مطالعه پارامتری مهار بازویی و کمرنگ محیطی در سازه ساختمانهای بلند

کمال میرطالایی* و نواب اسدی زیدی‌آبادی**
دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان
نوبت مقاله: 97/8/3 - دریافت نسخه نهایی: 97/8/17

چکیده - تداهیر مربوط به ساختارهای باور ابتدایی ساختمانهای بلند پیشتر به طرح‌های پرویزی گردیده که تگیمکی سازند. این محدودیت تگیمکی میان‌اکنده می‌باشد، ولی با استفاده از یکسکه‌های میان‌کننده از طریقکی تماشای مهد یا نقطه‌نگار لولایی می‌توان این صورت را حاصل شورت. این رویدادهای ترازیا استفاده از بخش مهارهای ابتدایی که موجب استفاده کامل از طریقی تماشای ساخته‌های مهار بازویی است. در پایان، نتیجه می‌شود. شیاهان ذکر است که این کارآمدترین بخش‌سازی، ساختار مهار بازویی است.

استاد با توجه به مشخصات ساخته‌های ابتدایی لباس‌های مزدیس از نظر ارتفاع و نسبت‌های فضای موجود کمرنگ اعمال پذیر. سازه‌های تحلیل کند. نتایج این تحقیق شامل شرایط مختلف محدودی از قبیل موقعیت و نسبت به سازه‌های بازویی برای کمیت کردن راه‌سازه تحت اثر انواع پاره‌ای جاتی است.

Parametric Study of Outrigger Braced and Belt System in Tall Building Structures

K. Mirtalaei and N. Asadi Zeidabadi
Department of Civil Engineering, Isfahan university of Technology

ABSTRACT- Current innovative lateral load carrying systems for tall buildings are those in which the lateral drift is limited to an allowable value without considerable influence on economy. This aim is achieved by using special systems capable of using maximum stiffness and strength capacity of individual structural elements. An effective structural solution in this respect is the use of outrigger braced systems.

In the present investigation, a simple compatible structural model is proposed to analyze these systems. Constant or variable stiffness can be considered for the core which is connected to a flexible belt structure via the outrigger braced system. Several conditions including the optimum number and positions for the outrigger braced systems to minimize the drift under different loads are examined.

- استاد
- - کارشناس ارشد

61

استقلال، سال 19، شماره 19، شهریور 1379
سازه بلند با مهار بازویی شامل یک هسته مرکزی بین مسلح یا قاب فولاید مهاربندی شده است که توسط طریقه افقت به ستونهای خارجی در یک یا هر چند تراز متصل می‌شود. اضافه بر ستونهای انتهایی مهار بازویی معمولاً به یک ستونهای محیطی نیز به انتهای مهار بازویی متصل می‌شوند. این کار با افزودن یک کمرنگ محیطی 1 در اطراف سازه و در تراز مهار بازویی صورت می‌گیرد. به این ساختار هندسی، سازه با مهار کمرنگی یا اطلاق می‌شود. شماتیک کلی این سیستم در شکل (1) آورده شده است.

همگامی که ساختار تحت اثر افزایش قرار می‌گیرد، مهارهای بازویی از جریان سیلندری می‌کشد و باعث می‌شوند که تغییر مکانیکی جایگزین و لگنگ ورودی از حالتی که تنها‌پایی باره‌ها را تحمیل می‌کند کمتر شود، شکل (2). و این اکثریت این ساختار سازه‌ای بدون گونه است که سختی جانبی مؤثر سازه در هنگام خمش طریقی این یک مهار بازوهای محوری در سطوح انرژی می‌باشد. در طراحی ساختارهای کوتاه و متوسط با حجم اطلاعات ورودی اندک و همچنین تعداد اعضای نه چندان زیاد، می‌توان برای تحلیل سازه‌ای از نظریات مثال‌های افزایش آرای داده که در روشهای عدیدی به سادگی امکان‌پذیر نیست. تاکنون در مورد سازه‌های مهار بازویی تحقیقات زیادی انجام شده است. در مطالعات انرژی شده بوده است و این سازه‌ها تحت بازوهای اساتیدی [2-7] و همچنین رفتار دینامیکی آنها [8 و 9] مورد

\[
\begin{align*}
\text{ستونهای محیطی (W)} & \quad t_0 \\
\text{مهارهای بازویی (P)} & \quad P \\
\text{کمرنگ محیطی (U)} & \quad U \\
\end{align*}
\]
شکل ۲-الف: سازه با یک مهار بازویی، ب- منحنی نگهداری شکل ج- نمودار لنگرگاهی قیدی، د- نمودار لنگرگاهی هسته

تحلیل این گونه سازه‌ها را دارد و قابل تعمیم به حالت‌هایی با تعداد مهار کمتر یا بیشتر است.

