تأثير صفحات عمودی در استهلاک گرداب با استفاده از نتایج تجربی

سید محمود برقمی و داوود رجبی سیاهبویی

دانشکده مهندسی عمران دانشگاه صنعتی شریف

(دریافت مقاله: ۸/۷/۱۳۸۷ - دریافت نسخه نهایی: ۸/۱۲/۱۳۸۷)

چکیده - مطالعه حاضر به منظور بررسی کاهش درصدی گرداب در لوله‌های عمودی صورت گرفته است. برای استهلاک گرداب راه‌های گوناگونی وجود دارد که یکی از سادترین و در عین حال موثرترین آنها استفاده از صفحات عمودی در دهایه ورودی آگیره‌ها و در نتیجه دور کردن سیال در حال دوران از میدان چرخشی است. حلقه گرداب می‌تواند به صورت کامل و یا به صورت درصدی باشد که در این مقاله، هدف حلق درصدی گرداب (ایسته‌ترین گرداب) است. بدین منظور صفحات مستطیل شکل را بیان داده‌ایم و به اعداد مختلف در موقعیت‌های گوناگون نسبت به راس ورودی لوله مورد آزمایش قرار داده‌ایم. درصد کاهش گرداب برای هر حالت در دبی ثابت بررسی شده است. به طوری که در یک دبی سرعت آب در ورودی لوله 5.7cm/s، ارتفاع آب و حلق کامل گرداب (Hn,p) آزمایش‌ها برای سه قطر لوله (D) به ترتیب 75 و 10 سانتی‌متر گرفته است. اعداد صفحات انتحابی و موقعیت قرارگیری آنها به مبناهای ضرری به قطر لوله انتخاب شده تا نتایج بهتر بازجوی و نتایج صفحات بیش از ۷٪ آزمایش با میانگین دوبه دبلیو به اعداد صفحه و محل قرارگیری صفحه نشان دهنده می‌تواند با استفاده از یک نمودار بیش از ۷٪ بیشتر باشد (D×1.5D) هر دو صفحه آزمایش گرداب را کاهش داده که نتایج به صورت جدول‌ها و نمودارهایی که برای هر اعداد صفحه بهترین حالت محل قرارگیری آن را نشان می‌دهد.

ارائه شده‌اند.

Effect of Vertical Plates on Reducing Vortex Using Experimental Data

S. M. Borghesi and D. Rajabi Siahboomi

Department of Civil Engineering, Sharif University of Technology

ABSTRACT- This paper is about experimental results for partial reduction of vortex at vertical pipe intakes. One of the easiest and practical ways of reducing vortex effect is to use anti-vortex plates or baffles. These plates can be used to avoid the vortex completely or partially. This paper will concentrate on the latter case. Rectangular plates with different dimensions have been placed at different positions to the intake pipe. Three different pipe diameters (D), 50, 75 and 100 mm, have been used. Vortex reduction percentages have been measured for each case at a constant discharge in such a way that at a given discharge, three water heads on intake pipe, namely, the water head without plate (Hn,p), water head with plate (H), and water

- کارشناس ارشد
- استاد

استقلال، سال ۱۹ شماره ۱، شهریور ۱۳۷۹

۹۲
گردا و در عمل نتیجه گرفته است.

راه‌های کاهش شوک و استیل‌کشی گردا و در دارد
لیکن با یک در عمل، ایجاد مهارت انتقادی و محدودیت‌های طراحی،
ترجیح داده می‌شود که گردا بی‌افشاگی صنعتی شود و مخاطر
ضدگردا بی‌افشاگی شود. یکی از این گزارش‌ها استفاده از صفحات
عمودی در راست و رودی به هر صورت یک شکست جریان می‌باشد.
در نتیجه در هر دو دارنده از میدان چرخ

اشتقاق یاد شده بروی آیکن‌های افقی که شهید
عباسی را به داده است در هالیک باکس صفحه عمودی به صورت
عمودی بر چرخ رنگ‌یکی نشوند و در فاصله معادله قابل

مقدار هستند. همچنین برخی از نوبت‌های دیگر برای افزایش
درجه نسبت به محور آیکن به مقداری بیشتری بر
گردا را کاهش دهد و قدرت آن را به سطح زیادی کاهش داده است.

