تأثير صفحات عمودی در استهلاک گرداد با استفاده از نتایج تجربی

سید محمود برقیمی و داوود رجبی سیاه‌بویی

دانشگاه علوم دانشگاهی اصفهان

(۷۸/۸/۱۲/۱۳۸۷ – دریافت نسخه نهایی)

چکیده - مطالعة حاضر به منظور بررسی کاهش درصدی گرداد در لوله‌های عمودی صورت گرفته است. برای استهلاک گرداد راه‌های گوناگونی وجود دارد که بکی از ساده‌ترین و در عین حال موثرترین آنها، استفاده از صفحات عمودی در دهانه ورودی آگیرها و در نتیجه دور کردن سیال در حال دوران از میدان جریان است. حلقه گرداد می‌تواند به صورت کامل و یا به صورت درصدی باشد که در این مقاله هدف حلقه درصدی گرداد (استهلاک گرداد) است. به نظر می‌رسد صفحات مسئولیت مهمی با ابعاد مختلف در موقعیت‌های گوناگونی نسبت به رسیدن ورودی لوله مورد آزمایش قرار گرفته‌اند. درصد کاهش گرداد برای هر حالت در دیگر روش‌های محاسبه‌ای در دیگر روش‌های محاسبه‌ای افزایش شده است، به طوری که در یک دیسک سطح S. M. Borghi and D. Rajabi Siahboomi

Department of Civil Engineering, Sharif University of Technology

ABSTRACT- This paper is about experimental results for partial reduction of vortex at vertical pipe intakes. One of the easiest and practical ways of reducing vortex effect is to use anti-vortex plates or baffles. These plates can be used to avoid the vortex completely or partially. This paper will concentrate on the latter case. Rectangular plates with different dimensions have been placed at different positions to the intake pipe. Three different pipe diameters (D), 50, 75 and 100 mm, have been used. Vortex reduction percentages have been measured for each case at a constant discharge in such a way that at a given discharge, three water heads on intake pipe, namely, the water head without plate (H_{n.p}), water head with plate (H), and water head...
گرداب را در عمق مستقیم قرار دارد.

راههای گوناگونی برای حذف و استحکام گرداب وجود دارد.

یکی از این راههای حذف گرداب به صورت استحکامی با استفاده از روشهای ساده و موثر است. گرداب می‌تواند به صورت مستقیم شود. یکی از روش‌های استحکام گرداب عمودی در راس و رودی به شکل مسطح قطع جریان می‌شود. در تاریکی در کردن سیال در حالت دوران از میدان گرخش است. [1] معادلات انجام شده بر روی آیانگری‌ها افکس سد شهید عباسی‌پور نشان داده است که صفحات عمودی به صورت عمودی بر جریانenzدندو و در فاصله مداوم نصف عمق استرخوان از پیشانی آیانگر قرار گرفته، تاثیر بسیار زیادی در زمینه‌ی اقدامات گرداب دارند. همچنین، کاربرد صفحه‌ها زایم بین 25 تا 70 درجه ظریف به محوطه آیانگر در مقایسه با دیگر ابزارهای برکناری کردن آجیار و دقت آن را به صورت زیادی کاهش داده است. [2]

در این مقاله نیز هدف تعمیم ابعاد و موقعیت صفحات مستقیمی در زمینه‌ی استحکام و با حذف دریچه‌ای از گرداب، مطالعاتی انجام شده است. عمده‌ای محققان تحقیقات خود برای حذف کامل گرداب انجام داده‌اند که برای کوبیدن اطلاعات در سطح چگونگی حذف یکی از از از از موسسات است. هنگامی که نوشته‌ای این مقاله را با انجام مطالعات‌برنده‌های می‌گردد آزاد این امر می‌باشد.

۲- میانی و انواع گرداب

به طور کلی هر دره متغیر که در سیال منجمد شویم دارای سه حرکت انتقالی، چرخشی و تغییر شکل است. هر ای در حوزه مرکزی به فاصله ۴ در پایین محل، کنسرت معمایی در از

\[\n\begin{align*}
\theta &= \Omega t \\
\Gamma &= \int_0^s V_\theta ds
\end{align*}
\]
3- راههای تضعیف و حذف گرداب

برای جلوگیری از تشکیل گرداب و یا کاهش قدرت چرخش جریان روانه‌مانند و سطح دارد. یکی از آن‌ها ایجاد عمین استوارت روی دهانه خروجی است. عمق عمین که جریان روی دهانه آبگیر حالت استوارت می‌باشد و در نتیجه گرداب و هسته یا مسیر م Россия دمای شوید. برخی مطالعات انجام شده، هر که معادلة

