تخمین پارامترهای الکتریکی موتورهای الکتریکی به کمک شبکه‌های عصبی و استفاده از آن در مدلسازی بارهای صنعتی

غلامرضا بوسفی و حسین سیفی
گروه برق، دانشگاه مهندسی دانشگاه تربیت مدرس
(دریافت مقاله: ۱۳۸۷/۷/۶ - دریافت نسخه نهایی: ۱۳۸۷/۹/۷)

چکیده – در مطالعات سیستم قدرت از مدل بارها استفاده می‌شود. بسته به نوع طراحی و زمان و دقت مورد نظر، مدل استفاده شده ممکن است مدلی استاتیکی با دینامیکی باشد. به لحاظ وسعت و پیچیدگی شبکه قدرت، به طور معمول از مدل‌های استاتیکی بارها استفاده می‌شود. مدل استاتیکی، توابعی جبری برخی ولتاژ و فرکانس است که به داده‌های داخلی، مقدار و میزان تغییرات توان حاصل و راکتیوی بار (با پارامتر ذهنی) را بررسی نمی‌نماید ولتاژ و فرکانس بیان کند. در این تحقیق از روش مدلسازی بر مبنای اجزای بار استفاده شده است که با استفاده از ضرایب حساسیت توان حاصل و راکتیوی اجزای بار توسط به ولتاژ و فرکانس و میزان مشارکت در جزء بار در مصرف، مدل استاتیکی ترکیبی از بارها به دست می‌آید. موتورها، به خصوص موتورهای الکتریکی درصد برگریز از بارهای صنعتی را به خود اختصاص می‌دهند و ارائه یک مدل استاتیکی مناسب برای آنها منجر به ارائه مدل استاتیکی نزدیک به دقت برای کل یک بار صنعتی می‌شود. در این مطالعه به کمک شبکه‌های عصبی استفاده شده است.

Induction Motor Electric Parameters Estimation Using Artificial Neural Network and its Application in Industrial Load Modeling

G. R. Yousefi and H. Seifi
Department of Electrical Engineering, School of Engineering, Tarbiat Modarres University

ABSTRACT - Load modeling is widely used in power system studies. Two types of modeling, namely, static and dynamic, are employed. The current industrial practice is the static modeling. Static models are algebraic equations of active and reactive power changes in terms of voltage and frequency deviations. In this paper, a component based on static modeling is employed in which the aggregate model is derived based on the sensitivity coefficients and participation factors of load components. As an induction motor comprises a significant portion of industrial loads, Artificial Neural Network (ANN) is employed to derive its static model readily from nameplate data as accurately as possible.

19

استقلال، سال 13، شماره 2، اسفند 1379
مقدمه

عملکرد پایدار یک سیستم قدرت، واکنش به میزان همبستگی دالیمی بین تویله و صرف در سیستم ایستایی و بین ایستایی سیستم و مشخصات این باها و ارزیابی رفتار آنها در شرایط مختلف کاری، نقش مهمی را در برنامه پایدار سیستم ایفا می‌کند. در مطالعه پیش‌بازه‌های توان حاضر، بررسی می‌گردد که این توان حریر و توان وات و فرکانس به عوامل مدل‌بند استفاده می‌شود. با پیشرفت وات و فرکانس، به دست آوردن مدل‌بند استفاده می‌شود و روش‌های جدید سیستم‌های مختلف مربوط به استفاده از این امکانات، تحت پوشش این تحقیق‌ها می‌باشد.