مدل تحلیلی مورد استفاده مطابق شکل (۲) است، به طوری که در تحقیق حاضر، تحلیل این گونه سازه‌ها با علت مشخصات سازه‌ای متغیر در ارتفاع برای انواع بارها و ترکیب آنها گسترش داده شده است. علاوه بر این، تأثیر سختی خمشی کمربند مایعی بر روی فشار این گونه سازه‌ها در نظر گرفته شده است. در ادامه، تأثیر پارامترهای بدون بعد حاصل از تحلیل بر روی رنگار و همچنین مکان بهینه مهار بازویی مورد مطالعه قرار گرفته است.

روش تحلیل

گسترش معادله‌ها حاکم بر فشار سیستم مهار بازویی براساس فرضیات زیر انجام شده است:

۱- رنگار سازه، استنک خطي است.
۲- ستوان فقط در دو محور محوری تحمیل می‌شود.
۳- اتصال هسته به بتنر صورت گرفته است.

برای نشان دادن روش کلی تحلیل یک سیستم سازه‌ای با سه مهار بازویی مورد بررسی قرار می‌گیرد. سازهٔ مذکور تمامی مراحل...
\[
\Delta \theta_3 = \left[S_3 (H-x_3) \right] M_1 + S_3 \left[(H-x_3) \right] M_2 + \\
\left[S_3 (H-x_3) + T_3 \right] M_3
\] (2)

به طوری که:

\[
S_i = \frac{1}{E_i} \frac{1}{I_{ci}} + \frac{2}{d^2 (EA_i)}
\] (5)

\[
T_i = \frac{21_i^3}{3d^2 H (E_0 I_0)}
\] (6)

معادله‌های قبل را می‌توان به صورت ماتریسی تنظیم کرد که پس از به دست آمده‌نگی گان، پارامتر یک بار یک سازه با n مهار بازی‌پذیری محاسبات زیر حاصل می‌شود:

\[
[M] = [F]^{-1} [\Delta \theta]
\] (7)

به طوری که:

\[
[M] = [M_1 M_2 \ldots M_n]^T
\] (8)

و ماتریس ضریب‌های عبارت است از:

\[
\begin{bmatrix}
\gamma_i + \sum_{j=1}^{n} \gamma_j \varepsilon (\theta_{i+1} - \varepsilon) - \sum_{j=1}^{n} \gamma_j \varepsilon (\theta_{i+1} - \varepsilon) \\
\sum_{j=1}^{n} \gamma_j \varepsilon (\theta_{i+1} - \varepsilon) - \alpha_i + \sum_{j=1}^{n} \gamma_j \varepsilon (\theta_{i+1} - \varepsilon) \\
\sum_{j=1}^{n} \gamma_j \varepsilon (\theta_{i+1} - \varepsilon) - \alpha_j + \sum_{j=1}^{n} \gamma_j \varepsilon (\theta_{i+1} - \varepsilon)
\end{bmatrix}
\] (9)

که در آن

\[
r_i = \frac{E_i c_n}{E_i c_1}
\] (10)

\[
\gamma_i = E_i c_i s_i
\] (11)

\[
\xi_i = \frac{x_i}{H}
\] (12)

\[
\alpha_i = \frac{21_i^3}{3d^2 H (E_0 I_0)}
\] (13)

\[
\mu_i = \frac{H}{E_i c_n}
\] (14)

ماتریس [\Delta \theta] چرخش ناشی از یک هار خارجی در تراز مهارهای (E_0 I_0) (i+1) (i) به یک سازه به دست آمده‌نگی گان، چرخش مهار بازی‌پذیری بنامی‌برد. معادله‌های قیدی مهارهای (\Delta \theta) مینهای چرخش ناشی از لگهاره‌ای قیدی مهارهای بازی‌پذیری (جمله‌بندی و دیگر عبارت ست مکانیک)، چرخش ناشی از تغییر شکل محوری مهارهای و همچنین تغییر شکل خم شکل مهار تحت بار متمرکز (نبشی محوری مهارهای) در اندازه‌ای آن. معادله‌های سازگاری برای ترازهای 1 و 3 به هنگام تریتی قابل استخراج ان. شکل ساده مهارهای معادله‌های سازگاری برای ساختار سه مهار بازی‌پذیری به صورت زیر است.

\[
\Delta \theta_1 = \left[S_1 (x_2 - x_1) + S_2 (x_3 - x_2) + S_3 (H-x_3) + T_1 \right] M_1 + \\
\left[S_2 (x_3 - x_2) + S_3 (H-x_3) \right] M_2 + \left[S_3 (H-x_3) \right] M_3
\] (2)

\[
\Delta \theta_2 = \left[S_2 (x_3 - x_2) + S_3 (H-x_3) \right] M_1 + \\
\left[S_2 (x_3 - x_2) + S_3 (H-x_3) \right] M_2 + \left[S_3 (H-x_3) \right] M_3
\] (3)

