چکیده - در این مقاله، روش پیشنهادی مطالعه تأثیر اقتصادی حضور واحدهای تولید مشترکان در استراتژیهای پیشگیرانه - اصلاحی سیستم‌های تولید فشار خوشهای مصرفی است. این روش شامل پیش‌بینی و بهینه‌سازی حضور واحدهای تولید مشترکان در سیستم‌های تولیدی مصرفی است. این روش قادر به بهینه‌سازی استراتژیهای پیشگیرانه - اصلاحی سیستم‌های تولیدی مصرفی می‌باشد.

Evaluation of Non-Utility Generation Impacts On Preventive-Corrective Control of Power Systems

M. Setayesh Nazar, M. Parsa Moghaddam, H. Javidi, and M. R. Haghigham

Department of Electrical Engineering, Power and Water Institute of Technology
Department of Electrical Engineering, Faculty of Engineering, Tarbiat Modarres University
Department of Electrical Engineering, Ferdowsi University of Mashhad

ABSTRACT - This paper describes a new method for the evaluation of non-utility generation impacts on preventive-corrective control of power systems. The proposed method relies on a mixed integer nonlinear optimization and is capable of recognizing the effectiveness of demand side preventive-corrective actions. A number of cases are presented to illustrate the consequences of introducing demand side actions. In particular, it is shown that using the proposed method can significantly reduce total security cost. This algorithm provides a basis for negotiations between the power system operators and potential providers of demand side preventive-corrective actions.
استفاده از امکانات چنین فرآیندهایی نیاز به انجام مطالعات
اقتصادی به منظور ارزیابی هزینه‌های دریافت پشتبانی از
مشترکان در حال حاضر به‌منظور افزایش سیستم یا عدم
موفقیت روشهای ممول نظر تغییر متغیرهای قابل کنترل
سیستم دارد.

2- حضور مشترکان به منظور حفظ قابلیت اطمینان
سیستم
حضور مشترکان به منظور حفظ قابلیت اطمینان سیستم دارای
دو مرحله زیر است:
- تأثیر حضور مشترکان در استراتژیهای پیشگیرانه حفظ قابلیت
حضوری سیستم
- تأثیر حضور مشترکان در استراتژیهای اصلاحی حفظ قابلیت
حضوری سیستم

اکثریت انسجام از دیدگاه تولید ارزی و در شرایط عادی، با توجه به مقدار تولید
و اهمیت مشترکان، امکان دخالت دادن آنها در استراتژیهای
پیشگیرانه سیستم وجود دارد، اما باید رابطه در بین واحدهای
توجه مشترکان، از مزایا هزینه‌های استراتژی پیشگیرانه نظر توزیع
متغیر توان یا دخیلی خریدار و آماده کاری که شد[۵] همچنین
از دیدگاه صرف ارزی و انتخاب استراتژیهای پیشگیرانه، حالت‌های
بیماری محدود و وجود دارد تا از مشترکان دارای توانایی قطع
داواتنامه صرف خواهند شد، مقدار صرف شده را بطور
عمده و برای مدت زمان طولانی تغییر دهنده[۲] لذا استفاده از این
گونه توانایی به شرایط اضطراری زمان‌های کوتاه اغتشاشات و
استراتژیهای اصلاحی ارجاع داده می‌شود.
روشهای مرسوم در استراتژیهای پیشگیرانه دارای ایزوزهام

- توزیع مطلق توان تولیدی واحدها به‌گونه‌ای که اغتشاشات
بیماران هدایت سیستم به شرایط نگستگی را نداشته
باشد[۲].

- لحاظ کرد ذخیره خریدار و آماده تا در صورت بروز اغتشاش،
اگر ضروری در فرکانس سیستم ایجاد شود، معمولاً این ذخیره
پایه مسئول دردسته‌ای از دعاکثری پر بیشتر باید باشد و یا
قابلیت تامین کمبود، از اثرات پر بیشتر واحدها در زمان

با نویسه مراکز مدیریت صرف‌های وارداتی که گزارش‌گیری مسئول
سیستم در سیستم‌های خودبیخوری و صرف‌های آبی کوچک می‌کرد
اگر بوده که دارای آنها تحت موارد مشترکان سیستم قدرت قرار
دارند، به عنوان زیر قرارگیری اساسی مدیریت صرف تلقی
می‌شوند[۱].