2-عملکرد استاتیکی برآوردهبه دست آوردن مدل استاتیکی یک سیستم صنعتی است که توانایی آزمایش سیستم به دست آمده است به استفاده شده است. در روش اول کمرب مورد استفاده قرار می‌گیرد، چرا که به نصب سه‌تایی اندازه‌گیری نیاز دارد. هزینه پلاس و کمک‌های لازم را، باعث استفاده کمیک به‌کمک آن استفاده‌های مورد تحقیق در روش مدل‌سازی استاتیکی یک سیستم، برآورده شده است. می‌توان گفت این تحقیقات در این زمینه در سال 1978 میلادی شد [1-3] و این تحقیقات، بیشتر به بحث آزمون روی تجهیزات و ارزیابی مدل‌های موجود در سیستم قدرت پرداخته شده است. در ادامه این تحقیقات و در راستای مدلسازی جمع‌آوری وارد (نیم شاهد) برای ارزیابی موجود در شیون، مدل کلی برای توان محاسبه واقعی می‌شود.

برای ترتیب بارها موجود در شیون، مدل کلی زیر برای را در نظر گرفته می‌شود [۲۹] :

\[
\begin{align*}
\frac{P}{P_0} &= P_{A1} \cdot V_{AP1} \cdot (1 + b_{AP1} \cdot \Delta f) + P_{A2} \cdot V_{AP2} \\
\frac{Q}{Q_0} &= Q_{A1} \cdot V_{AQ1} \cdot (1 + b_{AQ1} \cdot \Delta f)
\end{align*}
\]

\[m\]

می‌توان نشان داد [۳۰ و ۳۱] که محاسبه‌های زیر تعیین می‌شوند:

\[P_{A1} = \sum_{i=1}^{m} N_i\]

\[P_{A2} = \sum_{i=m+1}^{k} N_i\]

استناده، سال ۱۹، شماره ۲، اسفند ۱۳۷۹
تعداد جدی وابسته به فرکانس موجود در باس

\[t_{\text{تعداد کل اجرای متصد به باس}} = m \]

\[t_{\text{تعداد کل اجرای متصد به باس}} = k \]

\[t_{\text{تعداد کل اجرای متصد به باس}} = \sum_{i=1}^{m} N_{i} \cdot n_{i} \]

\[t_{\text{تعداد کل اجرای متصد به باس}} = \sum_{i=1}^{m} N_{i} \cdot n_{i} \]

\[t_{\text{تعداد کل اجرای متصد به باس}} = \frac{P_{a1}}{P_{o}} \]

\[t_{\text{تعداد کل اجرای متصد به باس}} = \frac{P_{a2}}{P_{o}} \]

\[t_{\text{تعداد کل اجرای متصد به باس}} = \frac{Q_{o}}{P_{o}} \]

\[t_{\text{تعداد کل اجرای متصد به باس}} = \frac{Q_{o}}{V_{o}} \]

\[t_{\text{تعداد کل اجرای متصد به باس}} = \frac{Q_{o}}{V_{s}} \]

\[t_{\text{تعداد کل اجرای متصد به باس}} = \frac{Q_{o}}{V_{o}} \]

\[Q_{o} = \sum_{i=1}^{k} \tan \left[\cos^{-1} \left(pf_{i} \right) \right] \]

\[Q_{o} = \sum_{i=1}^{k} \tan \left[\cos^{-1} \left(pf_{i} \right) \right] \]

\[Q_{o} = \sum_{i=1}^{k} \frac{N_{i} \cdot Q_{vi} \cdot \tan \left[\cos^{-1} \left(pf_{i} \right) \right]}{Q_{vi} \cdot V_{o}} \]

\[Q_{o} = \sum_{i=1}^{k} \frac{N_{i} \cdot b_{pi}}{P_{a1}} \cdot Q_{o} \]

\[b_{pi} = \frac{P_{p}}{P_{o}} \]

\[b_{q} = \frac{1}{Q_{a}} \cdot \sum_{i=1}^{k} \frac{N_{i} \cdot b_{pi}}{P_{a1}} \cdot \tan \left[\cos^{-1} \left(pf_{i} \right) \right] \]

\[b_{q} = \frac{1}{Q_{a}} \cdot \sum_{i=1}^{k} \frac{N_{i} \cdot b_{pi}}{P_{a1}} \cdot \tan \left[\cos^{-1} \left(pf_{i} \right) \right] \]