شکل 3- مدل تحلیلی سازه

ستون‌ها در فاصله تراز (i+1) (i) به یک سازه به سختی محاسبه می‌شود. مهار بازی‌پذیری برای این صورت تشکیل داده که چرخش هسته با چرخش مهار بازی‌پذیری در تراز مهار مسایل می‌شود. چرخش هسته عبارت است از: چرخش ناشی از بارهای خارجی (\Delta \theta) مینهای چرخش ناشی از لگهاره‌ای قیدی مهارهای بازی‌پذیری (جمله‌بندی دوم عبارت ست مکانیک) چرخش مهار بازی‌پذیری عبارت است از: چرخش ناشی از تغییر شکل محوری مهارهای و همچنین تغییر شکل خم شکل مهار تحت بار متمرکز (نبشی محوری مهارهای) در اندازه‌ای آن. معادله‌های سازگاری برای ترازهای 1 و 3 به هنگام تریتی قابل استخراج ان. شکل ساده مهارهای معادله‌های سازگاری برای ساختار سه مهار بازی‌پذیری به صورت زیر است.

\[
\Delta \theta_1 = \left[S_1 (x_2 - x_1) + S_2 (x_3 - x_2) + S_3 (H-x_3) + T_1 \right] M_1 + \\
\left[S_2 (x_3 - x_2) + S_3 (H-x_3) \right] M_2 + \left[S_3 (H-x_3) \right] M_3
\] (2)

\[
\Delta \theta_2 = \left[S_2 (x_3 - x_2) + S_3 (H-x_3) \right] M_1 + \\
\left[S_2 (x_3 - x_2) + S_3 (H-x_3) \right] M_2 + \left[S_3 (H-x_3) \right] M_3
\] (3)
\[
\Delta L = \sum_{i=0}^{n} r_i \left[F(\xi_i) \right]
\]
(21)

که در آن \(\phi \) نمایتگر تأثیری از نوع بورده و مقادیر \(\phi \) و \(F(\xi_i) \) در جدول (1) آراءده شده است. اگر یک طریق آزاد نت ندگاری ضریب داره با نت ندگاری قبیل \(\Delta S \) که ناشی از لنگرها ی قبیل مهارهای بازوبی قبیل با صورت زیر بسا می‌شود.

\[
\Delta S = \frac{H^2}{2EI_c} \sum_{i=1}^{n} \left(\sum_{j=1}^{m} M_j \right) r_i \left(\xi_i^2 + \varepsilon_i^2 \right)
\]
(22)

3- تأثیر انعطاف‌پذیری کمربند

در بعضی موارد یک استقامت پذیره به‌شکل

\[\text{میوه} \]

یک کمربند محیطی به ضخامت t تا دو طبقه استفاده می‌شود. در مطالعات لیالی براز سازمانداری کمربنده، به دلیل ضخامت زیاد، کمربند را با صامتی خمشی بی‌نیا تهیه فرصت کرده‌اند، اما در این تحقیق کمربنده به صورت انعطاف‌پذیری ضریب فرض سال‌ها است.

در اینجا یک سازمان با پلاستیک شکل (2-الف) در نظر گرفته شده است. این سازمان چکت هسته و دو مهار در پلاست اند. ضریب فرض شده به صورت دو در زمرکت موردنظر F1 درست در زمرکت موردنظر باشد در مقدار سازمانی تیروی F1 که می‌گردد، اما در صورتی که کمربنده ضریب غیر از کمربنده ضریب بر زمرکت بازوبی باشد (کمربنده که در زمرکت مهاره بازوبی (دیگر باش) تیروی به زمرکت فاکتور \(p_2 \) و \(p_2 \) به‌صورت تغییر نیروی در سازمان بازوبی می‌گذراند.) به صورت زیر است، به دست می‌آید.

\[
\frac{\partial U}{\partial P_i} = 0 \quad i = 1, 3
\]
(22)

به طوری که U نمایشگر کل شاخص اثری خمشی تیر و همچنین انرژی

\[
\Delta \theta = \begin{bmatrix} \Delta \theta_1 & \Delta \theta_2 & \ldots & \Delta \theta_n \end{bmatrix}^T
\]
(23)

و مقادیر دیگر به صورت زیر محاسبه می‌شود.

\[
\Delta \theta_i = \sum_{j=i}^{j=n} \frac{m(x)}{EI_{c_j}} \int_{X_{j-1}}^{X_j} dx
\]
(24)

به طوری که $m(x)$ میوه در نقطه x است و وابسته به نوع پاره‌است. این به بین نت ندگاری ضریب‌های مربوط به نو روندن بعد کردن مقداری از x به گونه‌ای می‌شود، مقادیر [\(\Delta \theta \)] که میوه می‌شود، ضریب نیروی در دو مقدار $\Delta \theta$ است. به بیان دیگر، عضوی نیروی در از ایزی بازوهای مختلف در جدول (1) آورده‌شده است.