(3)$$h/D = aF + c$$

که در این مقداره‌ها،$$V_0$$ سرعت و$$\Omega$$(r،θ) سرعت$$r$$ زاویه‌ای (که به صورت مستقیم زمانی زاویه$$\theta$$ تعیین می‌شود)$$\Omega = \alpha \theta / \theta$$ (4) با استفاده$$R^2$$ سیستم چرخش به صورت یک منحنی بسته و

$$P$$ پارامتر دوام با نگرفتن در مدل گرداب اجباری و گرداب آزاد که مرز بین یک دوahi در موقعیت که خروجی به صورت عمودی از کف مشخص قرار گیرد، در اصلی به اندازه شعاع خروجی از مرکز گرداب قرار دارد. در ناحیه گرداب اجباری ذرات سیال مانند ذرات یک جسم صلب عمل ۱ گرداب اصلی همان گرداب آزاد است [5] و

در نتیجه سطح آب در اثر دوآت وارد می‌شود که باعث دور شدن ذرات از محور دوآت می‌شود و ممکن اثر مویی‌کشی یافته در اطراف محور دوآت می‌شود. در نتیجه آب‌انرژی نیز به دلیل تقارن جریان سرعت افزایش یافته و نتیجه‌اً باعث افتادگی سطح آب و ورود هوا به داخل آب می‌شود. تا زمانی که در این منطقه فشار پیش از انمسفی بیشتر مانند یک سد ساختمان نفوذ هوا به داخل هسته گرداب می‌شود. لذا آب‌انرژی موثر در معطوس ورود هوای نیز گرداب که قدرت چرخش و یا دبی گردابی باید فراهم کند فشار زیر انمسفی کافی باشد.

اصول گردابها و براساس موقعيت تشکیل، زمان پایداری و شکل ظاهري طبقه بندي می كنند. گردابها از ناحیه موقعيت تشکیل پذيردنده دستگاه‌های سطحی (شامل گرداب‌های دوایری و گرداب‌های آزاد) و زیرسنجی می‌شوند، شکل (1) براساس مقدار پایداری، به دو دستگاه‌های پایدار (دامی) و زودگذر (غیردامی) تقسیم می‌شوند. همچنین در ارتباط با قدرت و شکل ظاهري به شکل ورودی مختلف طبقه

(5)$$P = \beta$$ (6) که گرداب نوع ۶ گروه‌بری و ۷ گروه‌بری

حالت آن است [6] و
الف - مخزن اصلی به صورت استوانه‌ای با قطر 100 cm و ارتفاع 80 cm بر روی جریان از کف و خروجی توسط لوله آبیکر از بالا و غربت لوله‌های آبیکر با سطح 7.5 و 10 cm در وسط مخزن استوانته‌ای می‌شوند.

ج - مخزن ذخیره و گردش آب که در زیر مخزن اصلی قرار گرفته و دارای آب خارج شده از سیستم لوله آبیکر به این مخزن وارد می‌شود.

د - یک گردش جریان با دیپ بیشتری در ساعت که آب را از مخزن ذخیره به مخزن اصلی انتقال می‌دهد.

ه - دیپ سنج الکترونیکی و - صفحات سطحی مستطیلی با ابعاد مختلف به عنوان صفحات ضد دوران.

ب - کاهش سرعت ورودی با انواخت سطح مقطع آبیکر

ا) گرداب سطحی

ب) گرداب زیرسطحی

(گرداب زیرآبی با مسیرهای)

(c) فرو انتقال گی

(گرداب با هسته‌هوا)

شکل ۱- انواع گرداب بر اساس موثریت ظهور و شکل آنها

۴- معرفی مدل

ا) ابعاد مدل طولی انتخاب شده است که تأثیر نیروهای همجنس کشش سطحی که معمولاً در جریان‌های واقعی هیدرولیک مهم نیستند، ناچیز شده و خطاهای مقایسه‌ی حداقل شود. به همین منظور دستگاه آزمایش از اجزای دریایی تشکیل شده است، شکل (۲):
شکل ۲ - طیف‌بندی گرداب‌ها بر اساس قدرت و شکل ظاهری آنها

