Quality of High Density Polyethylene on Plain Carbon Steel and the Role of Primers

M. A. Golozar and R. Bagheri

Department of Materials Engineering, Isfahan University of Technologh
Department of Chemical Engineering, Isfahan University of Technologh

ABSTRACT- In this paper, the effect of curing time and temperature as well as various primers on durability of high density polyethylene on plain carbon steel have been investigated. The aim is to increase adhesion, improve durability and also to produce a defect-free coating in order to improve the corrosion resistance.
resistance of steel substrate. For this purpose, after surface preparation and applying a primer (zinc phosphate, polyvinylalcohol, resol, stearic acid, and polyurethane) polymer coating was applied using electrostatic powder coating system. Coatings having 300 μ thickness were produced and then subjected to primary and secondary curing treatments. In addition to adhesion, ductility, and corrosion tests, quality of coatings were studied using scanning electron microscopy. The results obtained revealed that, surface porosity and uniformity of metal/coating interface is a function of curing time and temperature, as well as of the primers used. The best results obtained after curing for 45 min at 230°C. The effects of primers were as follows: no primers < Stearic acid, < resol, < polyvinylalcohol, < polyurethane. Results of corrosion tests showed no sign of corrosion on the steel substrate after 60 days immersion in sulfuric acid, ferric chloride, distilled water, and salt spray.

مقدمه

امروزه پلی اتیلن به عنوان پوشش بر روی فلزات و آلیاژهای مختلف نظیر فولاد و آلومینیم کاربرد علمی زیادی دارد که است [1]. ارزان بودن، سهولت فرایند شکل‌دهی، خواص نازک‌ساختگی الکتریکی، مقاومت عالی در برابر موانع شیمیایی و محیطی، آب و خاک، چرخ‌گیری و انعطاف‌پذیری خوب در دماهای بین، شفافیت بالا در ضخامت‌های کم موجب استفاده از این نوع پلی اتیلن به عنوان پوشش لوله‌ها و سیستم‌های نیروگاهی و تجهیزات صنعتی توزیع می‌شود. این مقاله به بررسی الکتریکی، نتایج نوردی از نظر ایزو‌شماره‌های صنعتی است [2].

خواص الکتریکی، نیروگاهی‌های یافته و تجهیزات صنعتی نظر صنعتی است [3].

وضعیت الکتریکی، نیروگاهی‌های یافته و تجهیزات صنعتی نظر صنعتی است [4].

واژه کلیدی: پلی اتیلن، تابعی از چگالی آن است. بسته تریپ که با افزایش چگالی جداسازی نهایی و مدول لایه آن فاصله می‌یابد. چگالی پلی اتیلن به دقت تاکر آن وابسته است و میزان تنها برای لایه‌ای بایسته‌تر به پوشش پلی اتیلن تغییر می‌کند [4].

اعمال پوشش پلی اتیلن بر روی فلزات و آلیاژهایی می‌تواند به روی روشهای مختلف انجام گیرد. از جمله می‌توان به روشهای بستر سیال، بستر الکتریکی، باشکوهی پوشش پلی اتیلن و الکترکستادیک، باشکوهی پوشش پلی اتیلن می‌تواند از این روشهای میتواند از آن خواص خود را داشته و بالعکس محدودیت‌هایی را نیز دارد. در این پژوهش بنا به توجه به امکانات موجود از روشهای الکترکستادیک باشکوهی استفاده شد. از جمله مزایای این روشهای نهایی پوشش‌هایی با ضخامت کم در مقایسه با روشهای قبلی استفاده شد. پوشش‌های پلی اتیلن با پلاستیک به پوست‌های مختلف دارد. در این رابطه

- موارد و روش کار

<table>
<thead>
<tr>
<th>موارد</th>
<th>روش کار</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- موارد</td>
<td>2- موارد</td>
</tr>
</tbody>
</table>
| میزان توان به چسبندگی انعطاف‌پذیری، میزان تخلخل و داشتن پوشش و نمونه، بستگی‌های ضخامت پوشش و داشتن سطحی صاف و عاری از جعبه سطحی و همچنین مقاومت در برای میکروفتوکستیک پاشیده، پوست‌هایی به‌منظور شرایط سطحی نمونه‌ها، وجود افزودنی مانند پایاکنش‌های محیطی (برای پرداخته) نوع و درصد زیر لایه و همچنین دما و زمان پخت از جمله پاسخ‌های پوست‌های چسبندگی جسم پوششی بیشتر از [7 و 8]. به دلیل اینکه خواص این نوع پوشش است [9]. برخورد این است [8].