با حضور امکانات حاصل از مشترک‌های مدیریت صرف
۶ گزارش‌های تصمیم‌گیری پیش‌گیرانه برای انتخاب استراتژی‌های کارکرد در
اختیار سیستم قدرت قرار می‌گیرد که این امر می‌تواند بسیار
اقتصادی و مطمئن سیستم با هزینه‌های کمتری از حالت‌های مشابه بدون
حضور این فاوندا پیش‌گیران[۳] در چنین شرایطی، روشهای مرسوم
انتخاب استراتژیهای پیشگیرانه - اصلاحی، توانایی بازنده نافذ
متغیر انتخاب استراتژیهای کار با استفاده از امکانات کلی شکه ندارند[۲].

این نیازهای از عوامل زیر مشخص می‌گردد:
- در روش‌های صرف‌های اصلاحی صرف‌های کار وجود دارد[۳] به‌طور
یک‌طرفه و توانایی صرف مشترکان در صرف‌های مشترک
صفر. به‌طور صرف‌های گروهی مدیریت صرف، امکانات
پیش‌گیری برای نگهداری مطمئن کار وجود دارد[۳].

در غلبت سیستم‌های صرف‌های طراحی‌شده متمرکز می‌باشد
باید تا قطع دواستنی صرف مشترکان در نظر گرفته شود.
در صورتی که در صرف‌های گروهی مدیریت صرف، امکانات
پیش‌گیری برای نگهداری مطمئن کار وجود دارد[۳].

۷ ساخت مطالعاتی که در مرحله طراحی مجموعه‌ای
تولیدی، قبلاً در مشترکان تغییر تولیدی یا صرف مشترکان در
همگام اغتشاش در نظر گرفته، نشان داده است. بسیارینه
توسعه سازوکارهای مدیریت صرف بعد از مرحله طراحی و
ساخت مطالعاتی که در مرحله طراحی مجموعه‌ای

با ایجاد امکان صرف مشترک‌های حفظ قابلیت اطمینان
سیستم، بر تعداد و محدودیت جغرافیایی و حضور حافز
صفر، امکان درست کردن آزموده شده و در نتیجه از بهای
پژوهش‌های پیش‌گیرانه صرف‌های سیستم با استفاده‌های
وجودی سیستم شده می‌شود، ضریب این‌نتایج سیستم قدرت باید

مشخصی را داشته باشند. گاهی نیز ذخیره چرخان به صورت تابعی از احتمال عدم وجود تولید کافی به منظور تامین بار محسوب می‌شود.

اجنام بر اساس مدل تولید با تقسیم‌بندی تواییلیت شیک و مشترکان، به‌گونه‌ای مناسب‌تر پایش مسئولیت پیکر سفید می‌باشد. معمولاً واردهای تولید شیک به مدت زمانی که سپر کاهش نیز به تولید می‌شود و وضعیت نامناسب پایه و مسئولیت را بر عهده می‌گیرند و واحدهایی از شیک‌ها که از نظر الکتروکی متقابل به سیستم محدود، وضعیت ذخیره چرخان تا در صد معنی از بار را تقریب می‌کند. سپس برای واحدهای شیک‌با به هزینه افرادی و مشترکان دریای تواییلیت تولید نمی‌نماید.

علاوه بر این، از تولید و دریافت اطلاعات اجرایی سیستم، تغییر وضعیت آنها در هنگام انتقال می‌باید برای شیک‌ها سپر تولیدی بر اساس این وضعیت در مدت لازم مجاز توجه گردد. سپس از این اطلاعات به منظور تنظیم سیستم، تغییر وضعیت آنها در هنگام انتقال می‌باید برای شیک‌ها سپر تولیدی بر اساس این وضعیت.

در جهت بهبود حرکت داخلی‌های سیستم و در حوزه استراتژیهای اصلاحی سیستم و بعد از وقوع اغتشاشات است. در این مرحله امکان به کارگیری تغییر در تولید و با تغییر داوتلیت مصرف در شرایط اعمال اصلاحی وجود دارد. از این پروپاگاندا مرسوم بر استراتژی‌های اصلاحی با تأمین اعمال اصلاحی شناخته شدیده می‌شود. در روشهای مرسوم در اعمال اصلاحی به صورت زیر قابل

تکثیر می‌شود:

- کلید زنی بانک‌های خانواده
- کلید زنی آکوتروها
- تغییر پن توانایی تپ چندر
- تغییر نقطه کارندورهای سنگر
- تغییر ولتاژ در پانه‌های زناروها و هم‌سیستمیت محرک
- کلید زنی خطوط
- تغییر زاویه فاز در توانایی تغییر دهنده‌ها و
- تغییر تواییلیت مناسب‌ترین زناروها شیک
- تغییر مقادیر اثر رساله در شرایط اضطرار
- در حضور فراخوان و مدیریت مصرف، امکانات زیر به موارد