در این مقاله نیز هدف این استفاده و مهاجریت صفحات مستقلی
عمودی به منظور بررسی استیل‌کشی و دندان‌های گردا در ورودی
عمودی با استفاده از مدل آزمایشگاهی است. باید این پیش از

6000 نمونه مختلفی از قطر لوله D، جدیت D با ابعاد (بد) Q و (ans)

کشف روش از اگزهای هم‌سازی است، که یک نوشتار این مقوله را با

آزمایش مکانیک شکل‌گیری کامل امکان‌پذیر شود.

2- مبانی و انواع گردا

به طور کلی همواره در مورد کاراکتریستیک سیال در سیال منصور شویم دارای سی

ترجیح داده شود. هر گونه در ح thức

مرکزی به فاصله د ه. کننده مسئولیتی مربوط به

معادله (1) و دانستند از معادله (2) به دست می‌آید.

\[ V_\theta = \omega r \] (1)

\[ \Gamma = \int_s V_\theta \cdot ds \] (2)

1- مقدمه

پدیده گردا به عنوان اثر متقابل و پیچیده بین مندسه اطراف

آگرب (نوری پهلوان مرده و غیره)، سرعت جریان، نیروی نیروی

جریان، وضعیت زمین و خصوصیات سیال از قبیل کشش سطحی و

لزجت در مواضع خروج آب از سازه‌های آب نظیر روزخانه، درجه‌ها،

کاتالازا، کاتالازا و افقی و سرزده‌های نیازمند تکنیک

تشکیل می‌شود. همچنین هرگاه عمود آب در بالای راه لوله

ورودی به انتهای کافی نیست و (کمتر از عمق استراق) در موضع ورود

آب به لوله، گرداها بر طرف می‌روید یا اینجاست می‌نرود.

گاهی اوقات به منظور ایزوترون سرعت انجام شار مولکولی با

شاگرد در جریان‌های سیالی، چرخ می‌شود. دهانه سرحد‌های نیازمند

می‌باشد. همچنین مورد کمی یک حریق گردی سقف، کمی یک حریق گردی

پیش از کاهش سطحی فشار نیروی و کاویتاسیون در لوله‌های

آوری می‌شود. لذا چرخ مختصر آب در هلال خروجی می‌تواند

مطلب باشد.

در زمینه استیل‌کشی و با حذف درصدی از گردا، مطالعات

اجام نشته است و عمداً محققان تحقیقات خود با برای حذف

کامل گردا برای انجام داده‌اند که لازم کودرس اطلاعات در مرید چگونگی

حداف بخشی از اگزهای هم‌سازی است، که یک نوشتار این مقوله را با

اجام دادن نیز به چرخ را برای محصول می‌کند.

گردا آباد ابتدا در مریدهای سیالی تشکیل می‌شود و با گذشت

زمان به داخل می‌رود. به طور عمده این گردا با

سطح آب از طرف جریان شروع می‌شود و به تدریج به داخل جریان

انتشار می‌یابد. برای مثال در یک سیستم پیش‌آگهی سیستم

از کافی آب (مرز صلب) شروع شود و تا دهه‌ای لوله منعکس

یابد. [2] همچنین در رودخانه و یا جریان‌های سیالی داخل مخازن

که جریان آب و جریان آب از لوله عمودی خارج می‌شود، این

جریان منکن است که نیروی مسانس به جریان گردی واردکرد و

کننده
3- راههای تضعیف و حذف گرداب

برای جهت‌گیری از تکثیر گرداب و یا کاهش قدرت چرخش جریان مورد شناخت و به‌دست آورده. یکی از آن‌ها ایجاد عمق استخرق روی دهانه خروجی است. عمق مطلق که جریان روی دهانه ایجاد حالت استخرق پیدا کرده و در نتیجه گرداب و هسته‌ها مختصات پریان عمق استخرق در حالت‌های مختلف ارائه شده که عامل

کلی را می‌توان به صورت زیر نشان داد:

\[
(h/D) = a Fr^b + c
\]

(3) \[ \text{که در این مدل طراحی‌ها،}

\[
V_0 \text{ سرعت ماده‌ای در طول}

\[
\Omega = \theta \text{ سپر عرض در دوره مرحله‌ای}

\] 

\[ \psi \text{ سپر عرض در دوره مرحله‌ای}

\]

\[ \text{در پارامتر} \Omega \text{ بر نرخ جریان منتقل شده بر روی سرعت دست.}

همچنین این مدل جریان گردابی شامل دو منطقه گرداب اجباری و گرداب آزاد است که مرز بین دو مدل تابع مرحله‌ای \[ \psi \text{ خروجی} \text{ به صورت عمودی از چند محور فازی کرده، در نهایت به}