روش کار ۲- موارد و روش کار

<table>
<thead>
<tr>
<th>موارد</th>
<th>روش کار</th>
</tr>
</thead>
<tbody>
<tr>
<td>موارد ۲۰۰ میکرون مورد استفاده برای اعمال پوشش از ورق فولاد کربنی ساده (ST37) به ضخامت 2 و ابعاد به ترتیب 150×500</td>
<td>موارد ۲۰۰ میکرون مورد استفاده برای اعمال پوشش از ورق فولاد کربنی ساده (ST37) به ضخامت 2 و ابعاد به ترتیب 150×500</td>
</tr>
</tbody>
</table>

استنال، سال ۱۹، شماره ۱، شهریور ۱۳۷۹

24
پردره پایین فقط با نیروی الکترواستاتیک بر روی سطح نمونه قرار گرفته است و این لایه لازم زا ندارد، بلکه آن پس از پوشش درونی به 800 تا 1500 تیمه شد. پلی (ورینیت کلر) با متوسط وزن مکولی عده 0.7 تا 0.8 ساختاری، محلول‌های خنک و حللاله آلی از شرکت مرکز آلمن خریداری شد. محلول فسفات روی توسط شرکت تایباین در تهران اجرا شد. زولو بیز دستور کار ستوزش [12] از یک نوع پلی برونیان تجارتی موجود به اکسیدائنت P20 اهدایی ذوب آهن اسفنجی استفاده شد. پلی اتان سفید با اندازه متوسط ذرات 125 میکرون (H.D 6070) بدون افزودنی ایندیپاکیت (اردکارکند) حرارتی (تحت نام تجاری ارگانوسی) از شرکت سیباگاویگ، سوگیس تهیه شد.

2- آماده‌سازی

کاغذ سه‌تایی 100 تیمکاری ماکتائی شده سپس شستشوی کلیایی به مدت 5 دقیقه در محلول چربی دی اتیلنگلیک در دمای 50 یا آگه‌اگه شستشو در آب می‌کشد به مدت 1 دقیقه به آن نموده و در محلول سولفوریک 5 دقیقه به مدت 1 دقیقه دارید و در پایان شستشوی مجدد در آب می‌کشد به مدت 1 دقیقه

3- آزمون‌ها

3-1 آزمون تپش‌گی

پوشش بر روی نمونه توسط آزمون چسب‌گیری چسب‌گیری پوشش بر روی نمونه بر روی نمونه دارد که استاندارد ASTM D2979-86 را به رایانه یا مکانیسم سبک رفت و برگشت فناوری استفاده برای آزمون مقادیر نیروی لازم برای اندازه‌گیری شد. پوشش از سطح نمونه در دامنه آندازه‌گیری شد.

3-2 آزمون انعطاف‌پذیری

طبق استاندارد ASTM B 162 و 68-76 تیمکاری شده که استاندارد بی‌سی‌ویل به استفاده از سبک‌های U و با طول شش عیلی کمک گرفته و برای مقادیر انعطاف‌پذیری شد. در این آزمون از انعطاف‌پذیری پوشش (E) تیمکاری شده و در این رابطه از جمعیت ضخامت T محاسبه شد. در این رابطه E = 100T (D+T) Pوشش نمونه و D قطع سنگ استفاده شده است. محاسبه با سرعت بالا بر روی کارکننده قطر سنگ‌های که سنجش به تکبیر‌برداری پوشش شود انجام شد.
3- مطالعات میکروسکوپی

مورفولوژی و وضعیت سطح پوشش‌های پلی اتیلن تهیه شده و همچنین فصل مشترک آنها با نمونه فولادی توسط میکروسکوپ الکترونی روبشی (فیلیپس مدل XL30) مطالعه شد. مدت هدف از مطالعه میکروسکوپی تعیین تخلخل سطحی و مشخص شدن وجود و میزان ذرات پلی اتیلن درب نشده بر روی سطح و همچنین بررسی یکنواختی و ضخامت چسبندگی پوشش بر روی نمونه‌ها بود.