بالا اضافه می‌شود:
4- فرمولبنده مستله

هریت حضور مشترکان در استراتژی پیشگیری شامل هریت
تولید و هماهنگی مشترکان برای توسعه مطمئن توان یا حفظ ذیل
آدمه است. هریت حضور مشترکان در اعمال اصلاحی نیز دارای
مولفه‌های زیر است:

- هریت آدمه سازی اعمال اصلاحی

- هریت میان‌رتبه کسب‌کرده در اجرای اعمال اصلاحی

در مرجع [21] مولفان با خلاصه کردن مطالعاتی غیر خلی به همین
سازی و بیان تقریب‌های معنی‌دار ساخته‌ریزی را از دیدگاه هم‌مجازی
قطع یا تاریک قطع اعمال اصلاحی طرف مشترکان بررسی
کردند.

در روش مذکور، با استفاده از الگوریتم گرافیکی پندر ۱۱، هریت
به‌هم‌بودن اعمال اصلاحی مهم‌ترین اغتشاشات آنی توانسته‌شده است تا
با اجرا اعمال به‌طور هم‌زمان، انجام پیشگیری در هنگام وقوع
اغتشاشات صورت یابد. در مجموع اعمال هریت روش بالا استفاده جامع
از امکانات کل سیستم و حضور طرف مشترک در هر اعمال
اقتصادی و مطابق سیستم است. اما به عمل، لحاظ کردن
امکانات و متغیرهای مربوط به هریت با توجه به
جامع‌ترین سیستم هریت نظیر هریت گسترشی و
اجراهای پژوهشی بر سیستم کسب‌کرده می‌تواند
بر آثار سیستم‌های اعمال اصلاحی اثر کند.

- هریت سازی اعمال اصلاحی

در مرجع [22] از استفاده از مفهوم اعمال مستله و تاکید
بر هریت گسترشی سیستم در دایره مطابق به‌هم‌بودن کل سیستم
و مسائل کامل حل شده است. در این مقاله نیز تاکید شده است تا
اجاره‌های در این مدل مجموعه‌ای از چرخ‌های اغتشاشات و
ارتباطات مربوط به هریت در اعمال اصلاحی برای کاربرد مطمئن
اقتصادی سیستم صورت یابد.

- هریت سیستم

در مرجع [8] با اجرا اعمال اصلاحی با اجرای مدیریت بار
و بدون هم‌میان‌گرایی و مطالعه آثار اقتصادی آن مورد استفاده
شده است. در این مقاله نیز به این درک ارتباطات مربوط به
هم‌بودن اعمال اصلاحی و اعمال اصلاحی در هر اعمال
باید استفاده از این مدل مطابق با تکنیک‌های اجتماعی
باید اعمال اصلاحی اعمال اصلاحی با تکنیک‌های اجتماعی

پرای اساس فرمولبنده مستله را به صورت زیر ارائه می‌کنیم:

\[
\begin{align*}
\text{Min } C &= \sum_{p=1}^{n} T_p \sum_{g=1}^{m} C_{gp} G_{gp} + \\
&\sum_{i=1}^{n g e} \phi_i \left(\sum_{p=1}^{n p} \xi_p C_{ip} \right) + \\
&\sum_{i=1}^{n d} a_i \left(\beta_i + \gamma_i \sum_{c=1}^{n c} N_{pc} T_{ipc} \Delta D_{ipc} \right) + \\
&\sum_{j=1}^{n d} \eta_j \left(\xi_j + \psi_j \sum_{c=1}^{n c} N_{pc} \beta_{ipc} \Delta G_{ipc} \right) + \\
&\sum_{m=1}^{n p} \left(\sum_{c=1}^{n c} N_{mc} \text{UC} + \sum_{c=1}^{n c} N_{mc} \text{Koute} \right)
\end{align*}
\]

(1)

35

استقلال، سال 19، شماره 2، اسفند 1379
فرضیات خاصی ثابت کرده‌اند. قالب اثبات است که اگر شرط P_{G} روش GBD اضطراب شونده متغیرهای تصمیم‌گیری و کاردکر قابل جداسازی می‌شوند.