\] 

اندازه‌ای شعاع خروجی از مرکز گرداب قرار دارد. در نهایت گرداب اجباری ذرات سیال مانند ذرات یک جسم صلب عمل کرده بنا برای این توزیع سرعت ماده‌ای به صورت خاطی با شعاع دارای چرخش تغییر می‌کند. پویایی سرعت در این ناحیه به صورت سهمی است. در

تایید آگیری مدل سیال دایره حرفه‌ای دوره به سرعت ماده به رابطه معکوس با چرخش می‌باشد و پرتو در ناحیه تابع به صورت هدایتی است. این به انگیزه و حالت‌های متفاوت 


در تزیکی سطح آب در اطراف دوران سیال، نیروی گریز از مرکز بی‌درنتا وارد می‌شود که باعث دور شدن ذرات از محوور دوران می‌شود. این عمل سرعت کاهش فشار در اطراف محوور دوران می‌شود. در تزیکی آگیری تابع دایری تقارب جریان سرعت افزایش یافته و نتیجه باعث انتقال سطح آب و ورود هوا به داخل آب می‌شود. تا زمانی که در

این منطقه فشار بیش از اندازه‌ای باشد، مانند یک سطح مقطع مذکور هوا به داخل سطح گرداب می‌شود. لذا آگیری موثر در معرض ورود هوا به قدرت دارد که قدرت چرخش و یا دبی آگیری به فرآیند دردن فشار زیر اندازه‌های بسیار

3-1 افزایش دان طول خروط چرخان متوسط

الف- رعایت عمق کمینه استخرق مجاز بر روی آگیری با کاهش

رقوم دهانه آگیری با انرژی نزدیک سطح آب.

ب- طولانی بودن خروط چرخان بین دهانه آگیری و سطح آب با

کاربرد صفحات یافته در قسمت پیشین آگیری‌های افقی و یا سری‌نشینی در بالای دهانه آگیری‌های عمودی.

3-2 حذف جریان تابعی و فعال کردن نواحی ساکن جریان

الف- با استفاده از ترکه‌های ترکه یا پرچه‌های مشبک و...

ب- با تکنیک شیب اطراف آگیر

3-3 یکنواخت کردن توزیع سرعت جریان

الف- با تشکیل دهانه آگیری به دست دستگاه‌های سطحی (شامل گردابهای دیواری و گردابهای آزاد) و زیر سطحی تقسیم می‌شود. شکل

(1) براساس زمان پایداری، به دو دستگاه گردابهای پایدار (دائمی) و زودگذر (غیردامنه‌ای) تقسیم می‌شود. همچنین در

ارتباط با قدرت و شکل ظاهری به استرکت و شکف‌های مختلف طبقه

یندی شده، شکل (2) که گرداب نوع ۴ واقعین به برخی‌ترین

حالت آن است [6].
ج) گرداب سطحی
(ب) گرداب زیرسطحی
(گ) گرداب زیرآبی یا مستغرق

الف - مخزن اصلی به صورت استوانه‌ای با قطر 100 cm و ارتفاع 80 cm با ورودی جریان از کف و خروجی توسط لوله ایجادگی از بالا و وسط
ب - لوله‌های ایجادگی با قطر 5.5 و 7.5 cm در وسط مخزن استوانه نصب می‌شوند.
 ج - مخزن ذخیره و گردش آب که در زیر مخزن اصلی قرار گرفته و آب خارج شده از مسیر لوله ایجادگی به این مخزن وارد می‌شود.
د - پمپ گردش جریان با دبی بیشینه 18 m³ در ساعت که آب را از مخزن ذخیره به مخزن اصلی انتقال می‌دهد.
ه - دبی سنج الکترونیکی و صفحات مستطیلی با ابعاد مختلف به عنوان صفحات ضد دوران.

وپردازی به مخزن اصلی از کف آن صورت می‌گیرد و برای تقویت گرداب آزاد در مخزن اصلی، آب با زاویه وارد مخزن می‌شود.
همچنین از فیلترهایی برای آرام کردن ورود جریان به داخل مخزن استفاده شده است.