\[b_{q} = \frac{1}{Q_{a}} \cdot \sum_{i=1}^{k} \frac{N_{i} \cdot b_{pi}}{P_{a1}} \cdot \tan \left[\cos^{-1} \left(pf_{i} \right) \right] \]

\[b_{q} = \frac{1}{Q_{a}} \cdot \sum_{i=1}^{k} \frac{N_{i} \cdot b_{pi}}{P_{a1}} \cdot \tan \left[\cos^{-1} \left(pf_{i} \right) \right] \]

مشاهده می‌شود که پرایه به دست آوردن مدل تکیپی، به داده‌های زیر نیاز است:

الف - داده‌های مربوط به تکیپ بانی‌نگار افراد مختلف بارهای که در کلاس‌های ضعیف می‌توانند وجود داشته باشد (موردزدی‌ها)

ب - مشخصات بارهای پرایه هر جز لازم برای ضرایب حساسیت

پرایه به دست آوردن ضرایب حساسیت به دلیل ارزیابی خواص مفیدی دارد که در جدول (1) ارائه شده است.

پرایه به دست آوردن ضرایب حساسیت به دلیل ارزیابی خواص مفیدی دارد که در جدول (1) ارائه شده است.

پرایه به دست آوردن ضرایب حساسیت به دلیل ارزیابی خواص مفیدی دارد که در جدول (1) ارائه شده است.
جدول 1- مقدار ضریب حساسیت پیش فرض در مطالعات EPRI

دوبله	دوبله	دوبله	دوبله	نوع پارامتر
0.883	0.52	0.880	0.139	تهویه سطح قاز
0.22	0.52	0.880	0.139	تهویه بکر قاز
0.62	0.52	0.880	0.139	تهویه نیتراژ
0.38	0.52	0.880	0.139	داکت‌های
0.32	0.52	0.880	0.139	آبگیری، انجام
0.25	0.52	0.880	0.139	لپاس ریزی
0.20	0.52	0.880	0.139	یخبار و فریزر
0.15	0.52	0.880	0.139	لامب رشته‌ای
0.12	0.52	0.880	0.139	لامب فوق‌رست

۳- چاپ‌گذاری شکل عصبی در تحقیق انجام شده

همان‌گونه که اشاره داشتند، برای بدست آوردن مدل تکمیلی باید یک شیفت سنجی، ضریب حساسیت اجزایی باز بیان آموزه‌ای و با استفاده از آنها که موثر‌ترین مدل‌های مقایسه‌ای را تشکیل می‌دهند لازم است ابتدا با روش مناسب و دقیق، این ضریب را برای همیار و سپس برای تکمیل موثری با دست آورد. در هنگام بار خوردن به داده‌ها معمولاً برای محاسبات نیاز داشته باشند.

۴- ساختمان شکل عصبی

در این تحقیق از شکل عصبی با مدل انتخاب به مقادیر استفاده کنند. فیزیکی می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام داده باشد و در نهایت، مدل که به سه‌گانه (چرخش) می‌تواند شامل جهت‌های که باید را به دقت خوبی انجام D 2 2
شکل 1. چایگاه شکه عصبی در تعبیه مدل استاتیکی موتورهای الکتریکی

شکل 2- شکه عصبی اولیه پیشنهادی

مقدار خروجی، در الگوی پایگیری، نرم‌البته می‌شود. برای اطلاع از میزان پایگیری شکه از بردار خطاهای خروجی شکه استفاده رماس از این شده است [12]:

\[
\text{Error} = \sqrt{\frac{1}{P} \sum_{i=1}^{P} \left[(y_{1i} - y_{d1i})^2 + (y_{2i} - y_{d2i})^2 \right]}
\]

در معادله بالا، \(y_{1i} \) و \(y_{2i} \) خروجی‌های محاسبه شده در بالا الگوی آم، \(y_{d1i} \) و \(y_{d2i} \) مقدار مطلوب خروجی در بالا الگوی آم پیانگر میزان خطای محاسبه شده است. همچنین در روند آموشته، میزان خطای برای هر الگو نیز محاسبه می‌شود تا پردازش کدام یک از الگوها، بهترین خطای را ایجاد می‌کند.