\[
[\Delta \theta] = \mu_2 [\Delta \theta]
\]
(25)

\[
[\Delta \theta] = \begin{bmatrix} \Delta \theta_1 & \Delta \theta_2 & \ldots & \Delta \theta_n \end{bmatrix}^T
\]
(26)

مقدار دیگر است. به بیان دیگر به فرمول‌بندی بالا پس از محاسبه لنگرها قبیل خود می‌شود.

\[
\Delta T = \Delta L - \Delta S
\]
(27)

\[
\Delta L = \sum_{i=1}^{n} \int_{X_{i-1}}^{X_i} \frac{m(x)}{EI_{c_i}} dx
\]
(28)

رابطت پایی بدارند بعد کردن توسط فاکتوری که میوه شکل زیر

تبدیل می‌شود.

استنل، سال 19، شماره 1، شهروی 1379
\[
\begin{align*}
0 &= 0^2 \\
1 &= 1 + \nu_d \quad \frac{H}{x^2} = \frac{1}{2} \\
\frac{H}{l_x} &= \frac{1}{2}
\end{align*}
\]

<table>
<thead>
<tr>
<th>(\frac{u_d}{\sigma_d})</th>
<th>(\sum_{\frac{E}{H}})</th>
<th>(\frac{1/2}{\sigma} \left[\frac{\frac{H}{x^2}}{1} - 1 \right]) (\bigcap)</th>
<th>(\frac{u_d}{\sigma_d})</th>
<th>(\sum_{\frac{E}{H}})</th>
<th>(\frac{1/2}{\sigma} \left[\frac{\frac{H}{x^2}}{1} - 1 \right]) (\bigcap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{u_d}{\sigma_d})</td>
<td>(\sum_{\frac{E}{H}})</td>
<td>(\frac{1/2}{\sigma} \left[\frac{\frac{H}{x^2}}{1} - 1 \right]) (\bigcap)</td>
<td>(\frac{u_d}{\sigma_d})</td>
<td>(\sum_{\frac{E}{H}})</td>
<td>(\frac{1/2}{\sigma} \left[\frac{\frac{H}{x^2}}{1} - 1 \right]) (\bigcap)</td>
</tr>
</tbody>
</table>

\(\sigma^2 \) | \(\rho \) | \(\theta \) | \(\phi \) | \(\rho \) | \(\phi \)
\[\beta = (17 + C_i)F_1 + (11 + C_i)F_2 + F_3C_i \]
\[C_i = \frac{6E_B I_B}{Kl_c^3} \]
\[\frac{1}{k} = \sum_{j=1}^{n} \frac{1}{K_i} ; \quad K_j = \frac{(E_0 A_0)_{ij}}{H(\xi_j + 1 - \xi_j)} \]

که در آن آن سطح مقطع هر ستون \(A_0 \) سختی خمشی کرمیند و \(I_c \) فاصله بین ستون‌هاست.

اگر کرمیند دارای سختی بین‌هایت باشد، با توجه به شکل (۲-ب)، مشاهده می‌شود که تغییر محروری ستون‌های زیر‌مزرعه مساوی {
\[\frac{1}{3}F_1 \]}

است. اگر اک آر \(F_1 \) مسایل واحد در نظر گرفته شود، تغییر محروری ستون‌ها \(\frac{1}{3} \) می‌باشد. اگر کرمیند انعطاف‌پذیر باشد تغییر محروری و تغییر شکل ستون‌های زیر‌مزرعه بیش از سایر ستون‌ها و در نتیجه، سازه تغییر شکل بیشتری نسبت به حالت با کرمیند صلب می‌دهد. با یک ضریب کاهشی در مقطع کلی ستون‌ها \(\text{Cof}_i \) می‌توان از فرمول پیدا کرد. در این جایی که یک تغییر شکل محوری ستون‌های با تغییر شکل ستون‌های زیر‌مزرعه در حالت کرمیند انعطاف‌پذیر، مساوی کند. این ضریب به صورت زیر قابل پیش‌بینی است:

\[\text{Cof}_i = \frac{3}{P_1} \]

به طوری که \(p_1 \) محروری محوری ستون‌ها در حالت کرمیند صلب و \(p_1 \) محروری محوری ستون‌ها در حالت کرمیند انعطاف‌پذیر. با توجه به اینکه اگر کرمیند دارای سختی بین‌هایت باشد، می‌شود از شکل (۲-ب) می‌توان گفت \(p_1 < 0 \) است.

\[(EA)_i' = (EA)_i \times \text{Cof}_i \]

