ادغام وفقی تصمیمات در شبکه‌های آشکارسازی

قاسم میرجلیلی، محمد رضا عارف، محمد مهدی نعیمی و مسعود کهریزی
دانشگاه مهندسی برق دانشگاه صنعتی خواجه نصیرالدین طوسی
(دیوانه مقاله: 19/12/87 - دریافت نسخه نهایی: 88/9/22)
چکیده - در شبکه‌های آشکارسازی با ادغام مناسب تصمیمات محیط آشکارسازی، تصمیم‌گیری نهایی گرفته می‌شود. هدف ادغام به هنگام تصمیمات به گونه‌ای است که احتمال خطا در تصمیم‌گیری نهایی کمینه شود. برای تحقق قاعده ادغام بهینه، کارایی هر آشکارسازی می‌بایست احتمال آشکارسازی و احتمال هشدار غلط آن و همچنین احتمال پیشین مربوط به توزیع معنی‌دار باشد. درعمل ممکن است این آمارگان ناپایدار و با مغنی باشند. در این مقاله یک روش پایگاهی برای تحقیق مرکزی ادغام وقیفی از این است. این روش همچنین بر میتسوتویگی زمانی از تصمیمات محیط استفاده از روابط تحلیلی است. این امر همگراپی محیطی که روش متنی‌کردن را تضمین می‌کند. همچنین یک روش ساده برای افزایش سرعت پاسخ سیستم به تغییرات ارائه شده و در اینها با نمایش نتایج شبیه‌سازی‌ها کارایی و همگراپی الگوریتم شان داده شده است.

Adaptive Decision Fusion in Detection Networks

G. Mirjalily, M. R. Aref, M. M. Nayebi and M. Kahrizi

Department of Electrical Engineering, K. N. Toosi University of Technology

Department of Electrical Engineering, Tarbiat Modarres University

Department of Electrical Engineering, Sharif University of Technology

ABSTRACT - In a detection network, the final decision is made by fusing the decisions from local detectors. The objective of that decision is to minimize the final error probability. To implement an optimal fusion rule, the performance of each detector, i.e. its probability of false alarm and its probability of missed detection as well as the a priori probabilities of the hypotheses, must be known. However, these statistics are usually unknown or may vary with time. In this paper, we develop a recursive algorithm that adapts the fusion center. This approach is based on the time-averaging of local decisions and on using the analytic solutions that guarantee the asymptotic convergence. Also a simple method is proposed that enables the algorithm to track changes faster. Simulation results are presented to demonstrate the efficiency and convergence properties of the algorithm.

استقلال، سال 19، شماره 1، شهریور 1379
<table>
<thead>
<tr>
<th>فهرست علائم</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{ij}</td>
</tr>
<tr>
<td>P_{di}</td>
</tr>
<tr>
<td>$E(0)$</td>
</tr>
<tr>
<td>$F(0)$</td>
</tr>
<tr>
<td>H_0</td>
</tr>
<tr>
<td>H_1</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>S_j</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>u_0</td>
</tr>
<tr>
<td>u_{ij}</td>
</tr>
<tr>
<td>H_j</td>
</tr>
</tbody>
</table>

1. مقدمه

در فرآیند آشکارسازی سیگنال در نویز، در مورد انتخاب یکی از فرضیه وجود و یا عدم وجود سیگنال مطلب در مشاهده دریافته، تصمیم گیری می‌شود. در واقع یک آشکارسازی غیرباید با توجه به مشاهده خود و پیمایش یک فاقدان توصیف گیرنده نهایی که از فرضیه بالا تا ناپیدا کنند. به عنوان مثال مقصود از یک کاهش یکی از مشاهده دریافته در صورت وجود نیست، از نویز به علقو سیگنال متعکس شده از هدف در گیرنده‌های سیگنال را توصیف می‌کنند. به طور کلی مسئله آشکارسازی سیگنال در نویز را می‌توان به صورت آزمون فرضیه زیر مدل کرد:

$$H_0: \ y = n$$
$$H_1: \ y = s + n$$

که در آن s بردار مشاهده دریافته، s بردار سیگنال مطلوب و n بردار نیز است. وشنون این است که با توجه به ماهیت تصادفی نویز، تصمیم گیری بین فرضیه H_0 بدون خطای نهایی برد H_1 انتخاب شود در حالی که باعث ممکن است H_1 انتخاب شود در حالی که باعث صحیح شود و H_0 ممکن است صحیح باشد. حالیکه نهایاً انتخاب را بر اساس مشکلات H_1 یا بر اساس مشکلات H_0 انتخاب شود در حالی که باعث صحیح باشد و H_0 ممکن است H_1 انتخاب شود در حالی که باعث صحیح باشد. حالیکه نهایاً انتخاب را بر اساس مشکلات H_1 یا بر اساس مشکلات H_0 انتخاب شود در حالی که باعث صحیح باشد و H_0 ممکن است صحیح باشد. حالیکه نهایاً انتخاب را بر اساس مشکلات H_1 یا بر اساس مشکلات H_0 انتخاب شود در حالی که باعث صحیح باشد و H_0 ممکن است صحیح باشد.

استنال، سال 19، شماره 1، شهریور 1379
شکل 1- ساختار یک شبکه آشکارسازی

هدف از ارائه این مقاله، بافتی روش دریافت حقیقی یک آشکارساز محلي عمل می‌کند. به عبارت دیگر دریافت صحیح با توجه به مشاهدات خود، یکی از دو فرضیه ممکن را تایید کرده و نتیجه را یکی از دو تصمیم دوویی است. ارسال می‌کند. از امتیازات آشکارسازی توزیعی می‌توان به مواردی از قبیل: اندازه‌گیری اطمینان، افزایش سرعت آشکارسازی، مقاومت شدن در مقابل محوش‌گیری، افزایش قابلیت انعطاف و تغییر آرا، امکان آشکارسازی و ریابی تصمیم‌گیری صحیح سیگنال و امکان استفاده از آشکارسازی‌های با قابلیت‌های مختلف کاربردی کرد. در این روش بر خلاف آشکارسازی مترک، مرکز اطلاع فقط به اطلاعات جزئی رسیده از گیرنده‌ها دسترسی دارد و نتیجه آن در مقایسه با روش مترک می‌تواند افکاری کارایی خواهیم داشت. به هر حال انتخاب کاربردی را می‌توان با پرداخت به‌شناسنده می‌تواند در یک شبکه آشکارسازی، آشکارسازی به طور مزاحم به مرکز اطمینان می‌شود. در این شیوه، هر آشکارساز بر اساس مشاهدات خود یکی از دو فرضیه ممکن را تایید کرده و نتیجه را یکی از دو تصمیم دوویی است مستقیماً به مرکز اطلاع می‌کند. در مرکز با اطلاع مناسب تصمیماتی می‌شود تصمیم نهایی گرفته می‌شود، شکل (1). در این شکل از مشاهده دریافتی توسط آشکارساز از ام این تصمیم‌گیری شده توسط آن است به طوری که در صورت تایید وجود سیگنال 1 = و در غیراین صورت 0 =

در ادامه فرض استقلاً شرطی آشکارسازی تحت هر دو فرضیه را می‌دهد. به عبارت دیگر،

\[f(y_1, y_2, \ldots, y_N | H_1) = \prod_{i=1}^{N} f(y_i | H_1) \quad i=0,1 \quad (2) \]

که در آن \(f(0|0) \) تابع چگالی احتمال شرطی و \(N \) تعداد آشکارسازهای محیط است. همچنین میزان حداکثر احتمال خطای
عنوان میزان بهبود یکی از آن‌ها به بیان آزادی رایانش می‌شود که احتمال خطأ در تصمیم‌گیری نهایی بیشتر
کمیتی شود. بنابراین تعریف این‌طور

\[P_c = P(u_0 = 1 \mid H_0)P_0 + P(u_0 = 0 \mid H_1)P_1 \]