عمل آموزش با تعداد مختلفی از ترکیبات در داخل میانی صورت می‌گیرد و تولید متفاوتی در آموزش شکه و تعبیه ممکن است که به میزان سختی میزان تغییرات خطای برای یک شکه ممکن است باشد [12] نشان دهنده شکل. شهرت (3) نمایش داده شده در نظر گرفته شود که نشان می‌دهد، به لحاظ این که خروجی، خطای و نیز به میزان هستند.
جدول 2 - داده‌های 55 موتور الکتریکی به‌کار برده برای کاهش یک اسب بخار [15]

L_{start}	T_{S/T_n}	ضریب قدرت	راندمان	فازش	V_S	سازند
7/6	1/22	0/55	0/87	0/55	0/56	400
7/6	1/20	0/55	0/87	0/55	0/55	400
10/6	1/18	0/59	0/87	0/59	0/59	400
8/4	1/23	0/57	0/87	0/57	0/57	400
9/2	1/26	0/58	0/87	0/58	0/58	400
9/2	1/25	0/58	0/87	0/58	0/58	400
9/2	1/25	0/58	0/87	0/58	0/58	400
5/6	1/23	0/57	0/87	0/57	0/57	400
5/6	1/23	0/57	0/87	0/57	0/57	400
5/6	1/23	0/57	0/87	0/57	0/57	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400
11/1	1/28	0/59	0/87	0/59	0/59	400

استقلال، سال 19، شماره 24، اسفند 1379
شکل ۳- تغییرات خطای شکله عصبی

عکب یا دو لایه نهان و در هر لایه نهان ۵ نمونه است. تعداد الگو ۵۵ عدد است. تا epoch ۸۳۰۰۰ عمل آموزشی صورت گرفته است که خطای نهایی به میزان ۲۳.۱٪ می‌باشد (Error=۲۳.۱٪) و ماکزیمم خطای مربوط به الگوی شماره ۷۷ به میزان ۲۸/۳ درصد است. روش‌نامه است که

مقادیر خطای یا شده به می‌تواند و در زمان ردیابی شود.

به دنبال رویه برای کردن خطای تغییرات زیاد اعداد در نرخ‌های ورودی، عامل اصلی خطای تشخیص داده شده، قرار گرفته در یک گروه خاص، ورودی به نور اول، ولی نارنج است (مثلاً عدد ۶۰۰)، ورودی به نور دوم لازم است (که عده‌ای کوچکتر از ۱/۷ درصد پایین ادم است) و ماکزیمم خطای مربوط به الگوی شماره ۲۴ به میزان ۲/۵ درصد است، که مقادیری رضایت‌بخش است.

شکل ۴- فراوانی شکله عصبی

برای حصول اطلاعات از خراب عمل کردن آخرين شبکه تعلیم دیده، دوربین از نمای موتور با Motor Master اپتیکس به عنوان یک شاهد انتخاب شده، به صورت که قدرت خروجی آنها یک کیلووات باشد و کلی نشان رویایی انتخاب شده در الگوهای آموزشی نیاز دارد.

با استفاده از آخرین وزنهای به دست آمده در شبکه آموزشی دیده

با الگوهای نهایی، خروجی‌های متغیر با یک سیگنال اخیر محاسبه شده. در جدول (۲) اطلاعات مربوط به نمودار اخیر (مقادیر حقیقی آنها) خروجی‌های محاسبه شده و میزان خطای مشاهده می‌شود.