شکل 1- انواع گرداب برآی مواد مولتیت اسلو و شکل آنها

4- معرفی مدل

ابعاد مدل طوری انتخاب شده است که تأثیر نیروهای همجنون کش سطحی که معمولاً در جریان‌های واقعی هیدرولیک مهم ترین ناحیه شده و خطاهای مقاوم حداکثر شود. به همین

منظور دستگاه آزمایش از اجزای زیر تشکیل شده است، شکل (3):
<table>
<thead>
<tr>
<th>نوع</th>
<th>شرح</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع 1</td>
<td>حرکتی سطحی</td>
</tr>
<tr>
<td>نوع 2</td>
<td>حرکتی سطحی آب باتری شناسی سطحی</td>
</tr>
<tr>
<td>نوع 3</td>
<td>مخروط غیرشفاف تا آبگیری خاتمه ستونی از آب</td>
</tr>
</tbody>
</table>

شکل 2 - طیب‌پذیری گرداپا براساس قدرت و شکل ظاهری آنها

شکل 3 - نماهایی از مدل گرداپا

1- جزئی اولیه
2- جزئی اضافی
3- پنجره
6- سر کنار دیگر
5- ذرت نصیر
11- حفره دسته
12- شریف مانند
7- قسمت تجهیزات سطحی
3- شرکت دیگر
4- استحاله گیری هد
8- تشکیل
9- لوله خروجی آب
10- لوله واردات
13- ضخیم
آزمایش‌ها برای سه لوله خروجی (معادل آب‌گیر عمودی) با قطرهای 5 و 7.5 و 10 میلی‌متر انجام گرفته است. لوله بیش از 7.5 cm بنا به عنوان لوله مرجع انتخاب شده و کلیه آزمایش‌ها برای آن انجام گرفته است. برای اطمینان از تأثیر آزمایش‌ها برای دو لوله دیگر آزمایش‌ها در محدوده بوده است که توان تاثیر را با هم مقایسه و از جمع تمام آزمایش‌ها نتیجه گیری کرد. لذا، تعداد 16 صفحه با ابعاد مختلف برای قطر 7.5 مورد آزمایش قرار گرفت. سپس برای آزمایش این قطرهای 5 و 10 cm داده‌های آزمایش مورد بررسی که ابعاد 4 عدد از این صفحات در هر سه قطر (برحسب قطر لوله) مشابه و ابعاد 4 عدد از صفحات فقط دو قطر (5 cm و 7.5 cm) و 10 عدد مشابه انتخاب شدند. (جدول (1)) برای هر صفحه، به طور متوسط 15 موهبدایه تسبیب به رأس و روی لوله در نظر گرفته شده است. تغییرات ارتفاع آب در هر موهبدایه صفحه بین 15 عدد انتخاهمگر شده است. شکل (2) موهبدایه یک صفحه را نشان می‌دهد همچنین طوری که در جدول (1) هر آزمایش برای دو قطر لوله 7.5 و 10 cm داده شده است. صفحه در تمام جدول و محدوده ارائه شده، ابعاد صفحه به صورت x منظور صفر و 2D انتخاب شده است. به منظور مقایسه قطع‌های مختلف و همچنین ارائه نتایج به صورت کلی، لازم است که دیب (Q) به صورت بدون دو دیب (D) برای پدیدار شدن در تمام جدول و همچنین داده شده است. صفر به معنی x=0 دیب است. همچنین اگر متغیری به عنوان بازده تعیین شود در این صورت بر می‌آید ارتفاع آب در تبدیل‌های مختلف به صورت زیر می‌تواند بیان شود:

نتایج در این محدوده ارائه شده است (برای توضیحات بیشتر به مراجعه شود).
شکل ۵- سطح آب در دی‌تایب برای سه حالت الف- بدون وجود صفحه H، ب- با صفحه Hn.p، C- بدون وجود گرداب.

الف - قطر

7.5 cm

شکل (۶) نمودار زمان انتقال مختلف x (فواصل افتیقاً) صفحه تا مرکز لوله را در عمق‌های مختلف شرایط گردابی صفحه (از 1.5Dx2D یا 2D y=0 در عمق‌های به ابعاد دیگر) نشان می‌دهد.

که این تعریف مبنای ارائه تابع خواهد بود.