که در آن \(P \) احتمال بیشین فرضیه است. در
بخش بعدی ضمن معرفی قاعده ادخام بیهیه، مشخصات موجود برای
تحت‌پوشان بیشین، شده و در هر تأکید
قرار می‌گیرد، همچنین کارهای انجام شده در این زمینه معرفی
می‌شود. در بخش 3، ما توصیف این‌طور اساسی این
موردنظر برای شیوه‌های ساده به یک آشکارساز محلی ارائه شده و
تالیب شیوه‌های برای موردی‌های موردینه می‌گردد. در بخش 4، راهکل
برای توافقات سرنگونی آن‌ها را ارائه داده و در بخش 5، نحوه
تعمیم آن‌ها به حالی که توضیح داده می‌شود. در بخش 6، پس
از جمع‌بندی تاکید، بیشترین فضای مطلوبی به دست آمده که
در حالی که آن‌ها را آن‌ها را برای شیوه‌های یا آشکارساز
مناسب نیست مگر آنکه شکلی و پرداخت خاصی داشته باشد [2]، با
استفاده از روش‌های کمی می‌توان تعداد تقریبی آشکارسازی را
برای سیگنال به یک کارایی مشخص، تعیین کرد. بدین منظور در
برای مدل خاصی از سیگنال و نویز، منحنی‌های ارائه شده که کارایی
شایع را می‌توان تعداد آشکارسازی‌ها نشان داد.

- ۲- قاعده ادخام بیهیه

کارهای زیادی برای طراحی بیهیه شیوه‌های آشکارسازی انجام
گرفته است [3]. می‌توان نشان داد که برای شیوه‌ای با
آشکارسازی، با فرض استلال شرطی مشاهدات، قاعده ادخام بیهیه
به صورت زیر است:

\[u_0 = \begin{cases} 1, & \text{if } w_0 + \sum_{j=1}^{N} w_{j1} + (1 - u_0)w_{j0} > 0 \\ 0, & \text{otherwise} \end{cases} \]

که در آن:

\[w_0 = \log \left(\frac{P_i}{P_0} \right) \]

\[w_{j1} = \log \left(\frac{1 - P_{mj}}{P_{fj}} \right) \quad j = 1, \ldots, N \]

استقلال، سال ۱۹، شماره ۱، شهریور ۱۳۷۹

[8]
معادله، کمیته‌های مورد نظر را محاسبه می‌کنیم. در اینجا مسئله تصمیم دو‌ویجی در تیپه‌های مختلف وجود دارد. مسئله کنیتی نشان دهنده احتمال وقوع (\(P_{ijk}\)) باشد. با فرض استقلال شرطی مشاهده‌ها و در تیپه‌های استقلال شرطی تصمیم‌گیری‌ها محیطی داریم:

\[
P_{ijk} = P(u_i = 1, u_j = 2, u_k = 3) = P(u_i = 1 | H_i)P(u_j = 2 | H_j)P(u_k = 3 | H_k)P_1 + P(u_i = 1 | H_0)P(u_j = 2 | H_0)P(u_k = 3 | H_0)(1 - P_1)
\]

که در آن:

\[
P(u_i = 1 | H_i) = \begin{cases} 1 - P_{m_i} & \text{if } i = 1 \\ P_{m_i} & \text{if } i = 0 \\ \end{cases}
\]

\[
P(u_i = 1 | H_0) = \begin{cases} P_{f_i} & \text{if } i = 1 \\ 1 - P_{f_i} & \text{if } i = 0 \\ \end{cases}
\]

همان طور که دیده می‌شود، احتمال وقوع یک حالت تابعی از حالت کنیتی متنگیر نامعلوم (\(i = 1, 2, 3\)) \(P_{m_i}\) و \(P_{f_i}\) است. از طرفی، هشت معادله به شکل (9) داریم که فقط هفت تای آنها استقلال جبری دارند.

\[
\sum_{i=1}^{1} \sum_{j=0}^{1} \sum_{k=0}^{1} P_{ijk} = 1
\]