امستال، سال ۱۹، شماره ۲، اسفند ۱۳۷۹

۱۲۵
آموزش در نظر گرفته شود، به نظر می‌رسد تعداد یک فرانمایه مثال بالا مناسب باشد. انجام آزمایش با دسته‌ی موتورهای دیگر، نتایج مشابهی به پایان که با توجه به حجم مطلوب از ذکر جزییات خودداری می‌شود.

5- مدل ترکیبی برای موتورهای الکتریکی موجود روشی که شده‌است، موتورهای الکتریکی جهت درصد برداشت صمیمی را تشکیل می‌دهد. لذا افراد مدل هر چه دقیق‌تر برای موتورهای الکتریکی صفره‌ی خود را در نظر بگیرند چه این که شکسته شده باشد، در حد یک چاپی‌گر شکسته‌ی صورتی در حفظ انجام شده، توضیح داده و در بخش (۳) چگونگی استفاده از شکسته‌ی صورتی و روند پیاده‌سازی آن نشان داده شده.

در این قسمت به تبعیض حساسیت موتورهای الکتریکی پرداخته می‌شود. روش است که با استفاده از شکسته‌ی صورتی که در بخش (۲) توضیح داده شده و می‌توان به پارامترهای الکتریکی مورد نیاز در تبعیض حساسیت دست یابد. ابتدا روند محاسبه ضریب حساسیت موتورهای الکتریکی توضیح داده و در بخش (۲) مدل ترکیبی استاتیکی موتورهای الکتریکی روشی که شکسته‌ی صورتی به خواهد شد.

روش است از آن مدل می‌توان در مدل‌های استاتیکی کل بارهای موجود روی یک شبکه (مومتوبری و غیرمومتوبری) استفاده کرد.

![نمودار جدول ۱](image-url)

جدول ۱: پیانوگر میزان خطای مدل‌های شکسته‌های ۹، ۸ و ۹ نرون در هر یک از ال‌های میانی برای مومتوبر را (شاده) موجود در جدول (۳) است.

روش است که میزان خطای شبکه صورتی با ۹، ۸ و ۹ نرون در حدود همدیگرند ولی با اندازه‌ی تعداد نرون میزان مانگیک خطا در شبکه صورتی با ۱۳ نرون اندازه‌ی تفاوت است. در صورتی که زمان
جدول 3- اطلاعات 5 موتور شاهد از نظر اندازه

<table>
<thead>
<tr>
<th>شماره موتور</th>
<th>بخار</th>
<th>اسپم</th>
<th>سانده</th>
<th>کارخانه</th>
<th>ولتاژ (V)</th>
<th>سرعت (rpm)</th>
<th>بذره</th>
<th>ضربت توان</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Marathon</td>
<td>2/962</td>
<td>1/962</td>
<td>6/2425</td>
<td>1/176</td>
<td>0/0275</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Baldor</td>
<td>2/962</td>
<td>1/962</td>
<td>6/2425</td>
<td>1/176</td>
<td>0/0275</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Dyton</td>
<td>2/962</td>
<td>1/962</td>
<td>6/2425</td>
<td>1/176</td>
<td>0/0275</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>Baldor</td>
<td>2/962</td>
<td>1/962</td>
<td>6/2425</td>
<td>1/176</td>
<td>0/0275</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>Toshiba</td>
<td>2/962</td>
<td>1/962</td>
<td>6/2425</td>
<td>1/176</td>
<td>0/0275</td>
</tr>
</tbody>
</table>

جدول 4- میزان خطای مداومی در دوازده شبکه‌های عصبی با تعداد ترون متغیر در لایه‌های میانی (در هر شبکه عصبی تعداد ترون لایه‌ای میانی برای در نظر گرفتی شده است)