۶- نتایج

همانطور که ذکر شد، با توجه به تعداد زیاد اندازه‌گیری‌ها، تجزیه و تحلیل نتایج فقط در بسترین موی‌بر می‌تواند تجربه است (موی‌بری که استقرار صفحه در اثر موی‌بر به‌طور تاکی در کاهش درصد گرداب دارد)، همچنین شایان ذکر مجدد است به خاطر اینکه این گرداب متمرکز با پایدار، یک چرخه ویژه لوله در کل عدم محل مخزن در اثر ورودی ورودی از کف مخزن اصلی ایجاد شد. به‌طور کلی نتایج حاصل از این تحقیق تحت تأثیر شرایط ورود جریان و همچنین تأثیر آن در ایجاد چرخه است و لذا کاربرد نتایج حاصله فقط تحت شرایط یکسان توصیه می‌شود (برای مثال لوله آبیکر در رویدادهای که وجود جریان آب از یک طرف لوله باعث یک چرخه ایجاد شود در عمق جریان شود).

همچنین به علت جامعیت آزمایش‌ها و ثبت نتایج حاصل برای قطر 7.5 cm این ابتدا نتایج مربوط به این قطر آورده شده است و سپس ضمن مقایسه تابع سه قطر لوله، نتیجه گیری کلی به عمل آمده است.

استلال، سال ۱۹، شماره ۱، شهریور ۱۳۷۹

۱۰۰
بهترین تأثیر را در کاهش درصد گرداب داشته است. چنین نتیجه‌ای برای تمام صفحات در y = 2D نیز حاصل شده است (تابع (c)). علت آن را می‌توان چنین ذکر کرد که در فاصله x = 0 به علت گرایش کریه صفحه در مرکز گرداب، گرداب می‌افتد و جو مداوم آن خالی از آب است. این وضعیت نشان دهنده به‌ویژه در x = 3D و y = 2D از این عمک و فواصل 0 = x و y = 2D از این عمک و فواصل صفحاتی با بعد افقی کوچک (b = 3D) نسبت به فاصله D نزدیک تر بوده و x = 2D از این عمک و راه دور بودن به دهانه خروجی و فواصل x = 0 و y = 0 به علت نزدیک بودن به دهانه خروجی و وجود گرداب اولیه، موجب افکاری در دهانه شده و در نتیجه مانع از عبور آب می‌شود. این تأثیر چنان شدید است که حتی استقرار صفحه در فاصله 3D تأثیر مثبتی نسبت به استقرار آن در y = D ندارد. صفحات با بعد افقی D به علت کوچک بودن این بعد تأثیران در فواصل دور کمتر شده و در نتیجه برای این گونه صفحات و این عمک فاصله x = D تأثیر بیشتری نسبت به سابیر فواصل دارد. 

با این حال، شکل (6-8) برای موقعیت صفحه در عمک x = D است. همان طور که مشاهده می‌شود، در این عمک فاصله این موقعیت بکار می‌رود. 

101

استلال، سال 19، شماره 1، شهریور 1379
ب - قطرهای ۵ و ۱۰ cm

اطلاعات مربوط به آزمایشها و نتایج آن برای لوله‌های قطر خروجی ۵ و ۱۰ cm در شکل ۷ و جدول‌های مانند نتایج مربوط به قطر اول پر آورده شده است. از نتایج کلی نتایج مربوط به این دو قطر نیز بسیار نزدیک به حالت V/5 است لذا از آن دو نتایج به صورت مجزا خودداری شده و برای این منظور می‌توان به مرجع [9] مراجعه کرد. اما مقایسه کلی نتایج و جمع‌بندی آنها در قسمت بعد انجام گرفته است.

شکل ۷ - رسم مؤثرترین موقعیت‌ها برای صفحه‌ای به ابعاد ۱.۵D×۲D

۶-۱- مقایسه نتایج حاصل از هر سه قطر لوله خروجی (۱۰ cm و ۵ cm و ۱0 cm)

نتایج حاصل از تحلیل آزمایش‌های دو قطر دیگر (۱۰ cm و ۵ cm) را نیز می‌کنند. تغییرات درصد کاهش گرداب (دانشجویان) در مقابل همچنین حذف تغییرات ۵ و ۱0 درصد برای سه قطر لوله رسم شده است که نمونه‌ای از آن ۱0 برای قطر ۵ cm در شکل (9) نشان داده شده است. همان طور که از نیز هم مشخص است که به همه ابعاد صفحه پر زرگر می‌شود تأثیر صفحه در استحکام گرداب فاقد از نسبت و یا دیگر است. از نتایج که این اثرات کلی نتایج بین دو اثرات امکان می‌دارد (برای کل نتایج به مرجع [9] مراجعه شود)، لذا نتایج آنها در جدول (3) آمده است. تفسیر نتایج در جدول (3) را می‌توان بدين

شکل ۸ - مؤثرترین موقعیت صفحات

می‌دهد. برنامه‌های برای تمام صفحات با ابعاد گوناگون انجام شده که نتایج آن در جدول (۲) آورده شده است. جدول (2) اطلاعات مربوط به مؤثرترین (بهترین) موقعیت هر صفحه (قسمت الف) و درصد کاهش گرداب بر اثر وجود آن صفحه در موقعیت استقرار مناسب (قسمت ب) را نشان می‌دهد.