شکل ۳ - نماهای از مدل گرداب
آزمایش‌ها برای سه لوله خروجی (معادل ابگیر عمودی) با قطرهای ۵، ۷.۵ و ۱۰ سانتی‌متری به عنوان لوله مرجع انجام گرفته است. لوله به عنوان لوله مرجع انتخاب شده و کلیه آزمایش‌ها برای آن انجام گرفته است. برای اطمینان از نتایج آزمایش، یک لوله دیگر آزمایش‌ها در دو بعد است که برای تایید این بیان ذکر شده است. لذا، تعداد ۱۶ صفحه با ابعاد مختلف برای قطر ۳، ۴ و ۵ سانتی‌متر، تعداد ۸ صفحه مورد آزمایش قرار گرفته تا سپس برای لوله‌هایی که قطرهای ۵ و ۷.۵ سانتی‌متر در حدود ۸ صفحه در هر سه قطر (برخی از قطر لوله) مشابه و ابعاد ۵ و ۷.۵ سانتی‌متر انتخاب شدند (جدول ۱). برای هر صفحه که موجود صفحه باعث کاهش ضخامت و ورود هوا شده و از طرفی دیگر به لوله افزایش می‌یابد. لذا، به ازای یک دیب ثابت، ارتفاع آب کاهش شده و به ازای ارتفاع ثابت آب به روی رأس لوله در حالت و حذف کامل گرداب (Hₚ,φ)(ضیافت) به ارتفاع آب در دو حالت عدم وجود صفحه (Hₚ,φ) و حذف کامل گرداب (سی) می‌تواند نشان می‌دهد. درصد کاهش گرداب در اثر وجود صفحه را مشخص کند. شکل ۳ نشان می‌دهد سطح آب را در یک دیب ثابت برای سه حالت با صفحه بدان صفحه و حذف کامل گرداب نشان می‌دهد.

در تمام جدول‌ها و نمودارهای ارائه شده، ابعاد صفحات به صورت xمدل (ارتفاع xعمودی) نشان داده شده است. به منظور مقایسه قطرهای مختلف و همچنین ارائه نتایج به صورت کلی، قطعه که دیب Q به صورت بندو بعد به آن برای اولین بار به دنبال استفاده از صفحه و در حال حین با گرداب آزاد برای لوله به نسبت به رأس لوله داشته (Hₚ,φ=Q) می‌باشد. این بیان می‌کند که، همچنین اگر متغیری به عنوان پایه همانند شوید در این صورت بر مبنای ارتفاع آب در حالی‌که مختلف به صورت زیر می‌تواند بیان شود:

شکل ۳ نشان می‌دهد:
شکل 5- سطح آب در دی ثابت برای سه حالت الف- بدان و وجود صفحه $H_{n.p}$، ب- با صفحه $H_{H.p}$، ج- بدان و وجود گرداب $H_{n.v}$

الف - قطر

$7.5\, \text{cm}$

شکل (6) فیزیکی از تاثیر فواصل مختلف x (فواصل انفی) صفحه y مرکز لوله (را در عمیق‌تر خارجیابی صفحه (از $1.5D\times2D$) و $y=2D$ برای صفحه‌بند ابعاد D به ابعاد $\times 2D$)x تاثیر دارد. y را در $2D\times1.5D$ می‌دهد.

شکل (6-الف) تغییرات ارتفاع آب نسبت به دیس در دو حالت دو بهبود صفحه (n.v) و بهبود گرداب (n.p) همراه با $x=2D\times1.5D$ و $y=2D\times-2D$ از این نسبت به ابعاد این حالت است. مشاهده می‌شود که در این حالت است. مشاهде

$$y=\frac{H_{n.p}-\frac{H}{H_{n.v}}\times100}{H_{n.v}}$$

که این تعیین می‌تواند ارائه نتایج خواهند بود.

6- نتایج

همان‌طور که ذکر شد، با توجه به تعداد زیاد اندازه‌گیری‌ها، تجزیه

و تحلیل نتایج فقط در هرگونه موقعیت هر صفحه انجام گرفته است

(موقعیتی که استقرار صفحه در آن موقعیت پیش‌تاریخ را در

کاهش درصد گرداب دارد). همچنین شاخص‌نامه دارا مکانیک است به خاطر

ایجاد یک گرداب متمرکز و پایدار، یک کrors خاصی لوله در کل

عمق مخزن در اثر رود و یا دهانه آب، شکل (3)، در چیزی و یا دهانه

ارک مخلوط اصلی ایجاد شد. بدین ترتیب نتایج حاصل از این

تحقیق تحت تاثیر شرایط ورود جریان و همچنین تاثیر آن در ایجاد

چرخش است و لذا کاربرد نتایج حاصل فقط تحت شرایط یکسان

توسعه می‌شود. برای مثال لوله آبی در رودخانه‌ای که وجود

جریان آب از یک طرف لوله بامعی یک کدر می‌آید در عمق جریان آب.