<table>
<thead>
<tr>
<th>شماره موتور</th>
<th>درصد خطای جریان راه اندازی</th>
<th>درصد خطای گشتاور راه اندازی</th>
<th>درصد خطای گشتاور نامی محاسبه شده</th>
<th>درصد خطای گشتاور نامی محاسبه شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/80</td>
<td>0/10</td>
<td>0/90</td>
<td>0/90</td>
</tr>
<tr>
<td>2</td>
<td>3/26</td>
<td>0/29</td>
<td>0/96</td>
<td>0/96</td>
</tr>
<tr>
<td>3</td>
<td>3/69</td>
<td>0/77</td>
<td>0/78</td>
<td>0/78</td>
</tr>
<tr>
<td>4</td>
<td>1/53</td>
<td>0/11</td>
<td>0/74</td>
<td>0/74</td>
</tr>
<tr>
<td>5</td>
<td>1/44</td>
<td>0/18</td>
<td>0/72</td>
<td>0/72</td>
</tr>
</tbody>
</table>

\[
Z = (R_s + jX_{ls}) + \left(|X_m| + \frac{R_r}{s} \right)
\]

آمارگر خطای

\[
%\text{Error} = \frac{\text{Error}}{\text{Istart}} \times 100
\]

5-1- روند محاسبه ضرب حساسیت موتورهای الکتریکی

با در نظر گرفتن مدار مناسب برای فاز یک موتور القایی سه فاز، مطابق با شکل (8) می‌توان نوشت:
شکل 8- مدار معادل بِر فاز یک کوئِرِتزی فاز

\[
Z = R_{eq} + jX_{eq}
\]

(15)

با در نظر داشتن معادله زیر:

\[
S = V_s, I_s^* = V_s, (V_s, 1/Z)^* = |V_s|^2, \frac{1}{Z}
\]

(16)

خواص داشت:

\[
P + jQ = |V_s|^2, \frac{1}{R_{eq} - jX_{eq}} = \frac{|V_s|^2}{R_{eq} + X_{eq}^2}, (R_{eq} + jX_{eq})
\]

(17)

لذا:

\[
\left\{ \begin{array}{l}
P = |V_s|^2, R_{eq} \\
Q = |V_s|^2, X_{eq}
\end{array} \right.
\]

(18)

(19)

بدین ترتیب، مشتق به \(|V_s|^2 \) ضرایب حساسیت بیشتری از باقی نسبت \(P \) و \(Q \) نسبت به \(|V_s|^2 \) به دست می‌آد. برای محاسبه ضریب حساسیت بیشتری از باقی نسبت به فاکتوری مشتق‌گیری عددی استفاده شده است. نتایج بحث بالا در بخش (5-4) در قالب یک مثال نشان داده شده است.

5-4- یک مثال از مدل تُریکِیتی موتورهای از جدول (5) پارامترهای الکتریکی 5 موتر القایی را در نظر گرفته که یک مثال نشان می‌دهد. ضریب حساسیت، ضریب قدرت و مشارکت این موتورهای نیز در جدول (5) آورده شده است. منظور از ضریب مشارکت بِر از هر موتور، میزان مصرف توان حقيقی آن موتور است.
جدول ۵ - پارامترهای الکتریکی، ضریب حساسیت، قدرت و مشارکت ۵ موتور الکتریکی