این شرط برای مسلّه حاضر به این صورت بیان می‌شود که در حالت‌های ممایز انتخاب متغیرهای تصمیم‌گیری، پاسخ‌های ممایز متغیرهای کاردکر قابل توصیف باشند و مسّلّه برای مجموعه تغییرات متغیرهای تصمیم‌گیری، نه یک پاسخ برای متغیرهای کاردکر ارائه ندهد.

در معادله (1)، هزینه تولید توان واحدی در هزینه افزایشی C_{PP} در نظر گرفته شده‌اند. همچنین در این مقاله، از نظر کلی، در محاسبه هزینه‌های خروج استفاده کرده‌اند. به این ترتیب که هزینه‌های تحمل شده بر شرکت‌های Koutc و OC در هزینه‌های بازار، داشتن سیستم به حالت مورد در صرفاً جویی ناشی از کاهش مصرف در هزینه Gpp می‌باشد.

1-4- محصول‌های کاردکر

محصول‌های کاردکر برای تمامی حالت‌های عبارت‌اند از

\[\sum_{g=1}^{ng} P_g + \sum_{i=1}^{UC} P_{gi}^U + \sum_{i=1}^{nd} P_{DSM}^U = \sum_{d=1}^{nb} P_d + \sum_{l=1}^{nl} P_{loss} \] (2)

\[\sum_{g=1}^{ng} Q_g + \sum_{i=1}^{UC} Q_{gi}^U + \sum_{i=1}^{nd} Q_{DSM}^U = \sum_{d=1}^{nb} Q_d + \sum_{l=1}^{nl} Q_{loss} \] (3)

\[V_i V_j \left[-G_{ij} \cos \left(\theta_i - \theta_j \right) + B_{ij} \sin \left(\theta_i - \theta_j \right) \right] + V_{i}^2 G_{L} = P_{L} \quad \text{L=1 to nl} \] (4)

\[V_i V_j \left[G_{ij} \sin \left(\theta_i - \theta_j \right) + B_{ij} \cos \left(\theta_i - \theta_j \right) \right] + V_{i}^2 \left(B_{ij} - B_{L}/2 \right) = Q_{L} \quad \text{L=1 to nl} \] (5)

همچنین می‌توان نوشت:

\[V_{k}^{\min} \leq V_{k} \leq V_{k}^{\max} \quad \text{k=1 to nb} \] (6)

\[P_{g}^{\min} \leq P_{g} \leq P_{g}^{\max} \quad \text{i=1 to ng(v)} \] (7)

\[Q_{g}^{\min} \leq Q_{g} \leq Q_{g}^{\max} \quad \text{i=1 to ng(a)} \] (8)

\[P_{i}^{\min} \leq P_{i} \leq P_{i}^{\max} \quad \text{i=1 to nl(f)} \] (9)

\[0 \leq P_{U} \leq P_{U}^{\max} \quad \text{i=1 to UC} \] (10)

\[t_{j}^{\min} \leq t_{j} \leq t_{j}^{\max} \quad \text{j=1 to nt} \] (11)

\[c=1 \text{ to } nc \quad \text{and} \quad p=1 \text{ to } np \]

برای هر c:

\[\Delta D_{ipc}^{\min} \leq \Delta D_{ipc} \leq \Delta D_{ipc}^{\max} \quad \text{i=1 to nd1} \] (12)

\[\Delta G_{ipc}^{\min} \leq \Delta G_{ipc} \leq \Delta G_{ipc}^{\max} \quad \text{j=1 to nd2} \] (13)

5- مراحل حل

مسئله تهیه‌نامه‌ی شده، ماهیت غیرخطی عدد صحیح مختلط دارد و با استفاده از الگوریتم‌کلید جدایی بندی بازاب حاصل است. الگوریتون و همکارانش، همان‌گونه ساختار محیطی الگوریتم مذکور را با استفاده از

استقلال، سال 19، شماره 1، استاند 1379

36
6- مطالعات عددي

برای انجام مطالعات عددی، شبکه 36 شینة استاندارد یکدانه می‌باشد. در تجزیه و تحلیل سیستم‌های پیشگیرهای اصلی - اصلی، ناشی از همزمانی و تاثیر ناشی از درگیری سیستم‌های مدار و مداران مختلف کارکرد ثابت اینکه شاخص هزارهای افزایشی تغییر مقدار تواناپیمایی تولید یا تغییر مصرف مشترکان برای

- افزایش و درمان مختلف کارکرد، ثابت شده است. در
- شکل (2) ملاحظه می‌شود. همچنین هزارهای افزایشی تغییر

تولید با مصرف مشترکان در شکل (3) توزین در دانشگاه محدوده ثانویه و تالارهای 1/5 و 1/8 پروپوترا و حداکثر

- توان مجاز انتقال خطرات 2/5 برای تنایم حرارت شد است. افزایش در تانسور خطرات 13، 16 و 24 در سیستم تغییر

- به یک شیب و در رابطه با سیستم خواهان شد و به صورت یک نظرخواهان یکنواحه بود. همچنین فرضیات زیر برای شبکه 36 شینة صورت

- گرفته است

- حداقل و حداقل تولید توان اکثر زناتورها به ترتیب برای 3/2 و

- 1/6 توان نامی تولیدی است.