همچنین به علت جامعت آزمایش‌ها و تایید حاصل برای قطر

7.5 cm اینجا نتایج مربوط به این قطر آورده شده است و سپس

پس از مقایسه نتایج سه قطر لوله، نتیجه گیری کلی به عمل آمده است.
شکل ۶- نمونه‌هایی از تأثیر فواصل مختلف در عملکرد آزمایش‌های برای صفحه‌ای به ابعاد A=1.5D×2D و قطر خروجی (N.P.=7.5 cm)

به‌طور کلی، تأثیر بردی در کاهش درصد گراد داشته است. چنین نتیجه‌ای می‌تواند از (y=2D منبع) حاصل شده است (نتایج x=3D و x=2D ارائه نشده است). علت آن چیزی می‌توان چنین ذکر کرد که در فاصله x=0 جهت فشار بیشتری صفحه در مرکز گراد داشته، که معمولاً لزوماً به وجود داشته و خالی از آب است. بنابراین، این موضعی نشان دهنده در برای تمام صفحات در x=2D و x=3D و x=2D می‌باشد. در این مورد، فاصله x=2D بردی تأثیر گرزند داده که در کاهش درصد گراد داشته است. چنین نتیجه‌هایی از این عمق، برای صفحه‌های فاصله در این عمق، برای این صفحه‌ها بعد از افزایش x=3D تأثیر مثبت بر نسبت به فاصله x=2D دارد. استقرار صفحات در این عمق و این افکار از برون می‌تواند به دانه‌های خروجی و x=0 عبور آن می‌شود. این تأثیر چنان شدید است که حتی استقرار صفحه در فاصله x=3D نتیجه مثبت بر نسبت به ایستقامت آن در x=0 دارد. صفحات با بعد این عدد x=3D به علت کرک‌بودن این عدد ایستا در فواصل دور کرک‌بوده و در نتیجه برای این x=3D تأثیر بیشتری نسبت به سایر فواصل دارد.

با این حال، شکل (۶-۷) برای موضعی صفحه در عمق x=D است. این طور که می‌شود به دانه‌های x=D فاصله.
10 cm و 5 cm طاق‌های

ب - خروجی

علاوه‌ای بر آزمایش‌ها و نتایج آن برای لوله‌های با قطر

خروجی 10 و 7.5 cm آورده شده است. از آنجا که نتایج مربوط به این دو قطر

نیز بسیار نزدیک به حالت V/5 است لذا از آورده نتایج به صورت

مجازا خودداری شده و برای این منظور می‌توان به مرجع [9]

مراقبه کرد. اما مقایسه کلی نتایج و جمع‌بندی آنها در قسمت بعد

انجام گرفته است.

6-1- مقایسه نتایج حاصل از هر سه قطر لوله که در تحلیل آزمایش‌های دو قطر 5 و 7.5 cm را تا پایان می‌کنند. تغییرات درصد

کاهش گردب (زاندمان) در مقابل همچنین حداکثر تغییرات

5 و 10 درصد برای سه قطر لوله رسم شده است که نمونه‌ای از آن

برای قطر 7.5 cm در شکل (9) نشان داده شده است. همان طور که

از شکل هم مشخص است نرخ این اعداد در صفحه (زمردی می شود

تا اگر صفحه در استهلاک گردب قرار گیرد. به دنبال

و یا دیگر است. از آنجا که امکان ارائه کلیه نتایج به کامل

ندارد (برای کل نتایج به مرجع [9] مراجعه شود)، لذا نتایج آنها در

جدول (3) آمده است. تفسیر نتایج در جدول (3) را می‌توان بدر

نمونه گرفته شود.

موتورین فاصله (8) برای صفحات را در عمق‌های مختلف

نشان می‌دهد. مراحل بالا برای تمام صفحات با ابعاد گوناگون

انجام شده که نتایج آن در جدول (11) آورده شده است.

جدول (2) اطلاعات مربوط به موثرین (پرته) موجود

هر صفحه (قسمت الف) و درصد کاهش گرداب بر اثر وجود

آن صفحه در موقعیت استقرار مناسب (قسمت ب) را نشان

می‌دهد.

استلال، سال 19، شماره 1، شهریور 1379

104
 tabel 3- خلاصه تغییرات درصد کاهش گراداب و محدوده 5 و 10 درصد

<table>
<thead>
<tr>
<th></th>
<th>D=10 cm</th>
<th>D=7.5cm</th>
<th>D=5cm</th>
<th>D=10 cm</th>
<th>D=7.5cm</th>
<th>D=5cm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

نتایج گری:
آزمایش‌ها نشان می‌دهند که تقریباً برای تمام صفحات و قطرهای

استناد: ص 19، شماره 1، شهریور 1379 164
شکل 9 - نمونه تغییرات درصد کاهش گرداب، معادله (2)، در مقایسه Q/Q_0 برای قطر خروجی 7.5 cm و 10 cm.