<table>
<thead>
<tr>
<th>Rs (p.u.)</th>
<th>Xls (p.u.)</th>
<th>Xms (p.u.)</th>
<th>Rt (p.u.)</th>
<th>Xlr (p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.140</td>
<td>0.280</td>
<td>0.11</td>
<td>0.650</td>
</tr>
<tr>
<td>0.11</td>
<td>0.120</td>
<td>0.200</td>
<td>0.11</td>
<td>0.130</td>
</tr>
<tr>
<td>0.12</td>
<td>0.150</td>
<td>0.190</td>
<td>0.13</td>
<td>0.140</td>
</tr>
<tr>
<td>0.13</td>
<td>0.100</td>
<td>0.290</td>
<td>0.18</td>
<td>0.180</td>
</tr>
<tr>
<td>0.13</td>
<td>0.070</td>
<td>0.380</td>
<td>0.09</td>
<td>0.170</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cosφ</th>
<th>np1</th>
<th>nq</th>
<th>bp</th>
<th>bq</th>
<th>P0i/PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/87</td>
<td>3/71150/2</td>
<td>1/3/9/29/25</td>
<td>0/29/285</td>
<td>0/82/81</td>
<td>0/2/67</td>
</tr>
<tr>
<td>0/79</td>
<td>2/37492</td>
<td>1/1810/0</td>
<td>0/2/945</td>
<td>0/2/88</td>
<td>0/2/88</td>
</tr>
<tr>
<td>0/74</td>
<td>2/16358</td>
<td>1/213559</td>
<td>0/2/7992</td>
<td>0/2/82</td>
<td>0/2/82</td>
</tr>
<tr>
<td>0/74</td>
<td>2/73392</td>
<td>1/323232</td>
<td>0/2/8995</td>
<td>0/2/85</td>
<td>0/2/85</td>
</tr>
<tr>
<td>0/64</td>
<td>2/26909</td>
<td>1/183328</td>
<td>0/2/3312</td>
<td>0/2/1810</td>
<td>0/2/1810</td>
</tr>
</tbody>
</table>

جدول ۶ - مشخصات بارها و ضرایب مشارکت آنها

<table>
<thead>
<tr>
<th>P0i/P0</th>
<th>dQ/dt</th>
<th>dP/dt</th>
<th>dQ/dV</th>
<th>dP/dV</th>
<th>cosφ</th>
<th>جزء بار</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>-0/1</td>
<td>-0/2</td>
<td>-0/3</td>
<td>-0/4</td>
<td>-0/5</td>
<td>-0/6</td>
</tr>
<tr>
<td>0/1</td>
<td>-0/2</td>
<td>-0/3</td>
<td>-0/4</td>
<td>-0/5</td>
<td>-0/6</td>
<td>-0/7</td>
</tr>
<tr>
<td>0/1</td>
<td>-0/2</td>
<td>-0/3</td>
<td>-0/4</td>
<td>-0/5</td>
<td>-0/6</td>
<td>-0/7</td>
</tr>
<tr>
<td>0/1</td>
<td>-0/2</td>
<td>-0/3</td>
<td>-0/4</td>
<td>-0/5</td>
<td>-0/6</td>
<td>-0/7</td>
</tr>
<tr>
<td>0/1</td>
<td>-0/2</td>
<td>-0/3</td>
<td>-0/4</td>
<td>-0/5</td>
<td>-0/6</td>
<td>-0/7</td>
</tr>
<tr>
<td>0/1</td>
<td>-0/2</td>
<td>-0/3</td>
<td>-0/4</td>
<td>-0/5</td>
<td>-0/6</td>
<td>-0/7</td>
</tr>
<tr>
<td>0/1</td>
<td>-0/2</td>
<td>-0/3</td>
<td>-0/4</td>
<td>-0/5</td>
<td>-0/6</td>
<td>-0/7</td>
</tr>
</tbody>
</table>

Bus Load Model:

\[
\frac{P}{P_0} = \frac{P_{a1}}{1 + b_p \Delta f} + \frac{P_{a2}}{1 + b_q \Delta f}
\]

\[
\frac{Q}{Q_0} = Q_a \cdot V^{n_p} \cdot (1 + b_q \Delta f)
\]

\[
P_{a1} = 0.5300
\]

\[
b_p = 0.5335
\]

\[
P_{a2} = 0.4700
\]

\[
np_2 = 1.8380
\]

\[
Q_a = 0.2532
\]

\[
nq = 1.3958
\]

\[
b_q = -1.0623
\]

استقلاال، سال ۱۳۹۹، شماره ۱۲، استان ۱۳۷۹