شناسایی سیستم‌های خطی بر مبنای پاسخ فرکانسی نویزی آنها

سعید سیاهانی و احمد دختر تابش
دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان
پژوهشکده علوم و تکنولوژی زیردریایی، دانشگاه صنعتی اصفهان
(دریافت مقاله: 17/11/87 - دریافت نسخه نهایی: 15/11/87)

چکیده - در این مقاله الگوریتم جدیدی برای شناسایی سیستم‌های خطی براساس پاسخ فرکانسی آنها ارائه شده است. در این روش، ابتدا با داشتن مقادیر اندازه و فاز تابع نتایج سیستم در تعداد محدودی از فرکانس، یک دستگاه معادله‌های خطي تشکیل می‌شود که جواب‌های آن‌ها بندون خطا (توپیک‌ناهیدگری) باشدند و درجه سطح صوت و مخرب تابع انتقال آن مشخص باشد. یک جواب منحصر به فرد و دقیق حاصل می‌شود. در غیر این صورت برای درجه انتخابی پاسخ صوت و مخرب، یک تابع انتقال قابل قبول برای آن درجه‌ها حاصل می‌شود. در هر سطح، به داده‌های داده شده با دارای نرخ نزدیک‌سازی (با خطای نسبی بیشتر از پاسخ مشخص) با استفاده از مجموعه جواب‌های قابل قبول می‌شود که درک از اعضای آن دارای یک طیف نویزی مغربال کاملاً داده‌های مسئله را می‌پوشاند. برای این کار، نخست با تعریف یک تابع مزینی جدید تحت عنوان کمرین مجموع مربوطه قابل قبول در فضای ضرایب و کمیت کرده آن، تابع انتقال گرایی ارائه یافت می‌شود که پاسخ فرکانسی آن به طور بی‌پیشنهادی از بین نقاط داده شده می‌گردد. سپس با استفاده از تکنیک برآمبه نویزی پروژا، اقامت به کامپیوتر نوریز داده‌ها کرده به طوری که در هر مرحله تابع انتقال به دست آمده به سمت یکی از توییتی انتقال قابل قبول برای سیستم واقعی (بدون نویز) را دهد. در نهایت، با استفاده از این روش، نشان داده شده است که امکان استفاده از این روش برای شناسایی سیستم‌های خطی با مشخصات مختلف را می‌تواند قابل اجرای برای این روش.
۱- مقهذه در شناسایی سیستم‌ها هدف ان است که یا با داشتن خصوصیات دینامیکی سیستم به صورت در سری از داده‌های ورودی - خروجی در حوزه‌ی زمان یا فرکانس، سری‌های ریاضی بافت که آن سیستم را با نحوه‌ی نمایش دقیق بزند. چنانچه داده‌های سیستم در حوزه‌ی زمان باشنده (مانند پاسخ زمانی به یک ورودی نیز و یا یک پاسخ واحد)، آن گاه مدل ریاضی به دست آمده می‌تواند به صورت معادله‌های دیفرانسیل حالت زمان - پوسته یا یا معادله‌های تفاضلی حالت زمان - گستردگی باشند. در صورتی‌که داده‌ها در حوزه‌ی فرکانس باشنده مدل ریاضی می‌تواند به صورت تابع انتقال که در آن ه هر فرکانس دلخواه است. بنابراین با تغییر ضرایب صورت و مخرج تابع انتقال S(t) به منظور گذراندن اندازه‌ی آن از نزدیکی سیستم واقع در فرکانس ولتاژ، می‌توانیم، اگر به تغییر خواهی کرد. به عبارت دیگر، مدل تغییر حوزه‌ی سیستم به صورتی استفاده از پاسخ فرکانسی را نمایان به صورتی دو مدل ساده نشان می‌دهد که قادر به طور مجزا مستقل یا

\[
\lambda = \ln\left(\frac{\omega_0}{\omega_1}\right)
\]

تختیمن برای [V] روش برای تغییر حوزه‌ی سیستم با استفاده از پاسخ فرکانسی آنها را پیدا کنیم. کمی که مرطوب اندازه‌ی خطای وزن بر می‌چشم که مجموع مربعات خطای لسی (LSE) عالی را باید یک سری لسی خطا تبدیل کرد. در آن روش، خطای

به صورت این نتیجه‌ی تابع انتقال واقعی سیستم تغییر شده‌ود. سپس سالناتان و کورتز [18] روش را توسعه داده و یک الگوریتم تکرار داده ای که آن روش آنها بود توسط سایلی و لونکی [17] در آنها به سیستم‌های جن درودی - جن درودی تسری یافته‌که در آن تقریب ویژه یک سری از یک سری داده‌های تقارنی صورت و خروجی از یک سری جن درودی تعامل از چیزی شکل‌بندی شد. اسپانژ [21] یک الگوریتم تکرار فرصت را این که سازی نرم‌اکثریت مکنارکار ارائه کرد و نتایج بهتری نسبت به روش‌های قبلی به

۲- معادله‌های مختلف فرکانسی
تعیین تابع انتقال تقريبی سیستم با استفاده از معیار LSD از لحاظ اثر نویز روش هسته است. ضمناً در همان بخش الگوریتم برای کاهش اثر نویز پیشنهاد شده است. اینکه در این بخش، اختصاص به چند مثال برای نشان دادن توانایی روش در اصل و نیز تبدیل گری نیز در بخش آمده است.