- مقدار ذخیره چرخان برای 3 درصد حذف گر در پیش‌بینی شده

- لحاظ می‌شود و در هر دوره ترکیب بهینه واحدهای ذخیره آماده

- مشخص می‌شود.

- ترکیب حضور مشترکان در فراپیده‌های پیشگیرهای سیستم به این

- گونه شناسایی می‌شود که پس از بهینه سازی تابع هدف (1) گزینه‌ها و از مشترکان که حضور آنها در تامین ذخیره چرخان سیستم

- کاهش باید هدف می‌شود در امر مشاهدات داده می‌شوند.

- مقدار هزنیه به تایم‌نامی ترکیب بهینه یک و واحد پول بر پروپوترا

- مگاواژ است.

- مقدار S_{IP} پیکسان فرض شده است.

- ف(ز) رابطه تقریب زدن به منظور حداقل سیستم هزنیهای کارکرد و حضور مشترکان به

- صورت تابعی از ترکیب حضور و بر اساس حزیر مسئله 2 ارائه

- می‌باشد. این تقریبات $F(z)$ به مقدار حسابی بندی از مقدار

- دوگان متغیرهای زیر مسئله کارکرد حاصل می‌شود، زیر متغیرهای دوگان به عنوان معیار برای بررسی تغییر ترکیب حضور، بر

- هزنیهای سیستم عمل می‌کنند. با تغییر مسئله اصلی بهینه

- سیستم 19 ترکیب حضور مشترکان در الگوریتم به صورت زیر قابل بازنویسی است

(MP) $\text{Min } Z$

\[s.t. \quad z > G(y) + F_k + b_k (y^k - y) \quad k = 1 \leq K \]

\[\text{کلاس نکرش قابل بندیر}

\[F_k : \text{مقدار بهینه تابع هدف زیر مسئله کارکرد در تکرار } k \]

\[b_k : \text{مقدار متغیرهای دوگان در تکرار } k \]

\[y^k : \text{مقدار متغیر تضمین گیری در تکرار } k \]

\[\text{مقدار } y^k \text{ از حزیر زیر مسئله کارکرد } k \text{ در تکرار } k \text{ قابل}

\[\text{حصول است:}

(OST) $F_k = \text{Min } f(x)$

\[s.t. \quad d(x) > s - C_2 (y^k) \]

GDB 5- خلاصه الگوریتم

مرحله یک - حزیر مسئله MP را بدون حساب سازی بندیر و با

- مقدار 1 می‌گذاریم.

- مقدار دو - مسئله RA برای یافتن تابع بهینه (x^0, y^0) حزیر

- کنید. محدوده پایین باسی بهینه است.

- مرحله سه - مسئله OSP برای مقدار 0 و مرحله دو و یافتن

- حل کنید. (F_k, z_k, b_k). با تغییر

- مقدار $G(y^0)$ + F_k = b_k (y^k - y)

- مقدار پاسخ بهینه است.

- مرحله چهار - اگر $z < G(y) + F_k + b_k (y^k - y)$

- $k = k + 1$

- به مرحله دوم بازگردید.
جدول 1- رتب‌بندی افتتاحات

<table>
<thead>
<tr>
<th>ضریب پار 1</th>
<th>ضریب پار 0/87</th>
<th>ضریب پار 0/6</th>
<th>توان اکتب</th>
<th>توان اکتب</th>
<th>توان اکتب</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>36</td>
<td>36</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>37</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>38</td>
<td>18</td>
<td>18</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>31</td>
<td>31</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>30</td>
<td>7</td>
<td>7</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>24</td>
<td>17</td>
<td>17</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>5</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>31</td>
<td>21</td>
<td>21</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>24</td>
<td>24</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>33</td>
<td>32</td>
<td>32</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>34</td>
<td>28</td>
<td>28</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>35</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>36</td>
<td>31</td>
<td>31</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>37</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>38</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>39</td>
<td>28</td>
<td>28</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>40</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>41</td>
<td>32</td>
<td>32</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>42</td>
<td>31</td>
<td>31</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>43</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>44</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>45</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>46</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>47</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>48</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>49</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>50</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>51</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>52</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>53</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>54</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>55</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>56</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>57</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>58</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>59</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>60</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>61</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>62</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>63</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>64</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>65</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>66</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>67</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>68</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>69</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>70</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>71</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>72</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>73</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>74</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>75</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>76</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>77</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>78</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>79</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>80</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>81</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>82</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>83</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>84</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>85</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>86</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>87</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>88</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>89</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>90</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>91</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>92</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>93</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>94</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>95</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>96</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>97</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>98</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>99</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>100</td>
<td>29</td>
<td>29</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

