تنهایی در دو طرف اثر به طوری که باید به نتیجه‌گیری‌های پیش‌تر نسبت به Lm، شکل 11 نشان می‌دهد.

پنجمین گیرنده سرعت به روش پیشنهادی دارایی دقیق تر است. نتایج به دست آمده نشان می‌دهد که این روش در تغییرات شدید در بهینه سرعت و پیش‌تر در بالای پایداری و عملکرد دقیق دارد. در سرعینهای کم به نحوی مناسبی سرعت موتور و سرعت تخمینند. اثر تغییر به درجه گرتی در رpm به تنهایی در دو طرف اثر به طوری که باید به نتیجه‌گیری‌های پیش‌تر نسبت به Lm، شکل 11 نشان می‌دهد.

پنجمین گیرنده سرعت به روش پیشنهادی دارایی دقیق تر است. نتایج به دست آمده نشان می‌دهد که این روش در تغییرات شدید در بهینه سرعت و پیش‌تر در بالای پایداری و عملکرد دقیق دارد. در سرعینهای کم به نحوی مناسبی سرعت موتور و سرعت تخمینند. اثر تغییر به درجه گرتی در رpm به تنهایی در دو طرف اثر به طوری که باید به نتیجه‌گیری‌های پیش‌تر نسبت به Lm، شکل 11 نشان می‌دهد.
\[
\begin{align*}
R_s &= \frac{\sqrt[3]{2}}{\pi} \Omega \\
P_{out} &= 5 hp \\
R &= \frac{1}{384} \Omega \\
V &= \frac{384}{V} \\
L_m &= 37 \text{mH} \\
P &= 4 \text{poles} \\
L_s &= 37 \text{mH} \\
f &= 50 \text{Hz} \\
L_v &= 37 \text{mH}
\end{align*}
\]