2- فرمولنده مسئله

فرض کند که پاسخ فرکانسی یک سیستم به صورت یک 
مجموعه گسترش شده جفت‌های مرتب اندازه و فاز 
$V_m = (M(w_i), \phi(w_i))$, $i=1,2,..., p$ 
مناظر با یک مجموعه از 
$\Omega = (\alpha_i, \beta_i), i=1,2,..., p$ 
فرکانس‌های مجزای 
$\alpha_i, \beta_i$, داده شده است. هدف، 
یافتن تابع انتقال گرایی برای سیستم به صورت:

$$G(s, \alpha, \beta) = \frac{N(s, \alpha)}{D(s, \beta)} = \frac{a_0 s^m + \cdots + a_1 s + a_0}{\beta_0 s^n + \beta_1 s^{n-1} + \cdots + \beta_1 s + \beta_0}$$

(2)

است به نحوی که پاسخ فرکانسی با تقید کمیته از نقاط 
پاسخ فرکانسی واقعی (بدون نویز) سیستم به شکلی یا به صورت دیگر

$$G(\omega) = \frac{\omega^2}{\beta_0 s^n + \beta_1 s^{n-1} + \cdots + \beta_1 s + \beta_0}$$

و به صورت دیگر

$$G(\omega) = \frac{\omega^2}{\beta_0 s^n + \beta_1 s^{n-1} + \cdots + \beta_1 s + \beta_0}$$

(3)

از این نظر، فرض می‌کنیم که $\beta_0$ باشد تا امکان حصول 
جواب یکتا قرار گوید.

همان گونه که در بخش (1) ذکر شد، برای حل مسئله بالا
روشهای مختلفی تاکنون ارائه شده‌اند که همه با توجه
به الگوریتم‌های تکراری و جه مشترک تمامی این روش‌ها در تعیین 
تابع گرایی به شکل کلی زیر است:

$$J(s, \alpha, \beta, \alpha_i, \beta_i, \Omega) = E^H E$$

(4)

$$E = f \left[ V_m, N(\alpha, \Omega), D(\beta, \Omega), N(\alpha, \Omega), D(\beta, \Omega) \right]$$

که در آن $\alpha_i$ و $\beta_i$ ضرایب به دست آمده از مرحله قبل الگوریتم، با
تعیین هزینه ممکن که تاکنون $H(j(\omega)) = M(\omega) \phi(\omega)$
در فضاهای $q=1,2, \infty$ پیشنهاد شده‌اند را می‌توان به صورت زیر

$$123$$

استقلال، سال 19 شmare, 1379

159

123
با تعریف برد ضرایب مجهول
\[
x = [a_0, a_1, \ldots, a_m, b_0, b_1, \ldots, b_n]^{\top} \in \mathbb{R}^{(m+n+1) \times 1} = \mathbb{R}^{1 \times (m+n+1)}
\]
معادله (10) را می‌توان به شکل ماتریس زیر پیاده‌سازی کرد:
\[
Qx = c
\]
که در آن
\[
c = [(j\omega_1)^b H(j\omega_1), (j\omega_2)^b H(j\omega_2), \ldots, (j\omega_p)^b H(j\omega_p)]^{\top} \in \mathbb{R}^{p \times 1}
\]
بردار اطلاعات انداده و فاکتور در فرکانس‌های و \(\omega_p, \ldots, \omega_2, \omega_1\) ماتریس مختلط به صورت زیر است:
\[
Q = [1 \ j\omega_1 \ldots (j\omega_1)^b - H(j\omega_1) - j\omega_1 H(j\omega_1) \ldots - (j\omega_1)^b H(j\omega_1)]
\]
\[
1 \ j\omega_2 \ldots (j\omega_2)^b - H(j\omega_2) - j\omega_2 H(j\omega_2) \ldots - (j\omega_2)^b H(j\omega_2)
\]
\[
\cdots
\]
\[
1 \ j\omega_p \ldots (j\omega_p)^b - H(j\omega_p) - j\omega_p H(j\omega_p) \ldots - (j\omega_p)^b H(j\omega_p)
\]

برای ساده‌تری شدن تحلیل می‌توان با تفکیک بخش‌های حقیقی و مختلط و ادغام آنها، معادله (11) را به یک دستگاه معادله‌های پاسخ انتقال بردار و \(Q = Q_R + jQ_I\) با تعریف 1 تعیین کرده:

\[
(c_R + j c_I) = (c_R + j c_I)
\]

با توجه به واقعیت بودن بردار \(x\) به ترتیب معادله‌های که از منوی قرار دادن بخش‌های حقیقی و مختلط معادله (11) به دست می‌آید می‌توان آن را به دست گاه معادله‌های زیر با ضرایب حقیقی تعیین کرد:

\[
A x = b,
\]

\[
A = \begin{bmatrix} Q_R \\ Q_I \end{bmatrix} \in \mathbb{R}^{2p \times r}, \quad b = \begin{bmatrix} c_R \\ c_I \end{bmatrix} \in \mathbb{R}^{2p \times 1}
\]

برای حل معادله (13) می‌توان حالات زیر را در نظر گرفت:

الف - داده‌ها بدون خطای تریال اندازه‌گیری هستند و ساختار سیستم از پیش مشخص است: در این حالت درجه کورتوب (m) و مخرج تابع انتقال معلوم و لیا پارامترهای سیستم و در نتیجه ضرایب (n) صورت و مخرج تابع انتقال مجهول نت. در این حالت تابع جilaterه \(p > m + n + 1\) تعداد فرکانس‌ها (p) به گونه‌ای باشد که رابطه

\[
J = \min_{a, b} \left\| W(j\omega) \left( H(j\omega) - G(j\omega_0, \alpha, \beta) \right) \right\|_1
\]