استقلال، سال 19، شماره 2، سفند 1379
شکل 1- شبکه اصلاح شده ۳۰ شبیه

شکل 2- توانایی‌های تغییر تولید و مصرف مشترکان سیستم

شکل 3- مقادیر هزینه‌های تولید با تغییر مصرف مشترکان

استقلال، سال ۱۴۷۹، شماره ۲، اسفند ۱۳۷۹
واحدهای تولید مشترکان از نسبت هزینه‌های حضور آنها بر هزینه‌های کل سیستم حاصل می‌شود و همچنان که مشاهده می‌شود، با افزایش مقدار هزینه‌های تولید مشترکان، نا حidores زیادی از حضورات تولید کاسته می‌شود.

در شکل (5)، دانست تغییرات حضورات واحدهای قطع بار مشترکان در اثر تغییر مولفه‌های از مقدار 200 تا 175/200/مقدار نامی آن آورده شدهاند. همانند موارد حضورات واحدهای تولید، به طور طبیعی با افزایش مقدار از به سه حضور فرایند کاهش مصرف کاسته می‌شود.

در شکل (6)، دانست تغییرات هزینه‌های حضور مشترکان بر هزینه‌های سیستم در شرایط نامی و در اثر تغییرات هزینه‌های بار نامی نشده از بیک الی سه برای مقدار نامی آن ملاحظه شود.

در شکل (7)، دانست تغییرات هزینه‌های حضور مشترکان بر هزینه‌های تنها بر اثر تغییرات هزینه‌های متغیره گسترشی سیستم بین الی سه برای مقدار نامی آن آورده شدهاند.

می‌توان نتیجه گرفت که با افزایش هزینه‌های گسترشی و افزایش احتمال وقوع اغتشاشات بحرانی سیستم، حضور مشترکان توجهی اقتصادی بیشتری می‌یابد.

زاوای اجرا محاسبات بهینه‌سازی بار‌های ضریب بار یک برای 18 ثابت است. با تغییر مطالعات بالا، بهترین ترکیب حضور مشترکان حاصل می‌شود. واحدهای مشترکان در ذیل آماده عباراتان از واحد تولید مشترکان بار نامی و 30 در ضریب بار کامل و احدهای دارای پتانسیل تغییرات به اغتشاشات و بهترین ترکیب آنها در اعمال اصلی در جدول (3) آورده شدهاند. برای مشاهده تاثیر اجراهای این استراتژی به کاهش هزینه‌های تحلیلی بر سیستم، تغییرات هزینه‌های کلی کارآگاه و تحلیلی بر سیستم در شکل (8) آورده‌اند. همچنان که ملاحظه می‌شود فرایند بهینه‌سازی حضور مشترکان را در تعدادی از اغتشاشات سیستم ضروری تشخیص می‌دهد و در هر حالت با ایجاد امکان مشترکان مشترکان در فرایند اصلاح لازم، نقطه کار که به سوی نقطهطمک اقتصادی هدایت کرده است.

فرایند بالا را با ضریب بار 0.8/0.6/4/2/5 نیز تکرار نماییم و مقدار هزینه‌های کلی و تحلیلی بر سیستم قبل و بعد از بهینه‌سازی به ترتیب در شکل‌های (9) و (10) در ملاحظه می‌شود. در نهایت، حداکثر مقدار پرده‌ای نصف دوره با متناون خواهد بود. امکان کلیدی نشان‌دهنده خازن شیب‌های ۰/۱۴ و ۱۱/۲۴ از دور، حداکثر به میزان مشخص شده در سیستم استاندارد ۰/۳ شده و با گام‌هایی به مقدار 0/01 کل تغییرات آنها وجود دارد.