در تیپه‌های استقلال شرطی محیطی مستقل و هفت متنگیر داریم که با حل آن می‌توان متنگیران نامعلوم را بررسی مقداری پایه حل این دستگاه کار پیچیده‌ای است. با ترکیب جبری معادله‌های این دستگاه، به سادگی می‌توان معادله‌ها را حل کرد.

\[
P(u_i = 1) = (1 - P_{m_i})P_1 + P_{f_i}(1 - P_1)
\]

\[
P(u_i = 1, u_j = 1) = (1 - P_{m_i})(1 - P_{m_j})P_1 + P_{f_i}P_{f_j}(1 - P_1)
\]

\[
P(u_i = 1, u_j = 1, u_k = 1) = (1 - P_{m_i})(1 - P_{m_j})(1 - P_{m_k})P_1 + P_{f_i}P_{f_j}P_{f_k}(1 - P_1)
\]

\[
\gamma_i = P(u_i = 1)
\]

\[
\delta_{ij} = P(u_i = 1, u_j = 1)
\]

3- ادغام واقعی تصمیم‌گیری‌ها در شبکه‌های با سه‌گانه‌سازی

3-1 توصیف الگوریتم

یک شکستگی شبکه با سه‌گانه‌سازی محیطی را در نظر گرفته‌ایم.

\[
P(u_i = 1) = 1 - P_{m_i}P_1 + P_{f_i}(1 - P_1)
\]

\[
P(u_i = 1, u_j = 1) = (1 - P_{m_i})(1 - P_{m_j})P_1 + P_{f_i}P_{f_j}(1 - P_1)
\]

\[
P(u_i = 1, u_j = 1, u_k = 1) = (1 - P_{m_i})(1 - P_{m_j})(1 - P_{m_k})P_1 + P_{f_i}P_{f_j}P_{f_k}(1 - P_1)
\]

\[
\gamma_i = P(u_i = 1)
\]

\[
\delta_{ij} = P(u_i = 1, u_j = 1)
\]
\[\gamma_k = \frac{1}{k} \sum_{j=1}^{k-1} \gamma_j \]

با حل معادله‌های (12-الف) تا (12-ج) به طور همزمان و هدف جواب‌های نادرست و با توجه به نمادهاي تعريف شده، جواب یکتای زیر برای كمتهای نامعلوم به دست می‌آید:

\[P_1 = 0.5 - \frac{X}{2} \sqrt{X^2 + 4} \]
\[P_{i1} = - \frac{1}{\sqrt{1 - P_1}} \]
\[P_{mi} = 1 - \frac{1}{\sqrt{1 - P_1}} \]

\[X = \frac{(\gamma_{12} + \gamma_{13} + \gamma_{14} + \gamma_{15}) - (\gamma_{1} \delta_{23} + \gamma_{1} \delta_{24} + \gamma_{1} \delta_{25})}{(\delta_{23} + \delta_{24} + \delta_{25})} \]

\[a_1 = \frac{(\delta_{13} - \gamma_{12})}{(\delta_{23} - \gamma_{12})} \]
\[a_2 = \frac{(\delta_{14} - \gamma_{12})}{(\delta_{24} - \gamma_{12})} \]
\[a_3 = \frac{(\delta_{15} - \gamma_{12})}{(\delta_{25} - \gamma_{12})} \]

بنابراین تمام کمتهای نامعلوم را می‌توان به طور یکتا با دانست.

احتمالات \(\gamma_k \) و \(\delta_{ij} \) به دست آورده.