که در آن \(W(j\omega)\) یک تابع وزنی است. از ترم‌های بالا، درم و یا بنیش از بقیه مورد استفاده قرار گرفته است که تابع هزینه مربوط به آن دارای شکل کلی زیر است:

\[
J = \min_{a, b} \sum_{k=0}^{p} W^2(j\omega_i, \alpha(k-1), \beta(k-1)) \cdot \left| H(j\omega_i, \alpha(k), \beta(k)) - N(j\omega_i, \alpha(k), \beta(k)) \right|^2
\]

برای تابع هزینه بالا، توابع وزنی \(W\) مختلفی پیشنهاد شده‌اند، از جمله [15]:

\[
W(j\omega_i, \alpha(k-1), \beta(k-1)) = 1/|D(j\omega_i, \alpha(k-1), \beta(k-1))|
\]

\[
\nu = \text{const.} \in [0, \infty]
\]

\[
W(j\omega_i, \alpha(k-1), \beta(k-1)) = 1/|H(j\omega_i, \alpha(k-1), \beta(k-1))|
\]

(16)

در ادامه، روش برای تعیین هویت سیستم‌ها براساس پیشنهاد سازی یک تابع هزینه جدید ارائه شده و نشان داده می‌شود که چنین

ب‌ه‌نبودن پاسخ‌های این دستگاه‌ها در سطح خام خود (توپ‌های اندازه‌گیری) باشد، می‌توان توسط برنامه

نویسی پویا اقدام به کاهش اثر نوزل‌گرد.

3- الگوریتم تعیین هویت سیستم‌ها

در این روش، با تبادل مسئله تعیین تابع انتقال کسري به یک دستگاه معادله‌های خطی معادله و مجهول می‌باشد که از تابع به‌هبنین پاسخ برای این دستگاه می‌شود. برای این کار در معادله (13) با جایگذاری

\[
G(j\omega_i) = \sum_{k=0}^{p} \alpha_k(j\omega_i)^k
\]

(17)

با مساوی قرار دادن \(G(j\omega_i) = H(j\omega_i)\) در معادله (8) می‌توان نوشت:

\[
\sum_{k=0}^{p} \alpha_k(j\omega_i)^k - H(j\omega_i) \sum_{k=0}^{p} \beta_k(j\omega_i)^k = (j\omega_i)^n H(j\omega_i)
\]

(18)

(19)
خود $x$ برخورد آنتن است. این مسئله انگیزه‌ای برای استفاده از روش کمترین مجموع مربعات فاصله (LSD) بسیار ضروری است. این روش معمول کمترین مجموع مربعات خطأ (LSE) در حل دستگاه ایجاد می‌کند که در زیر توضیح داده می‌شود.

3- روش تقریبی کمترین مجموع مربعات فاصله در این روش، با ارائه یک تغییر جدید از مسئله خطای اندازه‌گیری، تابع معیار تحت انتخاب می‌شود که به‌صورت $G(s) = \frac{k}{s^2 + a}$ در زمان بودن پاسخ تقریبی از مجموعه جواب قابل قبول را مشخص کند. به منظور تیپینی ابتدا یک مسئله برای پاسخ انتقال درجه یک به صورت $\frac{G(s)}{s^2 + a}$ پاسخ انتقال دارد، بهترین معیار $n$ به صورت $\frac{G(s)}{s^2 + a}$ تعریف می‌شود. به‌عنوان نمونه $\frac{G(s)}{s^2 + a}$ در اینجا نیز جواب واقعی برای درجه یک تعریف می‌شود.

4- در اینجا، با ذکر است که در حالت تزئینی بودن $\frac{G(s)}{s^2 + a}$ صفر قرار دارد به معنی $\frac{G(s)}{s^2 + a}$ تعریف می‌شود. به‌عنوان نمونه $\frac{G(s)}{s^2 + a}$ در حالت تزئینی با $\frac{G(s)}{s^2 + a}$ همان‌طور که در حالت نیز با $\frac{G(s)}{s^2 + a}$ همان‌طور که در حالت تزئینی بودن $\frac{G(s)}{s^2 + a}$ صفر قرار دارد به معنی $\frac{G(s)}{s^2 + a}$ تعریف می‌شود.

$\frac{G(s)}{s^2 + a}$ در اینجا نیز راه اندازه‌گیری پیش روی باشد، به‌عنوان نمونه $\frac{G(s)}{s^2 + a}$ در حالت تزئینی با $\frac{G(s)}{s^2 + a}$ همان‌طور که در حالت نیز با $\frac{G(s)}{s^2 + a}$ همان‌طور که در حالت تزئینی بودن $\frac{G(s)}{s^2 + a}$ صفر قرار دارد به معنی $\frac{G(s)}{s^2 + a}$ تعریف می‌شود.