امکان تغییر پترنسهای واقع در بین شیب‌های ۴/۰۶، ۴/۱۴ و ۴/۲۴ از دور، حداکثر به میزان 0/1/ه تغییرات نامی مشخص شده در سیستم استاندارد ۰/۳ شده و با گام‌هایی به مقدار 0/01 کل تغییرات آنها وجود دارد.

سیستم‌های اجرای هزینه‌های دارای زنای‌ها و رونا تغییر ونلما که او چا عاده ۵ درصد مقدار نامی دارند.

تغییرات در مصرف مشترکان با فشار ضریب قدرت 0/85 صورت می‌پذیرد.

مقدار حداکثر مزام انگام پیش‌بینی مشترکان برای پک به دم طول مدت می‌باشد، بر اساس عمله بر روی بر قرار [15]

فریفیات ساده کننده زیر نیز لحاظ می‌شود: سیستم ناظره افراد چهار هم‌اگنگ شده است که در صورت وجود داشتن توان شرایط زیر، کل سیستم دچار خاموشی خواهد شد:

3 = تعداد خطوط (Pn) < 1 < توان خط (Pn) < 175/PV (Pu) (ویژا)
1 = تعداد خطوط (Pn) < 1/4 (ویژا)
0 = تعداد تغییرات شیب‌هایی (Pn) < 1/75/PU (Pu) (ویژا)

منابع تغییرات و مقدار متغیره‌های اغتشاشات و طول مدت آنها به صورت در طول مدت دوره متناون بار در جدول (2) آورده شدهاند. نتایج مذکور با استفاده از شبیه‌سازی با نرم‌افزار اسلم تگارس و روش مرجع [16] حاصل شدهاند.

در کننده، تاریخ تغییرات پارامترهای سیستم بر طور مشروط و به باضریب بار یک نشان می‌دهد، آن گاه خانه تا نهایت بهینه‌سازی را پر در ضریب بار 0/8/0/6/30/50/مقدار قرار داده و MATLAB مطالعات را با رابطه پنومتری 3/23/237 می‌نماید، که نام آن، نارف دلی الین شمال دیه قابلیت داشته چهار دیه. در شکل (1) دانست تغییرات میزان مشترکان واحدهای تولید مشترکان در اثر تغییر مولفه‌های (a) و (b) تا 0/050/مقدار نامی آنها ملاحظه می‌شود. درصد تغییرات میزان مشترکان
<table>
<thead>
<tr>
<th>N<sub>PC</sub></th>
<th>T<sub>PC</sub></th>
<th>N<sub>PC</sub></th>
<th>T<sub>PC</sub></th>
<th>N<sub>PC</sub></th>
<th>T<sub>PC</sub></th>
<th>N<sub>PC</sub></th>
<th>T<sub>PC</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>0/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>2/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>5/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>0/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>1/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>2/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>5/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>0/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>1/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>2/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>5/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>0/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>1/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>2/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
<tr>
<td>5/50E-3</td>
<td>9/50E-3</td>
<td>1/40E-3</td>
<td>2/40E-3</td>
<td>1/20E-3</td>
<td>6/20E-3</td>
<td>3/10E-3</td>
<td>3/10E-3</td>
</tr>
</tbody>
</table>
جدول ۳- امکانات سیستم در برابر افتضاحات و نتایج حاصل از قواعد بهینه‌سازی