از طرفی بر اساس نظریه تصمیم‌گیری اتفاقی می‌توان برآوردی از احتمالات اخیر را توسط متوسط گیری زمانی از تصمیمات محالی به دست آورد [15]. اگر \(\bar{\gamma} \) نشاندهدگاه برآورد \(\gamma_1 \) در لحظه \(k \) باشد، داریم:

\[\bar{\gamma}^k_1 = \frac{1}{k} \sum_{j=1}^{k} \gamma_j \]

\[\bar{\gamma}^k_{ij} = \frac{1}{k} \sum_{j=1}^{k} \gamma_{ij} \]

\[\bar{\gamma}^k_{ij} = \frac{1}{k} \sum_{j=1}^{k} \gamma_{ij} \]

\[\bar{\gamma}^k_{1} = \frac{1}{k} \sum_{j=1}^{k} \gamma_{1j} \]

که در آن \(\gamma \) تصمیم‌گیری اتفاقی در لحظه \(k \) است. می‌توان معادله‌ای بالا را به صورت بازگشتی نیز نوشت:

\[\bar{\gamma}^k_{1} = \frac{1}{k} \sum_{j=1}^{k} \gamma_{1j} \]

استلال، سال 19، شماره 1، شهریور 1379
کرده. در این صورت، انتخاب مقدار اولیه می‌تواند دقیقتر باشد. انتخاب مقدار اولیه دقیقر در افزایش سرعت همگرایی پی تأییر تخواهد بود.

در اینجا مقدار وضعیت به صورت یک متغیر تصادفی P_1 (شیب‌سازی) انتخاب کرده که طوری که با احتمال H_1 مقداری یک به و نداشته و با احتمال H_0 مقداری صفر به و نداشته‌اند. و یک متغیر تصادفی u به صورت یک متغیر تصادفی دودویی H شیب‌سازی شده است به طوری که با مشاهده H و با توجه به احتمالات خطای مفروض، مقدار آن مشخص می‌شود. به عبارت دیگر:

$$P(u_i = 1 | H = 0) = \begin{cases} P_{f_1} & 1 = 1 \\ 1 - P_{f_1} & 0 = 0 \end{cases} \tag{22}$$

$$P(u_i = 1 | H = 1) = \begin{cases} P_{m_1} & 1 = 0 \\ 1 - P_{m_1} & 1 = 1 \end{cases} \tag{23}$$

و از این مقاله مستقل از مدل آماری سیگنال و نویز بوده و تناها بر اساس احتمالات خطای شیب‌سازی‌ها عمل می‌کند.

شناخته‌ای (الف) و (ب) شناخته‌دهنده به معنی "همگراشدن" و P_{m_1} و P_{m_2} را به طور نمونه‌ای می‌دهد. همچنین در شکل (د) نمایش داده شده که احتمال خطای نهایی را و سپس آن به مقدار کمیت ممکن را ملاحظه می‌کنید. همان طور که دیده می‌شود سرعت همگراشی احتمال خطای بسیار بالاست به طوری که پس از حدود 50 دفعه تکرار و قابلیت همگراشی کامل سیستم مقداری به مقدار کمیت ممکن رسیده است. علت این امر، گسترش بودن ورودی مرکز ادامه است. در واقع بودن N مشاهده در صورتی که دقیق، نتیجه نخواهد بود.

$$Var(\gamma_i) = E(\gamma_i^2) - \frac{1}{k} \sum_{m=1}^{k} \sum_{n=1}^{k} E(u_m^* u_n^*) - \gamma_i^2$$

$$= \frac{1}{k} \gamma_i (1 - \gamma_i) \tag{24}$$

γ_i که در آن γ_i نتیجه میانگین آماری و $E(u_i)$ نتیجه پراکندگی است.

$$E(\delta_{ij}^k) = \delta_{ij} \tag{25}$$

$$Var(\delta_{ij}^k) = \frac{1}{k} \delta_{ij} (1 - \delta_{ij}) \tag{26}$$

$$E(\gamma^k) = \gamma \tag{27}$$

$$Var(\gamma^k) = \frac{1}{k} \gamma - \gamma \tag{28}$$

با توجه به این در نظر گرفته شده که δ_{ij} و γ_i و γ_i همگرا می‌شوند (همگراشی انتقالی) [17] برای اساس و با توجه به لینک طبق معادله‌های (5) (7) یک ارتباط به‌کار می‌رود مقدار، δ_{ij} و γ_i و γ_i و مقدار، δ_{ij} و γ_i و γ_i اخیر [16] و در نهایت با توجه به معادله‌های (5) (7) همگراشی تصادفی و تناها مرکز ادامه انتقال می‌شود.