$\frac{G(s)}{s^2 + a}$ در اینجا نیز راه اندازه‌گیری پیش روی باشد، به‌عنوان نمونه $\frac{G(s)}{s^2 + a}$ در حالت تزئینی با $\frac{G(s)}{s^2 + a}$ همان‌طور که در حالت نیز با $\frac{G(s)}{s^2 + a}$ همان‌طور که در حالت تزئینی بودن $\frac{G(s)}{s^2 + a}$ صفر قرار دارد به معنی $\frac{G(s)}{s^2 + a}$ تعریف می‌شود.
شکل ۱ - نمایش خطوط در فضای پارامتری (صفحه a-k) در حالت داده‌های بدون نیوز

شکل ۲ - نمایش خطوط در فضای پارامتری (صفحه a-k) در حالت داده‌های نیوزی

که با اینکه در حالت کلی، برای یک فضای ضرایب ۴ صورت زیر در می‌آید:

\[
J = \frac{1}{2} \sum_{k=1}^{2p} d_k^2 = \frac{1}{2} \sum_{k=1}^{2p} \left( \frac{\sum_{i=1}^{r} a_{ki}x_i - b_k}{\sum_{i=1}^{r} a_{ki}^2} \right)^2
\]

که با تعریف [A] ماتریس (Sطر A سطر kام ماتریس (A))

\[
\begin{bmatrix}
A
\end{bmatrix}^T = \begin{bmatrix} a_{k1}, a_{k2}, \ldots, a_{kr} \end{bmatrix}
\]

می‌توان نوتیس:

که یک میانگین قدرتی در حالت کلی، برای یک فضای ضرایب ۴ صورت زیر در می‌آید:

\[
J = \frac{1}{2} \sum_{k=1}^{2p} d_k^2 = \frac{1}{2} \sum_{k=1}^{2p} \left( \frac{\sum_{i=1}^{r} a_{ki}x_i - b_k}{\sum_{i=1}^{r} a_{ki}^2} \right)^2
\]

که با تعریف [A] ماتریس (Sطر A سطر kام ماتریس (A))

\[
\begin{bmatrix}
A
\end{bmatrix}^T = \begin{bmatrix} a_{k1}, a_{k2}, \ldots, a_{kr} \end{bmatrix}
\]

می‌توان نوتیس:

که یک میانگین قدرتی در حالت کلی، برای یک فضای ضرایب ۴ صورت زیر در می‌آید:

\[
J = \frac{1}{2} \sum_{k=1}^{2p} d_k^2 = \frac{1}{2} \sum_{k=1}^{2p} \left( \frac{\sum_{i=1}^{r} a_{ki}x_i - b_k}{\sum_{i=1}^{r} a_{ki}^2} \right)^2
\]

که با تعریف [A] ماتریس (Sطر A سطر kام ماتریس (A))

\[
\begin{bmatrix}
A
\end{bmatrix}^T = \begin{bmatrix} a_{k1}, a_{k2}, \ldots, a_{kr} \end{bmatrix}
\]

می‌توان نوتیس:
چنانچه سیستم واقعی خطی و لی با ساختار نامشخص باشد و داده‌ها یک بندی نوری انتزاعی گریزی باشند، آن‌گاه حمل معادله (22) بهترین تقریب تابع انتقال را (ا) درجه صوت و (ب) متوسط کشش شده برای سیستم (م) می‌دهد. در صورتی که داده‌ها دارای نوری باشند، از روش زیر می‌توان برای کاهش اثر نوری استفاده کرد.

2- روش برای کاهش اثر نوری

در محاسبه (21)، ضرایب تابع انتقال را می‌دهد که گرچه یک استخ
فرکانسی آن زیر‌درکی داده‌های نوری مس蹑ه می‌گذارداما طیف
نوری آن لزوماً داده‌های مسیره را نمی‌پوشاند. برای کاهش نوری به
دست آوردن یک تابع انتقال قبلی برای سیستم محسوس، چنانچه
دقت و سرعت انتزاعی کارکردها در تابع حداکثر خطای نسبی
آنها (6) مسیرش باشد (عنصر یک نوری محدود) آن گاه کرایهای زیر
بر روی انتخاب؛ \( \psi(\omega) = |G(\omega)| \)

لوی سیستم به دست می‌آید، هکل (23):

\[
\frac{\psi_N(o_i)}{1+e} \leq \psi(\omega) \leq \frac{\psi_N(o_i)}{1-e} \quad i = 1, 2, ..., p
\]

\[
\frac{\partial \psi(o_i)}{\partial \psi(o_i)} \leq \frac{\partial \psi(o_i)}{\partial \psi(o_i)} \leq \frac{\partial \psi(o_i)}{\partial \psi(o_i)} \quad i = 1, 2, ..., p
\]

که به ترتیب

\[ \psi_N(\omega) = \sqrt{G(\omega)} \] \( N \) \( G(\omega) \) \( N \) \( \psi_N(\omega) \) \( |G(\omega)| \)

به ترتیب

\[ \psi_N(\omega) \leq \sqrt{|G(\omega)|} \leq \psi_N(\omega) \]

که

\[ g_{ij} = \sum_{k=1}^{p} a_{ki}a_{kj} \]

\[ h_{ij} = \sum_{k=1}^{p} b_{ki}b_{kj} \]

که

\[ g_{ij} \leq h_{ij} \leq g_{ij} \]

که

\[ g_{ij} \leq h_{ij} \leq g_{ij} \]

که

\[ g_{ij} \leq h_{ij} \leq g_{ij} \]

که
شکل ۳ - طیف نویزی داده‌های اندازه‌گیری و نازه‌ها همراه با تابع انتقال واقعی سیستم

[0,1] گزینه‌ها و محدوده‌های بر روی \( \hat{\theta} \) و \( \mu \) تعیین

\[ \hat{\theta}(\omega_i) = \mu^i \left( \frac{\theta_N(\omega_i)}{1+e} \right) + (1-\mu^i) \left( \frac{\theta_N(\omega_i)}{1-e} \right) \]

\( i=1,2,\ldots,p \)

که در این معادله‌ها، \( \hat{\theta}(\omega) \) و \( \theta_N(\omega) \) مقادیر جدید اندازه‌گیری و فاصله‌ای و

\( \mu^i \) اعداد تصادی اندکی با تابع چگالی احتمال وکنش در فاصله...