استقلال، سال ۱۹، شماره ۱، شهریور ۱۳۷۹

۱۰۲
| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |

**شکل:**

| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |

---

**توضیحات:**

- شکل نشان می‌دهد که...
- هر کلمه در ترتیب مشخصی...
- اعداد و نام‌ها به‌صورت...

---

**جدول:**

| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |

---

**متن:**

- شکل نشان می‌دهد که...
- هر کلمه در ترتیب مشخصی...
- اعداد و نام‌ها به‌صورت...

---

**توضیحات:**

- شکل نشان می‌دهد که...
- هر کلمه در ترتیب مشخصی...
- اعداد و نام‌ها به‌صورت...

---
جدول ۳- خلاصه تغییرات درصد کاهش گراداب و محدوده ۵ و ۱۰ درصد

<table>
<thead>
<tr>
<th></th>
<th>ابعاد صفحات</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D=10cm</td>
<td>D=7.5cm</td>
<td>D=5cm</td>
<td>D=10cm</td>
<td>D=7.5cm</td>
<td>D=5cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در این شکل‌ها مشاهده می‌شود که تناوب سه لوله به سیار به هم تنزدیک است و یکدیگر را تیاد می‌کند. نتایج در حالت کاربرد صفحات به ابعاد ۰×۰ دارد. درصد ۰ درصد خواهی در حدود ۵ درصد در میان درصد کاهش گراداب بین لوله‌های قطر ۱۰ و ۷.۵ cm وجود دارد و در صفحات دیگر این تفاوت از ۰ درصد تجاوز نمی‌کند. همچنین برای دو قطر لوله ۵ و ۷.۵ cm در دو حالت صفحات با ابعاد ۰×۰ درصد مشاهده شده و در سایر موارد این دو قطر تقریباً متقابل مشابه را دارند.

۷- نتیجه‌گیری

آزمایش‌ها نشان می‌دهند که تقریباً برای تمام صفحات و قطرهای مورد آزمایش و در موثرترین موقعیت صفحات با توجه به مستندی‌های بزرگ شده به داده‌ها واقعی برای نسبت‌های مشترک استقلال، سال ۱۳۷۹ شماره ۱ شهريور
شکل 9- تغییرات درصد کاهش گرداب معادله (2)، در مقایسه Q/Q₀ برای قطر خروجی 7.5 cm.

شکل 10- مقایسه تغییرات درصد کاهش گرداب نسبت به Q/Q₀ در سه قطر لوله خروجی 5.5 و 10 cm.
شکل 11 - مقایسه تغییرات درصد کاهش گرداب نسبت به $\frac{Q}{Q_0}$ در دو قطر لوله خروجی 7.5 و 5 cm

شکل 12 - مقایسه تغییرات درصد کاهش گرداب نسبت به $\frac{Q}{Q_0}$ در دو قطر لوله خروجی 7.5 و 10 cm

استقلال، سال 19، شماره 1، شهریور 1379
جدول ۴ - درصد کاهش گرداب برای صفحات با ابعاد مختلف