<table>
<thead>
<tr>
<th>واحدهای تولیدی</th>
<th>پاره‌ای قطعی پذیر</th>
<th>ترانسیتی مؤثر</th>
<th>بانک خاکی مؤثر</th>
<th>اغتشاش</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱-۲ (IC)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۱</td>
</tr>
<tr>
<td>۲-۵ (IC)</td>
<td>۳</td>
<td>-</td>
<td>-</td>
<td>۲</td>
</tr>
<tr>
<td>۶-۵ (IC)</td>
<td>-</td>
<td>T3</td>
<td>-</td>
<td>۳</td>
</tr>
<tr>
<td>۷-۲۵ (IC)</td>
<td>۳-۱۲</td>
<td>T3</td>
<td>-</td>
<td>۴</td>
</tr>
<tr>
<td>۸-۵ (IC)</td>
<td>-</td>
<td>T3</td>
<td>-</td>
<td>۵</td>
</tr>
<tr>
<td>۹-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۶</td>
</tr>
<tr>
<td>۱۰-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2,T3</td>
<td>-</td>
<td>۷</td>
</tr>
<tr>
<td>۱۱-۵ (IC)</td>
<td>۳</td>
<td>T1,T2</td>
<td>-</td>
<td>۸</td>
</tr>
<tr>
<td>۱۲-۵ (IC)</td>
<td>-</td>
<td>T1,T2</td>
<td>-</td>
<td>۹</td>
</tr>
<tr>
<td>۱۳-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۴-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۱۱</td>
</tr>
<tr>
<td>۱۵-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۱۲</td>
</tr>
<tr>
<td>۱۶-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۱۳</td>
</tr>
<tr>
<td>۱۷-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۱۴</td>
</tr>
<tr>
<td>۱۸-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۱۵</td>
</tr>
<tr>
<td>۱۹-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۱۶</td>
</tr>
<tr>
<td>۲۰-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۱۷</td>
</tr>
<tr>
<td>۲۱-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۱۸</td>
</tr>
<tr>
<td>۲۲-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۱۹</td>
</tr>
<tr>
<td>۲۳-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۲۰</td>
</tr>
<tr>
<td>۲۴-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۲۱</td>
</tr>
<tr>
<td>۲۵-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۲۲</td>
</tr>
<tr>
<td>۲۶-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۲۳</td>
</tr>
<tr>
<td>۲۷-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۲۴</td>
</tr>
<tr>
<td>۲۸-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۲۵</td>
</tr>
<tr>
<td>۲۹-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۲۶</td>
</tr>
<tr>
<td>۳۰-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۲۷</td>
</tr>
<tr>
<td>۳۱-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۲۸</td>
</tr>
<tr>
<td>۳۲-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۲۹</td>
</tr>
<tr>
<td>۳۳-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۳۰</td>
</tr>
<tr>
<td>۳۴-۵ (IC)</td>
<td>۱۰</td>
<td>T1,T2</td>
<td>-</td>
<td>۳۱</td>
</tr>
</tbody>
</table>

استقلال، سال ۱۹، شماره ۲، اسفند ۱۳۷۹
شکل 4- درصد تغییرات میزان مشترکان واحدهای تولید مشترکان در اثر تغییر مؤلفه‌های مزینه‌های تولید مشترکان

شکل 5- درصد تغییرات میزان مشترکان واحدهای قطع بار مشترکان در اثر تغییر مؤلفه‌های مزینه‌های قطع بار

شکل 6- درصد تغییرات مزینه‌های حضور مشترکان به مزینه‌های نسخه در اثر تغییرات مزینه‌های بار تأمین نشده

استقلال، سال 19، شماره 4، اسفند 1379
شکل 7- درصد تغییرات هزینه‌های حضور مشترکان بر هزینه‌های تحمیلی بر سیستم در اثر تغییر هزینه‌های متظره گستن‌گی سیستم

شکل 8- تغییرات هزینه‌های تحمیلی بر سیستم قبل و بعد از حضور مشترکان در بار کامل

شکل 9- تغییرات هزینه‌های تحمیلی بر سیستم قبل و بعد از حضور مشترکان در ضریب بار مشت دهم
شکل 10- تغییرات هر ساعت تحمیلی بر سیستم قبل و بعد از حضور مشترکان در ضریب بار شده‌هم

سیستمهای قدرت ارائه شدند. روش ارائه شده شامل هیدرژنی‌زایی غیر خطی عدد صحیح مختلط برای یافتن تقاطع بهینه‌ی اقتصادی حضور مشترکان برای حفظ قابلیت اطمینان سیستمهای قدرت است. در الغوریمی پیشنهادی علاوه بر تأکید تحقق واحدهای تولید مشترکان، توانایی تغییر داوطلبانه مصرف آن در جهت کاهش هزینه‌ی تحمیلی بر سیستم و به همراه قوع اغتشاشات محتمل آن در نظر گرفته شده و از کارکرد مطمئن اقتصادی سیستم اطمینان حاصل می‌شود. نتایج این مقاله می‌تواند با یافتن مناسب‌ترین حالت‌های حضور مشترکان در استراتژی‌های پیشگیرانه - اصلاحی، می‌باشد در انجام هماهنگی فرآیندهای مدیریت مصرف و واحدهای تولید توان سیستم باشد.

1. mixed integer nonlinear programming
2. security
3. ready reserve
4. demand side management (DSM)
5. IEEE
6. direct load control
7. security margins
8. integrated resource planning
9. security dispatch
10. off-line studies
11. on-line
12. real time pricing
13. short term
14. bender decomposition
15. global optimum
16. load management
17. outage costs
18. generalized bender decomposition (GBD)
19. master problem (MP)
20. operational subproblem (OSP)