۲-۳ نتایج شبیه‌سازی

در این قسمت، نتایج شبیه‌سازی راک دیجیتال کارایی الگوریتم پیشنهادی است. بررسی می‌کنیم. برای انجام شبیه‌سازی یک شبکه آشکارسازی با سه آشکارسازی و احتمالات زیر در نظر گرفته شده است:

$P_1 = 0.6, P_{f_1} = 0.09, P_{f_2} = 0.06, P_{f_3} = 0.03$,

$P_{m_1} = 0.02, P_{m_2} = 0.05, P_{m_3} = 0.08$

همچنین مقدار اولیه $\gamma_i^0 = \delta_{ij}^0$ و γ_i^0 برای انتخاب شده است. واضح است که مقدار γ_i^0 با اندازه‌گیری شبکه هم‌کننده الگوریتم مقدار و احتمالات خطا در صورت سرعت احتمالات خطای آشکارسازی و احتمالات پیشین هر فرضیه دارای هدایت (یک) می‌باشد. در عمل معمولاً رسمی توانایی ایجاد این مقدار در نظر گرفته و حضور آن در تغییرات می‌تواند بازه‌ای برای انتخاب مقدار در نظر گرفته و حضور آن را تغییر می‌دهد.

استقلال، سال 19، شماره 1، شهریور 1379
ب - همگرايی احتمالات خطای اشکاراسازها

c - همگرايی متوسط احتمال خطای نهایی

ج - همگرايی در وزن از وزن‌های مرکز ادغام به طور نمونه

د - همگرايی كميتي سوم نظر در شبکه‌ای با سه اشکاراساز و احتمالات مفروض در پخش ۲-۳

پیوسته تغییر می‌کند؛ در نتیجه ممکن است وزن‌ها تغییر کند بخاطر آنکه قاعده‌ای برای ادغام عوض شود. به عبارت دیگر حساسیت مرکز ادغام به پیوسته تغییر در وزن‌ها بسیاری می‌کند، با این‌حال در نتیجه همگرايی احتمال خطای سریع‌تر از خود وزن‌هاست.

۲- افزایش سرعت تطبیق الگوریتم

برای بررسی سرعت پاسخ سیستم به تغییرات، مقدار P_1 را در شیب‌سازی بالا و در ۱۰۰۰۰ امین تکرار از V_7 به V_6 افزایش

استلال، سال ۱۳۶۹، شماره ۱، شهریور
ب - تغییر P_1 اثرات سنگین بر همگراپی

الف - همگراپی آماده P_1

د - بزرگ شده تهیه‌ای از شکل (۳-ج)

ج - همگراپی آماده P_1 یک شیب ایجاد کرده است.

شکل ۳- همگراپی آماده کمیته در شیب‌های با سه آشکارساز وکتی که P_1 تغییر کرده است.

به طوری که در معادله‌های (۱۳) تا (۲۵) مقدار k مجدداً از ۱ شروع بشه افزایش کند. به منظور انجام این کار به فرمول‌های برای کشف تغییرات نیاز است. در ادامه جزئیات این فرایند را توضیح می‌دهیم.

شاخه دیگری که باید در نظر گرفته شود، تأثیر ناشی از تغییر یک کمیته بر همگراپی سایر کمیته‌هاست. شکل (۳-ب) نشان می‌دهد که تغییرات اثر کابل توجهی بر پراورد P_{mi} و P_{fi} ندارند.

در این قسمت، روشهای سیاست‌های بهینه برای کشف تغییرات احتمالی در آمارگان ارائه می‌شود. این روشهای سیاست‌های...
فرآیند کشف تغییرات و راه‌اندازی مجدد باورودکننده

* قدم اولیه: شماره‌ها را صفر کنید. مقدار مناسب برای \(T \) و انتخاب کنید.

و گام‌های زیر را بعد از هر \(R \) دفعه تکرار (2) انجام دهید.