3-1- آزمون‌های خوردرگی

مقاومت پوشش پلی اتیلن در برای انواع محیط‌های خورشید و همچنین رفتار خوردرگی نمونه‌ها با استفاده از آزمون‌های زیر ارایابایی شده، آزمون همه آب نمک (ASTM D 117), آزمون غرفه‌واری در آب آب (ASTM, D870), آزمون غرفه‌واری در محیط‌های آبی اسیدی (ASTM, D870) و فریک کارد 50 درصد و فرکنکی کارد 50 درصد.

4- نتایج و بحث

2-1- تأثیر دما و زمان پخت نانوه به کیفیت پوشش

نتایج حاصل از بررسی پوشش‌ها توسط میکروسکوپ الکترونی روی نانوه نشان داد که در گستردگی دما و زمان‌های پخت نانوه انتخاب شده، با افزایش دما و زمان پخت از میزان ذرات درب نشده پوشش پلی اتیلن بر روی سطح نمونه‌ها کاهش می‌شود. این امر همراه با

379

۱۹ شهریور 1379

استقلال، طالب 19، شماره 1، شماره 26
شکل ۲- تصویر میکروسکوپی الکترونی از ذرات ذوب که پیدا کردند در پلی اتیلن بر روی پوشش پخت تانه‌ای شده در دمای ۱۸۰ درجه سانتی‌گراد، و به مدت ۳۰ دقیقه نظافت را بگیرند.

شده (۵۵ دقیقه) همچنان ادامه می‌یابد. چگونگی روند تغییرات انعطاف‌پذیری مویی نواحی آن تا زمان پخت ۴۵ دقیقه که حداقل انعطاف‌پذیری را خواهیم داشت و سپس افزایش انعطاف‌پذیری نواحی پشت یافت. زمان پخت است. علت این امر احتمالاً به خاطر اکسیداسیون پلی اتیلن در زمان‌های طولانی‌تر پخت بوده است [۱۲].

در رابطه با کشیشزدی اعتصاب برای است که در زمان‌های اولیه پخت به دلیل کاهش نانو مان، اولاً افزایش ذرات پلی اتیلن در یک‌دیگر به طور کامل صورت نگرفته و ثانیاً رسوب پلی اتیلن مذاب به دو ناحیه یک طرف خلق و جر سطح زمانی فولادی نیز کاملاً نشده و لذا کشیشزدی کم است [۱۲]. در واقع حتی در زمان پخت تانه‌ای شده در دمای ۱۸۰ درجه سانتی‌گراد پخت کامل نیست، به دلیل گرانی‌پایی پری، پوشش نمی‌توانند به اندازه‌ای سطح نمونه را ترکند. لذا اولین قدم لازم در جهت ایجاد یک پرتو محصول و فولادی به ممانند کاملاً فسفات انجم نگرفته و بنا بر این صورت می‌توانند به همان نسبت کاملاً کشیشزدی عملیاتی با پلی اتیلن کشیشزدی کم نشود و لذا طبق نظریه جذب سطحی کشیشزدی افزایش می‌یابد [۱۲]. همچنین اعتقاد دیدگی بر این است که با گذشت زمان، رسوب پلی اتیلن مذاب به دو ناحیه تا به پایان سطح نمونه به شکل تانه‌ای بیشتر می‌شود. در نهایت، کاملاً پلی اتیلن تا نت تر شدن پرکریستالیزاسیون میدان شده. در نهایت پس از زمان ۴۵ دقیقه پخت تانه‌ای شده در دمای ۲۳۰ درجه سانتی‌گراد پرکریستالیزاسیون نمی‌شهده. افزایش زمان پخت از ۴۵ دقیقه ۵ دقیقه سپس افزایش شده سطح پوشش بوده. علت این امر از ممانند پخش پزشکی در بالا اشاره می‌شود که می‌توان کاملاً به نگل عناصر به نگل عناصر می‌توان تجربه گردد که می‌توان پخت تانه‌ای (H.D. ۶۰ و ۴۵ دقیقه) پار از پوشش پرزیم پلی اتیلن متغیرین (۶۰۷۰) و مناسب است. پرات اطمینان پیشبرد از آن‌ها زمان در دمای پخت تانه‌ای ۲۳۰ درجه سانتی‌گراد ۹۰ دقیقه مانند: گوشی‌گری انعطاف‌پذیری بر حسب زمان پخت تانه‌ای ۹۰ دقیقه (۶۰۷۰) پرکریستالیزاسیون و در شکل (۴) نتایج به دست آمده از این گرایی انعطاف‌پذیری بر حسب زمان پخت تانه‌ای نشان داده شده است. روند تغییرات کشیشزدی حاکی از این است که در زمان‌های اولیه پخت، کشیشزدی کم و لی‌بر انوریزومان پخت کشیشزدی به دنبال انوریزومان می‌باشد. گرچه روند انوریزومان (وقتی که در ناحیه مفصل متغیرن است، لی‌بر حاکی از زمان پخت استفاده