که در آن \((EA)_i \) محوری محوری اصلی شده در فاصله‌ی آتا+1 است. لازم به ذکر است که در صورتی که تغییر محروری شباهت به یک باشد، محوری محوری تمامی ستون‌های زیر مزرعه در فرمولیندی آن محوری تأثیر داشت (قسمت روش تحلیل). از این رو برای اصلاح سختی محوری این ستون‌ها باید از کرمیند سایر محروری شباهت انعطاف‌پذیری و به طوری که

\[\alpha = \frac{(28 + C_i)F_1 + (17 + C_i)F_2 + F_3C_i}{(2C_i + 28)} \]

به طوری که

\[P_1 = \frac{1}{(17 + C_i)} \left(\frac{11 + 2C_i}{17 + C_i} \right) \]

\[P_2 = \frac{1}{(17 + C_i)} \left(\frac{11 + 2C_i}{17 + C_i} \right) \]

\[P_3 = (F_1 + F_2 + F_3) - (P_1 + P_2) \]

\[\beta = (17 + C_i)F_1 + (11 + C_i)F_2 + F_3C_i \]

\[C_i = \frac{6E_B I_B}{Kl_c^3} \]

\[\frac{1}{k} = \sum_{j=1}^{n} \frac{1}{K_i} ; \quad K_j = \frac{(E_0 A_0)_{ij}}{H(\xi_j + 1 - \xi_j)} \]
کمرونی به‌عنه نیروهای F_0 از F_0 به در نظر گرفته شوند. نیروی P_1 جدید برای اصلاح سختی محوری شدن‌ها در فاصله بین $1+1+1$ و کار مورد. این عمل با یا تا زمانی که سختی تمامی شوند ادامه یابد. این کار برای سایر مهارها نیز یابد.

آنچه گردید.

4- اصلاحات لازم بر روی مدل ارائه شده و مقایسه

جویابها

عکس‌العمل‌های داخلی که بر روی این سیستم انجام شده است، تغییر مطالعات قبلی که بر روی این سیستم انجام شده است، تغییر شکل‌های برخی ناهید فرض شده است. لیکن با یک توجه مهم که در موضع موارد تغییر شکل‌های برخی تأثیر قابل توجهی دارند و به هنگام لبه در پروسه عکس‌العمل به مفهوم در نظر گرفت تغییر شکل‌های برخی، یک اصلاح بر روی سختی خمش مهارها انجام شد. سختی خمشی اصلاح شده به این صورت تعریف می‌شود که جایی انتها مهار به سختی اصلاح شده به ایزی بر پهناوری در انتها، مسایل یا دیگر جایی سختی خمشی واقعی با نظر گرفت تغییر شکل‌های برخی باشد. یعنی:

\[
E_0\frac{\partial \Delta T}{\partial z} = 0 \quad i = 1, n
\]

روش تحلیلی که در این تحقیق مورد استفاده قرار گرفته، به‌طور خاص به بهترین نگرش گرفته و تغییر مکانیک و سه‌بعدی معتقد است بلکه امکان تغییر نزدیک به‌طور مهارها برای کمیته کردن تغییر مکان بالای سازه و یا انتگری با نظر فاکتورهای سازه. این کار توسط مشتخرکی از معادله (19) انجام می‌گیرد.

\[
G_0 = \frac{E_0 I_0}{(1+\frac{E_0 I_0}{L^2 G_0 A})^2}
\]

به طوری که E_0 مقدار سختی اصلاح شده مهار بازوبی، G_0 مدل برای مهار بازوبی A ضریب برخی که در مناطق مستقلی 2/1 است و A ضریب مقطع مهار بازوبی است.

جوهرهای فرمولین‌های ارائه شده با تاریخ مقالات قبلی در حالتی که سازه‌های مشخصات ثابت در ارتقای باشند، کامل‌تری پیدا می‌یافت. در اینجا بین‌های جواب صحیح در حالت کلی، جواب‌های حاصل از روش اجزای محوری است.

برای حالت با مهار بازوبی دستگاه معادله‌های غیرخطی زیر به

\[
G_0 = \frac{E_0 I_0}{(1+\frac{E_0 I_0}{L^2 G_0 A})^2}
\]

در مراحل که مهار را انعطاف‌پذیر در نظر گرفتند طول مهار مدل برای مهار بازوبی (A) در شکل (1) فرض شده، به این معنا به اتصال مهار و هسته کاملاً صلب است، اما با این فرض، مستقل خطا نسبتاً زایده خواهد شد. در مبحث دیوارپاره‌ای برخی کنارت نسبتی به معادله‌های غیرخطی به ناحیه مشابهی برپین خروجی به تغییر تحقیقاتی که براساس نظریه استاتیک و اجزای محور رابط به اندوراد.
جدول ۲ - مقایسه چگونه با روش اجزای محدود