استقلال، سال ۱۹، شماره ۱، شهریور ۱۳۷۹

۱۶۴
اعضای مجموعه جواب‌های قابل قبول به صورت زیر است:

مرحله 1- درجه صورت و مخرج تابع انتقال را انتخاب کنید.

مرحله 2- با استفاده از اطلاعات پاسخ فرکانسی، معادله (13) را تشكیل دهد.

مرحله 3- با تعیین برای $\theta_{ij}$ دسته‌های $k$ $i=1,2,\ldots,p$ می‌باشد.

مرحله 4- بررسی حداکثر اطلاعات نسبی برای $\eta_{ik}$ از (23) و (24) را تشكیل دهد.

مرحله 5- نقاط تصادفی $\omega_{i}$ و $\psi_{i}$ را با استفاده از معادله‌های (25) و (26) تعیین و در همان روش با استفاده از معادله‌های (23) و (24) برای $\lambda_{i}$ در طرف دیگر، انتخاب تصادفی $\lambda_{i}$ و $\psi_{i}$ محدوده $[0,1]$ و با تابع چگالی احتمال یکتایی انتخاب می‌شود. در نتیجه $\eta_{ik}$ می‌باشد که از اجرا و تکرار تکرار کننده.

مرحله 6- در انتقال دالخواه کوچک شک، در این صورت می‌توان به دست آمده را به عنوان یک پاسخ مناسبی انتخاب کرد.

جهت انتخاب جواب‌های قابل قبول در نظر گرفته:

$\psi_{i}(\omega_{i}) = \psi_{0}(\omega_{i}) + e \psi_{0}(\omega_{i})$ $i=1,2,\ldots,p$ \hspace{1cm} (27)

در این صورت می‌توان به دست آمده را به عنوان یک پاسخ مناسبی انتخاب کرد.

$\theta_{i}(\omega_{i}) = \theta_{0}(\omega_{i}) + e \theta_{0}(\omega_{i})$ $i=1,2,\ldots,p$ \hspace{1cm} (28)

که در آن $e$ یک پارامتر استفاده در معادله $[0,1]$ هستند که $\eta$ حداکثر خطا نسبی انتقال کریکه است. فرض کنید که $\omega_{i}$ $\eta_{ik}$ = $\lambda_{i}$ در انتخاب $\lambda_{i}$ را بر مبنای این قوانین انجام داد. به این وکلای، انتخاب $\psi$ $\omega_{i}$ و $\psi$ $\omega_{i}$ در مجاورت $\eta_{ik}$ می‌باشد که در انتخاب به صورت زیر باشد:

$\psi_{i}(\omega_{i}) = \lambda_{i} \left( \frac{\psi_{N}(\omega_{i})}{1+e} \right) + (1-\lambda_{i}) \left( \frac{\psi_{N}(\omega_{i})}{1-e} \right)$ $i=1,2,\ldots,p$ \hspace{1cm} (29)
این که اساساً پاسخ فرکانسفی و تابع انتقال مربوط به سیستم‌های جنگلی اند. در روش کارایی شاخص‌های جنگلی به آن اثاث مناسب‌ترین تقریب خطر یا سیستم‌های سرطانی می‌پردازد.

- تفاوت اساساً روش با سایر روش‌های شناسایی موجود در آن است که مبنا موارد استفاده از روش داده‌های تعریف‌های داخلی انجام تغییر در داده‌های مسئله را برای کاهش اثر نویز فراهم می‌آورد. در حالی که در سایر روش‌های شناسایی، اساساً کار بر نویز کردن پاسخ به داده‌های انتخاب‌گیری شده (که شامل نویز است) قرار دارد.

- مثال ۲- فرض کنید که تابع انتقال واقعی یک سیستم به صورت زیر باشد:

\[ G(s) = \frac{5(s+0.8)}{s^2 + 0.8s + 4} = \frac{5(s+0.8)}{s + 0.4 + 1.96} \]

- فاصله پاسخ فرکانسفی سیستم بالا برای ۲۰ فرکانس که با فاصله لگاریتمی مساوی در بایز [۱۰۰۰۰۱] رادیان بر ثانیه قرار دارد، به دست آورده و از آن به عنوان داده‌های بدون نویز استفاده می‌کنیم.

- جدول (۱) نتایج حاصل از حمله مالی (۲) برای درجات مختلف دور پایه و مخزیر در جدول (۳) داده شدهاند. این توجه به این جدول مشخص می‌شود که تست‌های درجه انتخابی صحت باشد. گواب دقیق حاصل می‌شود. ضمناً تست‌های درجه انتخابی جواب داده می‌شود. به نحوی که اختلاف درجه صورت و مخزیر همیشگی صحیح انتخاب شده باشد. تعادل سفر و قطع اضافی هستی از آن داده که دقیقاً یکدیگر یا حذف می‌کنند (سخن دون جدول ۲). پاسخ فرکانسفی جواب‌ها در این دو حالت در شکل (۱) است. و بالاخره جوانه رسیدن انتخابی نامی باشد چنانکه مانند در شکل (۵).

- نکته‌ها که باید مورد توجه قرار داد آن است که فرکانس‌های جدید به دست آمده زیرمجموعه‌ای از کرانه‌های اولیه باشند و در غیر این صورت با یا آن‌ها کاری گاژکی خود در محدوده ثابت که توسط حداکثر خطای نسبی\(Ax=b\) اندازه‌گیری مشخص می‌شود. سعی برای تبدیل آنها به متعادل\(A\) و\(Ax=0\) دارد به نحوی که دستگاه معادله‌های\(Ax=0\) سازگار شود.