<table>
<thead>
<tr>
<th>شماره ردیف</th>
<th>ابعاد صفحات ۱ (افقی عمودی)</th>
<th>ابعاد صفحات ۲ (افقی عمودی)</th>
<th>موثریت صفحه Y</th>
<th>موثریت صفحه X</th>
<th>نسبت مساحتها</th>
<th>اختلاف درصد کاهش گرداب (1/2)</th>
<th>نسبت سعاقت X</th>
<th>نسبت سعاقت Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱.۵D*۱.۵D</td>
<td>۲D</td>
<td>-۱</td>
<td>۱.۵D*۲.۵D</td>
<td>۱.۵D</td>
<td>۰.۶۰%</td>
<td>۱.۷</td>
<td>۱.۵D</td>
</tr>
<tr>
<td>۲</td>
<td>۲D*۱.۵D</td>
<td>۱.۵D</td>
<td>-۱</td>
<td>۲D*۱.۵D</td>
<td>۲D</td>
<td>۱.۰۱%</td>
<td>۱.۵</td>
<td>۲D</td>
</tr>
<tr>
<td>۳</td>
<td>۲.۵D*۲D</td>
<td>۱.۵D</td>
<td>-۱</td>
<td>۲.۵D*۲D</td>
<td>۲.۵D</td>
<td>۰.۳۰%</td>
<td>۲.۵</td>
<td>۲D</td>
</tr>
<tr>
<td>۴</td>
<td>۱.۵D*۲D</td>
<td>۲D</td>
<td>-۱</td>
<td>۱.۵D*۲D</td>
<td>۱.۵D</td>
<td>۰.۶۰%</td>
<td>۱.۷</td>
<td>۲D</td>
</tr>
<tr>
<td>۵</td>
<td>۲D*۱.۵D</td>
<td>۱.۵D</td>
<td>-۱</td>
<td>۲D*۱.۵D</td>
<td>۲D</td>
<td>۲.۵۰%</td>
<td>۲D</td>
<td>۱.۵D</td>
</tr>
<tr>
<td>۶</td>
<td>۲D*۳D</td>
<td>۲D</td>
<td>-۱</td>
<td>۲D*۲D</td>
<td>۲D</td>
<td>۳.۳۵%</td>
<td>۲D</td>
<td>۲D</td>
</tr>
<tr>
<td>۷</td>
<td>۲.۵D*۲D</td>
<td>۲D</td>
<td>-۱</td>
<td>۲.۵D*۲D</td>
<td>۲D</td>
<td>۶.۱۶%</td>
<td>۲.۷۸</td>
<td>۲D</td>
</tr>
<tr>
<td>۸</td>
<td>۳.۱D*۱D</td>
<td>۲D</td>
<td>-۱</td>
<td>۳.۱D*۲D</td>
<td>۳D</td>
<td>۶.۶۵%</td>
<td>۳.۱۲</td>
<td>۲D</td>
</tr>
<tr>
<td>۹</td>
<td>۲D*۳D</td>
<td>۳D</td>
<td>-۱</td>
<td>۲D*۲D</td>
<td>۲D</td>
<td>۷.۷۳%</td>
<td>۱.۸۷</td>
<td>۲D</td>
</tr>
<tr>
<td>۱۰</td>
<td>۳D*۲D</td>
<td>۲D</td>
<td>-۱</td>
<td>۳D*۲D</td>
<td>۳D</td>
<td>۱۵.۳۳%</td>
<td>۱</td>
<td>۲D</td>
</tr>
<tr>
<td>۱۱</td>
<td>۲D*۳D</td>
<td>۲D</td>
<td>-۱</td>
<td>۲D*۲D</td>
<td>۳.۸۱%</td>
<td>۶.۷۹%</td>
<td>۱.۲۵</td>
<td>۲D</td>
</tr>
</tbody>
</table>

مختلف ترتیب زیر قابل حصول است:
الف - در بین تمام موقعیتهای (Y) برای هر صفحه با ابعاد معین یک موقعیت دارای بیشترین تأثیر برای استحاله گرداب است، که برای اکثر صفحات این موقعیت در عمق D=۱ و نزدیکترین فاصله افقی (X) صفحه به مرکز دهانه خروجی قرار دارد.
ب - در جنگل صفحه‌ای به ابعاد ۲D*۲D در موقعیت استقرار 


که - تأثیر در استحاله گرداب داشته است، ولی نکته حاصل اهمیت موقعیت صفحه است که حتی به بعضی مواقع صفحه‌ای با ابعاد کوچکتر اما موقعیت مناسب برای دارد.


۱۰ و ۱۱ از جدول (۴) را پیشنهاد می‌دهم.

ج - انتزاع افقی صفحه پشتی یکی از استحاله‌های یکنواخت در فضای دو بعدی، نسبت به ابعاد عمودی داره، شکل (۱۳).

مراجع

4. "پروپس پدیده گرداب بر روی ایگل‌های سد شهید عباسی" مرکز تحقیقات آب، وزارت نیرو، ۱۳۷۴.

بایان‌نامه کارشناسی ارشد مهندسی آب، دانشگاه صنعتی شریف، تبریز.

۱۳۷۸