<table>
<thead>
<tr>
<th>توضیحات</th>
<th>تعداد مهار</th>
<th>ضخامت مهار 5 متر</th>
<th>ضخامت مهار چهار</th>
<th>طول مهار</th>
<th>روش اجزاء شده بدون اضافة طول مهار</th>
<th>روش اجزاء شده با اضافة طول مهار</th>
<th>ارتفاع مقطع محدود</th>
<th>بُعد ۱</th>
<th>بُعد ۲</th>
<th>بُعد ۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲/۶۵</td>
<td>۱</td>
<td>۱/۵</td>
<td>۰/۴</td>
<td>۰/۲۱۱۴</td>
<td>۰/۴۰۷۵</td>
<td>۰/۵۸۵</td>
<td>۰/۸۶</td>
<td>۰/۸۶</td>
<td>۰/۱۴۳۳</td>
<td>۰/۵۶۹</td>
</tr>
<tr>
<td>۱۲/۶۹</td>
<td>۱</td>
<td>۱/۵</td>
<td>۰/۴</td>
<td>۰/۴۰۷۵</td>
<td>۰/۵۸۵</td>
<td>۰/۸۶</td>
<td>۰/۸۶</td>
<td>۰/۱۴۳۳</td>
<td>۰/۵۶۹</td>
<td>۰/۵۶۹</td>
</tr>
<tr>
<td>۱۲/۷۱</td>
<td>۱</td>
<td>۱/۵</td>
<td>۰/۴</td>
<td>۰/۴۰۷۵</td>
<td>۰/۵۸۵</td>
<td>۰/۸۶</td>
<td>۰/۸۶</td>
<td>۰/۱۴۳۳</td>
<td>۰/۵۶۹</td>
<td>۰/۵۶۹</td>
</tr>
<tr>
<td>۱۲/۷۳</td>
<td>۱</td>
<td>۱/۵</td>
<td>۰/۴</td>
<td>۰/۴۰۷۵</td>
<td>۰/۵۸۵</td>
<td>۰/۸۶</td>
<td>۰/۸۶</td>
<td>۰/۱۴۳۳</td>
<td>۰/۵۶۹</td>
<td>۰/۵۶۹</td>
</tr>
<tr>
<td>۱۲/۷۵</td>
<td>۱</td>
<td>۱/۵</td>
<td>۰/۴</td>
<td>۰/۴۰۷۵</td>
<td>۰/۵۸۵</td>
<td>۰/۸۶</td>
<td>۰/۸۶</td>
<td>۰/۱۴۳۳</td>
<td>۰/۵۶۹</td>
<td>۰/۵۶۹</td>
</tr>
<tr>
<td>۱۲/۷۷</td>
<td>۱</td>
<td>۱/۵</td>
<td>۰/۴</td>
<td>۰/۴۰۷۵</td>
<td>۰/۵۸۵</td>
<td>۰/۸۶</td>
<td>۰/۸۶</td>
<td>۰/۱۴۳۳</td>
<td>۰/۵۶۹</td>
<td>۰/۵۶۹</td>
</tr>
</tbody>
</table>

ضخامت مهار چهار، طول مهار داده‌های ضخامت دیوار و مهار ۲۰ متر و ارتفاع سایه ۱۰۰ متر.
جدول ۳ - مقایسه جواب‌ها در حالت کریستل انعطاف‌پذیر با روش اجزای محدود

<table>
<thead>
<tr>
<th>توضیحات</th>
<th>رانش با روش اجزای محدود</th>
<th>I_n</th>
<th>r_2</th>
<th>r_1</th>
<th>r_0</th>
<th>تعداد مهار</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول مهره ۶ متر</td>
<td>۰/۵۳</td>
<td>۰/۶۵۳</td>
<td>-</td>
<td>۱</td>
<td>۸</td>
<td>۱</td>
</tr>
<tr>
<td>۰/۵۰۹</td>
<td>۰/۶۵۳</td>
<td>-</td>
<td>۱</td>
<td>۸</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۰/۵۴۵</td>
<td>۰/۵۵۵</td>
<td>-</td>
<td>۱</td>
<td>۸</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۰/۵۲۶</td>
<td>۰/۶۵۱</td>
<td>-</td>
<td>۱</td>
<td>۸</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۰/۳۱۷</td>
<td>۰/۶۸</td>
<td>- ۸</td>
<td>۱</td>
<td>۸</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۰/۱۵۹۸</td>
<td>۰/۶۵۵</td>
<td>-</td>
<td>۲</td>
<td>۲</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>۰/۱۹۶۹</td>
<td>۰/۵۳۲</td>
<td>-</td>
<td>۲</td>
<td>۲</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>۰/۱۴۳۳</td>
<td>۰/۵۱۶</td>
<td>-</td>
<td>۲</td>
<td>۲</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>۰/۲۷۸</td>
<td>۰/۶۸۵</td>
<td>-</td>
<td>۲</td>
<td>۲</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>۰/۲۲۱</td>
<td>۰/۶۵۱</td>
<td>-</td>
<td>۲</td>
<td>۲</td>
<td>۳</td>
<td></td>
</tr>
</tbody>
</table>