- جوانه سیستم واقعی یکاً خاتمه یافت و درجه صورت و مخزیر تابع انتقال سیستم نیز از قبل معلوم بوده. آن گاه نام‌بامگر بودن دستگاه معادله\(b\) تناها در آن وجود نویز اندازه‌گیری است و در این صورت تغییر عمک کارش نوزه از آن می‌آید. ولی جوانه اطلاعات از مدل سیستم موجود بیان شده و با سیستم کاملاً در درجه مفروض را لازم می‌خواهد زیرا با تغییر اندازه و قرار در محدوده مجازی که توسط خطاهای اندازه‌گیری مشخص می‌شود، نزدیک‌ترین مقادیر اندازه و فاز را به مدل واقعی تعیین کرده و نزدیک‌ترین پاسخ‌ها به آن پاسخ فرکانسفی مشخص می‌کند.

- در مورد انتخاب محدوده فرکانسفی نیز یافته بینه به چند توجه کرده و اولاً آنها حداکثر فرکانسفی که اندازه‌گیری در آن انجام می‌شود\(p\) از ۰ به ۱ به‌طور پدیدار محدود فرکانسفی سیستم متمرکز ناشده‌است. به عنوان مثال، برای یک سیستم هیدرولوژیکی که معمولاً دارای پهنای باند حدود یک هرتز است،\(p\) با سیستم حذف‌زنگ برای با ۳۰ رادیان بر ثانیه باشد. دوم آنها به عنوان فرکانسفی اندازه‌گیری یکسان بر اساس کاراکتریکی جداد نیاز به داده بیشتری می‌شود. زیرا به چهره تعداد فرکانسفی‌های مورد انتخاب باید انتخاب کنند. یکسان فرکانسفی در کنار نوزه بیشتری می‌شود. زیرا به چهره تعداد فرکانسفی‌های مورد انتخاب باید انتخاب کنند. ضمناً که یکسان فرکانسفی در کنار نوزه بیشتری می‌شود. زیرا به چهره تعداد فرکانسفی‌های مورد انتخاب باید انتخاب کنند.

- جواب انتخابی نامی باشد چنانکه مانند در شکل (۵) می‌شود که فرکانسفی در فواصل‌های کریستال‌پذیر بیشتر تهیه شود. همچنین باید سیستم (بین‌نزین) تغییرات در و سیستم پیشنهادی باید می‌باشد. همچنین باید سیستم (بین‌نزین) تغییرات در و سیستم پیشنهادی باید می‌باشد. همچنین باید سیستم (بین‌نزین) تغییرات در و سیستم پیشنهادی باید می‌باشد.
جدول 1 - داده‌های مشتله

<table>
<thead>
<tr>
<th>پاسخ فرکانسی بدون نویز</th>
<th>پاسخ فرکانسی نویزدار</th>
<th>فرکانس</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ(ω) اندازه</td>
<td>ΨN(ω) اندازه</td>
<td>ΨN(ω) فاز</td>
<td>ΨN(ω) فاز</td>
</tr>
<tr>
<td>1.0001e+00</td>
<td>6.0157e-001</td>
<td>9.9882e-001</td>
<td>5.8419e-001</td>
</tr>
<tr>
<td>1.0002e+00</td>
<td>8.6526e-001</td>
<td>9.9705e-001</td>
<td>8.6451e-001</td>
</tr>
<tr>
<td>1.0004e+00</td>
<td>1.2445e+000</td>
<td>9.5053e-001</td>
<td>1.2528e+000</td>
</tr>
<tr>
<td>1.0009e+00</td>
<td>1.7895e+000</td>
<td>9.9652e-001</td>
<td>1.7252e+000</td>
</tr>
<tr>
<td>1.0019e+00</td>
<td>2.5725e+000</td>
<td>9.7271e-001</td>
<td>2.4554e+000</td>
</tr>
<tr>
<td>1.0038e+00</td>
<td>3.6957e+000</td>
<td>1.0507e+000</td>
<td>3.7289e+000</td>
</tr>
<tr>
<td>1.0079e+00</td>
<td>5.3018e+000</td>
<td>9.9471e-001</td>
<td>5.4038e+000</td>
</tr>
<tr>
<td>1.0164e+00</td>
<td>7.5845e+000</td>
<td>1.0362e+000</td>
<td>7.3355e+000</td>
</tr>
<tr>
<td>1.0339e+00</td>
<td>1.0788e+001</td>
<td>1.0611e+000</td>
<td>1.0639e+001</td>
</tr>
<tr>
<td>1.0700e+00</td>
<td>1.5169e+001</td>
<td>1.0525e+000</td>
<td>1.4643e+001</td>
</tr>
<tr>
<td>1.1444e+00</td>
<td>2.0866e+001</td>
<td>1.1378e+000</td>
<td>2.0296e+001</td>
</tr>
<tr>
<td>1.2987e+00</td>
<td>2.7569e+001</td>
<td>1.3343e+000</td>
<td>2.7511e+001</td>
</tr>
<tr>
<td>1.6280e+00</td>
<td>3.3939e+001</td>
<td>1.6937e+000</td>
<td>3.5392e+001</td>
</tr>
<tr>
<td>2.4092e+00</td>
<td>3.6344e+001</td>
<td>2.3827e+000</td>
<td>3.5159e+001</td>
</tr>
<tr>
<td>4.8062e+00</td>
<td>2.0156e+001</td>
<td>4.9200e+000</td>
<td>2.0656e+000</td>
</tr>
<tr>
<td>5.2118e+00</td>
<td>-5.6825e+001</td>
<td>5.4635e+000</td>
<td>-5.4760e+001</td>
</tr>
<tr>
<td>2.2230e+00</td>
<td>-8.3150e+001</td>
<td>2.1562e+000</td>
<td>-8.6038e+001</td>
</tr>
<tr>
<td>1.2408e+00</td>
<td>-8.8104e+001</td>
<td>1.2884e+000</td>
<td>-8.7105e+001</td>
</tr>
<tr>
<td>7.8316e-01</td>
<td>-8.9414e+001</td>
<td>7.5789e-001</td>
<td>-8.9332e+001</td>
</tr>
<tr>
<td>5.2069e-01</td>
<td>-8.9810e+001</td>
<td>5.1622e-001</td>
<td>-8.8761e+001</td>
</tr>
</tbody>
</table>