1. اندازه‌گیری ضریب ریزگردها، شماره‌ها را افقی و در صورتی که از مقدار قبیل \(R \) کم‌تر، شماره‌ها را افزایش دهید.

ب) اگر مقدار قبیل \(R \) را برای استفاده در دفعات بعدی (به عنوان مقدار قبیل) ذخیره کنید.

2. (4) تاکنون حاصل از کاربرد فرآیند با شیب‌سازی

3. را برای کاهش استفاده نماینده مورد نیاز. در این شیب‌سازی به طور تجربی شیب‌سازی با پنج‌گانه و احتمالات زیر در نظر گرفته شده است:

\[
P_1 = 0.16, \quad P_{f1} = 0.09, \quad P_{f2} = 0.07, \quad P_{f3} = 0.05, \quad P_{t4} = 0.03, \quad P_{f5} = 0.02, \quad P_{m1} = 0.02, \quad P_{m2} = 0.04, \quad P_{m3} = 0.06, \quad P_{m4} = 0.08, \quad P_{m5} = 0.09
\]

4. با این تغییرات در دوباره نوعی آشکارسازی می‌تواند به این مقدار

\[\delta_{ij} = \text{مقدار معلامه‌ای} \delta_{ij}
\]

1. انتخاب به شکل زیر: \(N \) مقدار قبیل، انتخاب شده‌است.

در این شکل نحوه آشکارسازی در حالت کلی در این بخش معلامه‌ای وقفی تصمیم‌گیری در شیب‌سازی با

1. آشکارسازی در دوباره نوعی آشکارسازی می‌تواند به این مقدار

\[\delta_{ij} = \text{مقدار معلامه‌ای} \delta_{ij}
\]

1. انتخاب به شکل زیر: \(N \) مقدار قبیل، انتخاب شده‌است.

2. تغییر در شکل (5) آمده است. در این شکل نحوه
بر اساس مشاهده تصمیمات محیطی و استفاده از میانگین آنها برای محاسبه پراورودی از احتمالات مورد نظر و به روش رده بندی و هم‌زمانی‌بندی ارائه شده، این کیلیت می‌تواند برای راه‌حل حل‌العملی استفاده شود. همچنین برای محاسبه و هم‌زمانی‌بندی ارائه شده به دلیل غیرقابلیت پیش‌بینی‌ها و احتمالات خطای احتمالاتی به همراه با احتمال پیش‌بینی‌ها معلوم باشند. در عمل ممکن است این مقادیر تأمین شده یا منفی باشد. تحت چنین شرایطی باید از روش‌های مختلف بهره‌مندی شود. در این مقاله، یک روش با استفاده از روش‌های مختلف بهره‌مندی شود.
ب) همگرایی احتمال هسته‌ای نیلش آشکارسازها

پیوسته است زیرا تنها چیزی که می‌تواند منتشر شود، این است که توام شدن داده‌های دو این حالت [20];

\[w_0 = \log \frac{p_1(c_{01} - c_{11})}{p_0(c_{10} - c_{00})} \] \hspace{1cm} (36)

ج) همگرایی احتمال از دست دادن آشکارسازی در آشکارسازها

زیر فهرستی از پیشنهادات برای توسعه گوریت امده است:
الف) در این مقاله فرض که مشاهدات آشکارسازی به طور شرطی مستقل باشند. می‌توان با در نظرگرفتن فرضیات ضعیفتری،

\[H_0 \] مستقل ویلی به شرط وجود

\[H_1 \]

وایستناد [19].

ب) در این مقاله از معیار پیه‌افکی حداکثر احتمال خطا استفاده شد.

معیارهای پیه‌افکی دیگری نیز وجود دارند که هرکدام در دسته‌ای از
1. missed detection
2. diversity
3. fading
4. estimate
5. minimum error probability
6. Rayleigh fading environment
7. gradient search
8. update
9. stochastic approximation
10. in probability convergence
11. consistent
12. unbiased
13. variance
14. stochastic convergence