ضخامت مهره‌ها و کریستل چهار متر، طول مهره‌ها ۶ متر، تأثیر ستون‌ها پنج متر و ارتفاع سازه صدمتر

معادله عمومی دستگاه غیرخطی (۳۷) در حالت کلی برای "n" مهار

با استفاده از محدوده زیر قابل بیان است.

$$G(\xi_i)(r_{i-1}-r_{i}) \cdot \left[\sum_{i=1}^{2} M_{j1} \frac{r_{ij}^2}{r_{i}^2} + \frac{2_{i-1}}{r_{i}^2} M_{j2} \frac{r_{ij}^2}{r_{2}^2} + \ldots \right] + \left[\sum_{j=1}^{i-1} M_{ij} \frac{r_{ijn}^2}{r_{jn}^2} + \sum_{j=1}^{i} M_{ij} r_{ijn}^2 \right] \frac{\xi_i}{r_{ij}^2} = 0$$

$$i = 1, n$$

که در آن

$$G(\xi_i) = \psi(\xi_i) + \beta(\xi_i^3 - \frac{\xi_i^3}{3}) + \gamma(\xi_i^2 - \frac{2\xi_i^3}{3}) + \alpha(2\xi_i^3)$$

ضریب‌های α, β, γ و ψ ضریب‌هایی هستند که برای ترکیب یک بار با کاربردهای مختلفی در مورد سازه‌های مختلف مورد استفاده قرار می‌گیرند.

$$k_i = \frac{EA_i d^2}{2EI_c}$$

$$\gamma_i = \left(1 + \frac{1}{k_i} \right)$$

همان گونه که در شکل (۵) مشخص است در صورتی که مهار در تراز بهینه قرار گیرد راهن چانین سازه نسبت به حالتی که مهار

$${\text{استلال، سال ۱۹، شماره ۱، شهریور ماه ۱۳۸۹}}$$
شکل 5- رالش بالایی سازه در سیستم با یک مهار بازویی، برای یک
گستردگی مکانیکی، به ازای مقادیر مختلف \(\Delta_i \) موتیفاته به طوری
\[\Delta_i = 0 \frac{q}{H^2 E_1} \]
بازویی در تراز سقف قرار گیرد بسیار کم است. با افزایش مقادیر \(k \)
از رالش سازه کاهش می‌شود اما این کاهش غیرطبیعی نسبت به طوری
که مقدار آن برای \(k = 100 \) تقریباً برابر می‌باشد. مقادیر نظیر \(k = 50 \) از
علاوه بر این در صورتی که مقطع هسته و سیستم در ارتفاع
یکنواخت باشد، افزایش \(k \) تأثیری در محل بهینه مهار بازویی ندارد.

در شکل‌های (6) و (7) موتیفاته بهینه مهار بازویی برای

با فرض ثابت بودن پارامترهای سازه‌ای دیگر نشان داده شده

است. همان گونه که دیده می‌شود در بی‌پرتوی شیب

تغییرات بیشتر است. در ضمن مشاهده می‌شود که با افزایش

فصلی بین مهارهای بالا تقریباً ثابت می‌ماند. در سال‌های این سه و

چهار مهار، برای مهارهای بالاتر معمولاً مکان بهینه نسبت به

تغییر چندانی نمی‌کند.

در شکل (8) تأثیر پارامتر \(k \) بر روی یک سازه با دو مهار

بازویی در صورتی قرار گرفته است. همان گونه که در این نمونه

مشخص است با افزایش \(k \) تغییر بهینه به سمت پایین هدایت شده و

از مقادیر مشخص به بعد تقریباً ثابت می‌ماند. اگر به شکل (6)

توجه شود، می‌توان دید که میانگین به ازای مقادیر 10 و بزرگ

برای \(k \) به یکدیگر تزیج شده و همگی می‌شوند. همین مسئله در

شکل (7) قابل مشاهده است، به طوری که در آن محل بهینه برای

مقادیر زیادتر از 10 برای \(k \) تغییر نمی‌کند. این مسئله به این معناست

که با افزایش \(k \) از مقادیر معینی به بعد به تماشای بالایی سازه بکه

محل بهینه مهار نیز تغییر قابل توجهی نمی‌کند.
شکل 11- موقفیت بهینه محاربهای بازویی برای کمیته کردن رانش بالایی سازه به آزی بار متمرکز بالایی سازه، در سازه‌ای با دو مهار

شکل 12- موقفیت بهینه محاربهای بازویی برای کمیته کردن رانش بالایی سازه به آزی بار گسترده‌ی مثلثی، در سازه‌ای با دو مهار

که ممکن است در مدل‌سازی بار زلزله استفاده شود در شکل (12) دیده می‌شود.