"استلال، مال ۱۹، شماره ۱، شهریور ۱۳۷۹"
شکل ۳- تصویر میکروسکوپی الکترونی از پوشش بیلیاپتین پس از پخت ثانویه در ۲۳۰°C و زمان ۴۵ min

پوشش یکنواخت عاری از خلیل و نرم و ترک سطحی، زیر لاشه نسافات روی.

شکل ۴- تأثیر زمان پخت بر چسبندگی در دما پخت ثانویه ۲۳۰°C درصد وزنی پایدارکننده ۵/۰، زیرلاشه نسافات روی، زیری سطح سبیله، دما پخت ۲۳۰°C.

شکل ۵- تأثیر زمان پخت بر انعطاف پذیری در دما پخت ۲۳۰°C درصد وزنی پایدارکننده ۵/۰، زیرلاشه نسافات روی، زیری سطح سبیله، دما پخت ۲۳۰°C.
توپری که رسوخ پیلی ایلین درون خلب فر و فرم سطل کامل شد، حتانچه چسبندگی به مدت نهایی [12] همان گونه که شکل (۴) نشان می‌دهد، باید زمان ۴۵ min چسبندگی به طور قابل ملاحظه‌ای زیاد می‌شود. به عقیده ما این منجره به دلیل خیز شدن کامل سطح و در تیشه صرف شدن (زیرتیزوکسیکر سفید) بر تیمی ۴۵ min مذاب پلی‌پیور سطح زمینه باشد. این پیگیری از پروژه چسبندگی افزایش قابل ملاحظه‌ای زمینه نشان داده می‌شود.

مشابه با چسبندگی، در رابطه با انعطاف‌پذیری انفجار شرکت با خودت که در زمان‌های کوتاه بخاطر ثانویه به دلیل ترنشن کامل سطح زمینه توسط پوشش انعطاف‌پذیری پایین است [۷ و ۱۰]. در واقع در نقاطی که پوشش توانسته سطح زمینه را به طور کامل ترکند، به عنوان مثال، جدارنی در آزمون انعطاف‌پذیری عمل می‌کند. با این حال، با گذشت زمان و کاهش گرادیانت مذاب سطح زمینه به طور کامل ترنشن و همزمان با چسبندگی، انعطاف‌پذیری نیز افزایش می‌یابد. زمان افزایش انعطاف‌پذیری تا زمان بیش از ۴۵ min می‌آید. زمان افزایش انعطاف‌پذیری به صورت ۴۵ min می‌آید. بنابراین، زمان که در اکسیده شدن پوشش باید [۱۲] تصور می‌کنیم که این می‌تواند ۴۵ min در دمای ۲۳۰°C، مؤثر بر تنش کامل سطح زمینه بوده، شکل (۳). همان‌گونه که از تصور مشخص است، مدل مشترک پوشش - زمینه کاملاً یکنواخت و رابطه با موادی که حاکی از عدم ترنشن بوده و وجود ندارد.

۲-۴ تأثیر زیرلایه‌های پوک و انعطاف‌پذیری

نتایج حاصل از انجام آزمون‌های چسبندگی و انعطاف‌پذیری بر روی نمونه‌های پوشش پیلی ایلین داده شده همراه با زیرلایه‌های مختلف به ترتیب در شکل‌های (۷) و (۸) ارائه شده است. همچنین مقدار بینهایت زیرلایه‌های مختلف بر چسبندگی و انعطاف‌پذیری به ترتیب در شکل‌های (۹) و (۱۰) نشان داده شده است. نتایج این آزمون نشان می‌دهد که طور کلی حضور زیرلایه‌ای این وابسته است با حد غلظت ۱/۰ درصد افزایش چسبندگی و انعطاف‌پذیری را به دنبال دارد، ولی غلظت‌های بیشتر این زیرلایه به ترتیب این نتایج می‌دارد.
شکل 6 - تصویر میکروسکوپی الکترونی از فصل مشترک پوشه - فلزی پس از 45 دقیقه سوختن در 230 درجه سانتی‌گراد کامل در فصل مشترک کامل مشاهده است.