جدول 2 - نتایج برای سیستم \( \frac{5(s+0.8)}{(s+0.4 \pm j1.95)} \) در حالت داده‌های بدون نویز

<table>
<thead>
<tr>
<th>درجه صورت و مخرج</th>
<th>نتایج انتقال به دست آمده</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \frac{5s + 4}{s^2 + 0.8s + 4} ) = ( \frac{5(s + 0.8)}{(s + 0.4 \pm j1.95)} )</td>
<td>( m=1, n=2 )</td>
</tr>
<tr>
<td>( \frac{5s^2 - 10.95s - 11.96}{s^3 - 2.19s^2 + 1.6s - 11.96} = \frac{5(s + 0.8)(s - 2.99)}{(s + 0.4 \pm j1.96)(s - 2.99)} )</td>
<td>( m=2, n=3 )</td>
</tr>
<tr>
<td>( \frac{58s^2 + 37.7s + 36.6}{s^4 + 6.55s^3 + 36.5s^2 + 6.85s + 35.8} = \frac{58(s + 0.32 \pm j0.72)}{(s + 0.02 \pm j0.88)(s + 3.25 \pm j5.93)} )</td>
<td>( m=2, n=4 )</td>
</tr>
</tbody>
</table>
کارایی روش پیشنهادی در مورد سیستم‌های غیرکمیته فاز و یا تاپایدار هنگامی که داده‌های توزیع‌های نسبی از جدول (4) مشخص می‌شود. پاسخ فرکانسی جواب‌ها همراه با تغییر نویزی آنها در شکل‌های (7) و (8) داده شد. همچنین که معلوم می‌باشد که جواب‌های به دست آمده قابل قبولند.

شکل 4- پاسخ فرکانسی برای \(n=3\) و \(m=2\) در حالت داده‌های بدون نویز

شکل 5- پاسخ فرکانسی برای \(n=4\) و \(m=2\) در حالت داده‌های بدون نویز

و باز هم چنانچه درجات بالاتری انتخاب شود به نحوی که اختلاف درجهٔ تغییر و مخرج همچنان صحتی انتخاب شده باشد، تعدادی سری و خطابی اضافی به دست می‌آید که دقیقاً یکدیگر را حذف می‌کنند و نتیجهٔ نهایی آن قابل قبول است (کاملاً شبیه به شکل 6). و بالاخره چنانچه درجات انتخابی نامناسب باشند، جواب حاصل غیردقیق خواهد بود (سطر سوم جدول 3).
جدول ۳- نتایج برای سیستم (\(\frac{5s+0.8}{s^2+0.4\pm j1.96}\) در حالت داده‌های نوریزی

<table>
<thead>
<tr>
<th>تابع انتقال به دست آمده</th>
<th>درجه صورت و مخرج</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{4.9s + 3.98}{s^2 + 0.78s + 3.97} = \frac{4.9(s + 0.81)}{(s + 0.39 \pm j1.95)})</td>
<td>(m=1, n=2)</td>
</tr>
<tr>
<td>(\frac{4.98s^2 + 2.46s - 1.19}{s^3 + 0.53^2 + 3.76s - 1.19} = \frac{4.98(s + 0.79)(s - 0.3)}{(s + 0.4\pm j1.90)(s - 0.299)})</td>
<td>(m=2, n=3)</td>
</tr>
<tr>
<td>(\frac{-507s^2 - 274.2s + 110.6}{s^4 - 102.7s^3 + 44.5s^2 - 389.3s + 110.6} = \frac{-507(s + 0.32 \pm j0.72)}{(s + 0.37 \pm j1.96)(s - 0.27)(s - 103.2)})</td>
<td>(m=2, n=4)</td>
</tr>
</tbody>
</table>

جدول ۴- نتایج برای سیستم‌های فیزیکی، فاز و یا ناپایدار در حالت داده‌های نوریزی

<table>
<thead>
<tr>
<th>نوع سیستم و درجه صورت و مخرج</th>
<th>تابع انتقال به دست آمده</th>
<th>نمودار واندرکش (با طیف نوریز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیستم غیرکمینه فاز</td>
<td>(\frac{-5.11(s + 0.78)}{(s + 0.38 \pm j1.97)})</td>
<td>۳</td>
</tr>
<tr>
<td>سیستم غیرکمینه فاز</td>
<td>(\frac{-5(s + 0.8)}{(s + 0.4 \pm j1.96)})</td>
<td>۳</td>
</tr>
<tr>
<td>سیستم ناپایدار</td>
<td>(\frac{5.05(s + 0.808)}{(s - 0.38 \pm j1.96)})</td>
<td>۳</td>
</tr>
<tr>
<td>سیستم ناپایدار</td>
<td>(\frac{5(s + 0.8)}{(s - 0.4 \pm j1.95)})</td>
<td>۳</td>
</tr>
</tbody>
</table>