با توجه به شکل (14) با افزایش C (پارامتر سختی نسبی ستون‌ها و سطح‌ها) از تأثیر منفی انعطاف پذیری کمربند کاسته می‌شود و برای مقادیر کوچک C تأثیر این پارامتر در رانش بالایی سازه زیاد می‌باشد. همان‌گونه که در شکل 13 مشاهده است در صورتی که کمربند دارای سختی زیاد باشد مقادیر انیواش رانش زیاد نیست. چنان‌که در شکل (15) دیده می‌شود انعطاف پذیری کمربند (C) به غیر از

شکل 9- موقفیت بهینه محاربهای بازویی برای کمیته کردن رانش بالایی سازه به آزی بار گسترده‌ی مثلثی، در سازه‌ای با چهار مهار

شکل 10- موقفیت بهینه محاربهای بازویی برای کمیته کردن رانش بالایی سازه به آزی بار گسترده‌ی مثلثی برای مقادیر مختلف k'* در سازه‌ای با چهار مهار

در شکل (11) موفقیت‌های بهینه در یک سازه با در دو مهار بازویی و بار متمرکز در آزی بام دیده می‌شود. همان‌گونه که مشاهده می‌شود موفقیت بهینه مهارها نسبت به حالت بار گسترده‌ی یکنواخت در سطح بالاتری قرار می‌گیرند. همچنین در شکل (12) محل بهینه مهارهای برای همان سازه تحت بار مثلثی آرزوی شده و با توجه به آن دیده می‌شود که موفقیت بهینه مهارهای کمی بالاتر از موفقیت نظیر مربوط به حالت بار گسترده یکنواخت قرار دارد. موفقیت بهینه در حالت ترکیب بارهای مثلثی و متمرکز در تراز‌های

استقلال، سال 19، شماره 1، شهریور 1379

72
شکل 13- موقعیت هیئت مهارهای پازویی برای کمیته کردن رانش بالای سازه به ازای ترکیب بار گسترده ملخی و با رم که معمولکر در سازه‌ها به دو مهاره بر طوری که $P/P/W=\alpha H$، W و α فاکتور بار گسترده ملخی که در بالای سازه است.

شکل 14- تغییرات رانش بالای سازه بر حسب پارامتر نسبت سختی کرمینگ و سوختگی برای سازه‌های با دو و سه مهار

مقادیر کمکی 7 تأثیر زیادی در موقعیت بهینه مهار پازویی ندارد. در شکل (16) رانش بالای سازه به صورت تابعی از ω برای تعداد مختلف مهار پازویی رسم شده است. در این شکل می‌توان مشاهده کرد که در این راستا با افزایش تعداد مهار مهار پازویی رابطه خطي نداشته و از این رو به نظر می‌رسد که اتخاذ بیش از چهار مهار پازویی در یک سازه اقتصادی نیست.

لازم به ذکر است که موقعیت بهینه مهار پازویی برای کمیته کردن رانش بالای سازه به موقعیت بهینه برای کمیته کردن لگر پایه یکسان نبود و برای کمیته کردن لگر پایه، مهار پازویی به طرف پایین سازه هدایت می‌شود [13]. بنابراین شناخت عمومی طراح از عوامل مختلف مؤثر بر کارایی یک سازه با مهار پازویی، امکان انتخاب بهترین شکل سازه‌ای را به وی خواهد داد.

شکل 15- موقعیت بهینه سازه با یک مهار پازویی بر اساس پارامتر ω 4

شکل 16- مقایسه تأثیر تعداد مهار پازویی بر روی رانش بالای سازه.
نتیجه گیری

به طور کلی، نتایج این تحقیق را می‌توان به صورت زیر بیان کرد.

بتای استفاده از مهار بازویی می‌توان به طور مؤثر از سختی محوری سترنها برای کاهش جایی بام و لگر هسته بهره برد.

در صورتی که مشخصات سازه در ارتفاع متغیر باشد پارامتر k در موقعیت بهینه مهار مؤثر است. در غیر این صورت بر روی موقعیت بهینه مهار تأثیری ندارد.

با اندازه‌گیری C بینی پارامتر انعطاف پذیری کمرنگ از تأثیر آن بر وازه‌نامه نتیجه گیری می‌شود.

12. حاجی کاظمی حجت، مترجم، آتلیه و طراحی سازه‌های بتن، انتشارات دانشگاه فردوسی مشهد، شماره ۲۰۶، زمستان ۱۳۷۵
13. اسدی زیداللهی، ن. کاربرد بهینه سازی مهار بازویی در سازه‌های ساختمانی بلند، دانشگاه صنعتی اصفهان، پایان‌نامه، ۱۳۷۸