مقدار وزنی زیر لایه

شکل 7 - تأثیر زیر لایه‌های مختلف بر سختی فلزی پیش از پیکر به زمان و دمای پخت ثانویه به ترتیب 45 دقیقه و 230 درجه سانتی‌گراد.

مقدار وزنی هیدرو خورشیدی

شکل 8 - تأثیر زیر لایه‌های مختلف بر استحاقیت پذیری پوشه پیش از پیکر به زمان و دمای پخت ثانویه به ترتیب 45 دقیقه و 230 درجه سانتی‌گراد.
شکل 9- اثرات خلخالیه‌ای بهینه زیری‌های مختلف با چسبندگی.
درصد وزنی پایدار کندل‌های 5/0، زیری‌های فسفات روزی، زیری سطح سیاهه؛ 100 درصد بیایند.

شکل 10- اثرات خلخالیه‌ای بهینه زیری‌های مختلف بر انعطاف پذیری.
درصد وزنی پایدار کندل‌های 5/0، زیری‌های فسفات روزی، زیری سطح سیاهه؛ 100 درصد بیایند.

تنها در مقدار بسیار کم (کمتر از 1 درصد) می‌تواند میزان ترشودنگی زیبایی افزایش دهد و در نتیجه به افزایش چسبندگی و انعطاف‌پذیری پوشش شود. اما زیری‌های روزی، پلی (ویتامین الکل) و زیری‌های تجاری اکسیدات P20، نه تنها باعث افزایش ترشودنگی زیبایی شده‌اند بلکه احتمالاً نوی نیوی پوشش (شیمیایی) بین پوشش و زیبایی را ایجاد کرده، جنین احتمالی مخصوصاً در مورد پلی (ویتامین الکل) و اکسیدات P20، بیشتر است. نتایج سه‌شکل‌های 9 و 10 به دست آمده از انجام آزمون‌های غوطه‌وری در محلول‌های شیمیایی خوردن مختلف نشان دهنده مقاومت عالی پوشش در تمامی محلول‌های پایدار شده و توانایی آن در حفاظت از فولاد در پرایر...
روش اسپری الکترووستاتیک پاشش پودری تایب دما و زمان به ترتیب 45 min و 230°C مشخص شد.

- 4- با استفاده از زیرلایه مناسب می توان کمیفکت (چسبندگی و انعطاف پذیری) پوشش پلی اتیلن بر روی فولاد را بهبود بخشید.
 در این رابطه اثر زیرلایه استفاده شده به سمت شرایط مناسبتر به ترتیب زیر است:
 ۱- بدون زیرلایه > اسید استتراریک > رژول > پلی (ورتیل الکل)
 ۲- اسیدنتان 20 P20
 ۳- زیرلایه‌هایی که چسبندگی و انعطاف‌پذیری پوشش پلی اتیلن بیشتر آسیب‌های دندان خوردنگی فولاد را نیز بیشتر کاهش می‌دهند.

5- خلاصه و نتیجه‌گیری

نتایج به دست آمده از مطالعات، بررسی‌ها و آزمون‌های انجام شده در این تحقیق را می توان به صورت زیر خلاصه کرد:

1- پوشش پلی اتیلن سنگین می توان به عنوان یک پوشش محافظ برای فولاد در محیط‌های خوردنی آبی استفاده کرد.
2- روش الکترووستاتیک پاشش پودری می توان پوشش پلی اتیلن سنگین با کیفیت خوب بر روی فولادهای فولداری اعمال کرد.
3- کیفیت پوشش پلی اتیلن سنگین اعمال شده بر روی فولاد توسط

مراجع

8. گلوزار، م. آ.، و باقری، ر.، "پوشش پلی اتیلن بر فولاد ساده کریزی با روش الکترووستاتیک پاششی پودری،" مجموعه مقالات دومین سمینار ملی مهندسی سطح دانشگاه فنی دانشگاه تهران، ص. ۱۳۸-۱۳۷، ۱۳۸۶.

استن限り، سال ۱۹، شماره ۱، شهریور ۱۳۷۹

۳۲
11. خلایقی، م. گلستان، م. ع. و باقری، ر. "محافظت از فولاد ساده کریشی در محیط‌های مرطوب توسط پوشش‌های پلی‌اتیلن با دانسیتی بالا": مجموعه مقالات پنجمین گردهمایی دانشکده مهندسی مصالح، دانشگاه صنعتی شریف، ص 125-155. 11-13 شهریور 1376.