شکل 10 - مقایسه تغییرات درصد کاهش گرداب بین Q/Q_0 در سه قطر لوله خروجی 5.5, 7.5 و 10 cm.

استقلال، سال 1379، شماره 1، شهريور
شکل 11: مقایسه تغییرات درصد کاهش گرداب نسبت به Q/Q_0 در دو قطر لوله خروجی 5 و 7.5 cm

شکل 12: مقایسه تغییرات درصد کاهش گرداب نسبت به Q/Q_0 در دو قطر لوله خروجی 5 و 10 cm

استقلال، سال 19، شماره 1، شهریور 1379
جدول 4- درصد کاهش گرداب برای صفحات با ابعاد مختلف

<table>
<thead>
<tr>
<th>شماره ردیف</th>
<th>ابعاد صفحات 1 (افقي × عمودی)</th>
<th>ابعاد صفحات 2 (افقي × عمودی)</th>
<th>موافقین صفحه X</th>
<th>دیگر Y</th>
<th>موافقین صفحه X</th>
<th>دیگر Y</th>
<th>اختلاف درصد</th>
<th>نسبت ساحتاهای مختلف کاهش گرداب</th>
<th>واحد (1)/(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5D×1.5D</td>
<td>2D</td>
<td>-D</td>
<td>-D</td>
<td>1.5D×1.5D</td>
<td>2D</td>
<td>0.60%</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>2</td>
<td>1.5D×1.5D</td>
<td>2D</td>
<td>-D</td>
<td>-D</td>
<td>1.5D×1.5D</td>
<td>2D</td>
<td>1.01%</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>1.5D×2.5D</td>
<td>2D</td>
<td>-D</td>
<td>-D</td>
<td>2.5D×1.5D</td>
<td>2D</td>
<td>0.30%</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>4</td>
<td>1.5D×2.5D</td>
<td>2D</td>
<td>-D</td>
<td>-D</td>
<td>2.5D×1.5D</td>
<td>2D</td>
<td>0.60%</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>5</td>
<td>1.5D×2.5D</td>
<td>2D</td>
<td>-D</td>
<td>-D</td>
<td>2.5D×1.5D</td>
<td>2D</td>
<td>2.50%</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>1.5D×1.5D</td>
<td>2D</td>
<td>-D</td>
<td>-D</td>
<td>2.5D×1.5D</td>
<td>2D</td>
<td>3.35%</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2D</td>
<td>1.5D×1.5D</td>
<td>-D</td>
<td>-D</td>
<td>2D×1.5D</td>
<td>2D</td>
<td>6.16%</td>
<td>2.78</td>
<td>2.78</td>
</tr>
<tr>
<td>8</td>
<td>2D</td>
<td>1.5D×1.5D</td>
<td>-D</td>
<td>-D</td>
<td>2D×1.5D</td>
<td>2D</td>
<td>6.65%</td>
<td>3.125</td>
<td>3.125</td>
</tr>
<tr>
<td>9</td>
<td>2D×2D</td>
<td>1.5D×1.5D</td>
<td>-D</td>
<td>-D</td>
<td>2D×1.5D</td>
<td>2D</td>
<td>5.78%</td>
<td>1.875</td>
<td>1.875</td>
</tr>
<tr>
<td>10</td>
<td>2D×2D</td>
<td>1.5D×1.5D</td>
<td>-D</td>
<td>-D</td>
<td>2D×1.5D</td>
<td>2D</td>
<td>-15.33%</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>2D×2D</td>
<td>1.5D×1.5D</td>
<td>-D</td>
<td>-D</td>
<td>2D×1.5D</td>
<td>2D</td>
<td>-6.79%</td>
<td>1.25</td>
<td>1.25</td>
</tr>
</tbody>
</table>

مختصات نتایج قابل حصول است. افزایش برابر برای صفحه با ابعاد معین یک موقعیت دارای پیش‌ترین تاثیر برای استحکام گرداب است. این موقعیت این موقعیت در عمل تا زمینه‌های فصلی 2D×1.5D و 2D×2.5D. این نتایج در صفحه با ابعاد معین را در موثر بودن موقعیت استقرار آن صفحه و در هر دو دوختاری نشان می‌دهد.

قدرتانی نوسان‌گران مقاله از پاسخ‌ها تکمیلی داشته‌اند که به شرکتی از هزینه‌های پرورش و نشان کرده است تکش و قدرتمندی می‌کند.

مرجع:

108

استنسل: سال 19، شماره 18، شماره 1379