شکل ۶- پاسپورت فرکانسی (با طیف نوریز) برای یک سیستم در حالت داده‌های نوریزی

\[G(s) = \frac{5(s+0.8)}{s^2 + 0.8s + 4} \cdot \frac{2500}{s^2 + 30s + 2500} = \frac{5s + 0.8}{s^2 + 0.4\pm j1.96} \cdot \frac{2500}{s^2 + 15\pm j47.7}\]

حال برای بررسی اثر وجود مدل‌های فرکانس بالا، سیستم زیر را

در نظر بگیرید:

استقلال، سال ۱۳۹۸، شهره، ۱ شهرویور ۱۳۷۹

۱۶۹
شکل 7 - پاسخ فرکانسی (با طیف نویزی آن) برای سیستم غیر کمپانه فاز با داده‌های نویزی

شکل 8 - پاسخ فرکانسی (با طیف نویزی آن) برای سیستم ناپایدار با داده‌های نویزی

شیوه‌ای کنیم جواب غیر قطعی حاصل می‌شود (سطر دوم جدول 5) زیرا فرکانس طیبی مود اضافی 50 rad/sec است که خارج از محدوده فرکانس نمونه‌برداری است. اما چنانچه محدوده فرکانس نمونه‌برداری را به [0.001,1000] زادیابن بر ثانیه انواش دهیم، کلیه مودها شناسایی شده و جواب قابل قبول حاصل می‌شود (سطر اول جدول 5 و شکل 9). اما چنانچه بخواهیم تمامی مودها را که کسروال را می‌توان مودهای مورد نظر برای شناسایی و کسر دوم را مودهای فرکانس بالا در نظر گرفت، نتیجه‌گیری کرده اگر باش باشد، نتیجه‌گیری بروز حالت نهایی مختلف، باید شرح اسک. چنانچه فقط بخواهیم در مورد اول را شناسایی کنیم، یک جواب قابل قبول به دست می‌آید (سطر اول جدول 5 و شکل 9). اما چنانچه بخواهیم تمامی مودها را

استقلال، سال 19، شهر 1، شماره 1379 170
جدول ۵- نتایج برای سیستم

| شکل ۹- پاسخ فرکانسی (با طیف نوبیزی آن) برای سیستم با مود فرکانسی بالا و داده‌های نوبیزی (۱)\(n=2, m=1\) | 
|---------------------------------|---------------------------------|
| تابع انتقال به دست آمده         | درجه صورت و مخرج              | محدوده فرکانسی                  |
| \(\frac{4.92(s+0.84)}{(s+0.33)±j1.99}\)  | \(m=1, n=2\)                  | \(\omega \in [0.01, 10]\)        |
| \(\frac{77.07(s+0.94)}{(s+2.69)±j5.34(s-0.07)±j1.43}\)  | \(m=1, n=4\)                  | \(\omega \in [0.01, 10]\)        |
| \(\frac{1.72(s+12.67)}{(s-13.48)±j1.31}\)  | \(m=1, n=2\)                  | \(\omega \in [0.01, 1000]\)      |
| \(\frac{12644(s+0.79)}{(s+0.37)±j1.98(s+18.4±j46.05)}\)  | \(m=1, n=4\)                  | \(\omega \in [0.01, 1000]\)      |

سیستم (مقادیر اندوزه و فاز در تعداد محدودی از فرکانس) یک دستگاه معادله‌های خطی تشکیل می‌شود که جفت‌های داده‌ها بدون خطای نوبیزی اندازه‌گیری) باشد و درجه صورت و مخرج تابع انتقال سیستم از بیش از معلوم باشد، یک جواب دقیق و منحصر به فرد حاصل می‌شود. در عکس این صورت، با تعریف یک تابع هزینه جدید تحت عنوان کمترین مجموع سیره‌ای در فضای ضرایب (LSD) و کمینه یک کرد آن، می‌توان برای هر تابع قابل قبولی ارائه کرد. در حالی که داده‌ها دارای نویز اندازه‌گیری (از نوع محدود) باشد، مسئله دارای

چهارم جدول ۵ و شکل ۹- حال آنکه برای شناسایی تها دو مود اول جواب غیردقیق به دست می‌آید (سر سوم جدول ۵). علت آن است که محدوده فرکانسی بالا در محدوده فرکانسی جدید نمونه‌برداری قرار دارند.

۵- خلاصه و نتیجه گیری

الگوریتم جدیدی برای شناسایی سیستم‌های خطی از ابعاد از پایدار با نرخ افتادار و کمینه‌ای فاز با غیر کمینه‌ای فاز) بررسی پاسخ فرکانسی آن‌ها ارائه شده. در این روش، ابتدا با داشتن پاسخ فرکانسی

استثناء، سال ۱۹، شماره ۱، شریف ۱۳۷۹
یک مجموعه جواب‌های قابل قبول برای سیستم واقعی (بدون نویز) می‌شود. هر یک از این توابع یک تابع پاسخ فرکانسی است که طرف نویزی آن داده‌های واقعی است. هر یک از این جواب‌ها به‌کمک یک فرضیات سیستم LSD یک تابع انتقال اوپن لیفت می‌شود که پاسخ فرکانسی آن به نحو بهینه‌ای از این داده‌ها می‌گذرد. سپس با استفاده

و از نامه

5. Gu, G., and Misra, P., "Identification of Linear


