شیب سازی اندرکنش جریان و اکوستیک در موتور موشک‌های سوخت جامد

مهدي گل افشار و حجت قاسمي
دانشگاه مهندسي مكانيک، دانشگاه صنعتي شريف
پژوهشگاه مهندسي جهاد - تهران

چکيده - نوسانات لشار در موتور موشک‌های سوخت جامد از جنین معنی مهره‌گرند. یکي از این منابع وجود میدان جریان نوستاگ است. وجود لياه‌های بين پرسي آزاد در نقاط مختلف موتور موجب ایجاد گرداي و انتشار آن ميشود. لیايت یک نوسان و ارتباط پيما در موثرهای چندنگه، نوستاگ‌های از جنین ناقلیت آن. اين گردايها از محل توليد خود حرکت كرده و به دیوارهای ميدان برخورد مي‌کنند. درآوريد اين برخورد اثري به جنبه موجود در آنها به فشار تبديل و امواج اکوستيکي تشکيل مي‌شوند. اين امواج در ميدان موتور منتشر شده و موجب نوسانات اکوستيکي مي‌شوند. با تفير تفريحي نهضت‌های داخلی موتور به سبب سوخت شدن پيشي‌انگر، فرکانسي و دامنه نوسانات لشار تغيير مي‌كند. در اين مقاله اندرکنش بين ميدان جریان و ميدان اکوستيکي در يك موتور سوخت جامد به صورت عددی محاسبه شده است. استفاده از تابع شار روا در يك شبکه مي‌سازد. برای حل معادله‌های جریان ترکمپليت لازم نشان داده است که با تغير تفريحي نهضت‌های داخلی موتور در طي زمان، مشخصات نوسانات لشار به شدت تغيير مي‌كند. در اين مطالعه از شش نهضت متفاوت برای شبيه‌سازی نهضت‌های داخلی موتور در زمان‌های مختلف سوزش و آراينه با مختلف گرين استفاده شده است. روش به کار برده شده شد و فرکانسي امواج لشار را به خوشي پيچي‌كرده و نشان داده است که پرسي فرکانسي نوسانات لشار از سه‌ينهگا دورات طولانی به مي‌دهد.

Acoustic-Mean Flow Interaction in Solid Propellant Rocket Motors

M. Golafshani and H. Ghassemi
Department of Mechanical Engineering, Sharif University of Technology
Jahad Engineering Research Center

ABSTRACT- There are several sources for pressure oscillations in solid propellant rocket motors. Oscillatory flow field is one of them. Free shear layers in motor flow field cause vortex shedding. End edges of propellant grains and baffle edge in two-segmented motors are samples of such zones. These vortices move from their forming points and strike the field walls. The kinetic energy of vortices change to pressure, forming acoustical pressure oscillations. Acoustical characteristics of pressure oscillations such as frequency and...
امپالتیتیو دادن شده است که اگر تولیدگر درآمد، در نتیجه، فرق‌الات این با تغییر زنگ تقیب فراشی داشته است. علاوه بر این، نشان داده شده که لبه‌های تیز در هدستی داخلی موتور، موجب تشکیل گرداب در ابتدای قسمت دوم موتور شده و ناپایداری زودتر با دامنه پیوستی نسبت به لبه‌های صاف اتفاق می‌افتد. در تحقیقات مرجع [6] به مسئله داخلی اکوستیکی و جریان متوسط در کار تولید پخش گرداب در یک نوع خاص از موتور موشک سوخت جامد پرداخته شده است. در نتایج این مرجع نشان داده شده که تولید و پخش گردابه منجر به تحریک هارمونی در مدت طولی نوسانات نشان محفظه هدایت است.

1- مقدمه

برای اولین بار والندرو و جاکوپسی [1] پیشنهاد کردند که تولید و پخش گردابه، موشک مکانیزم تحریک مدهای اکوستیکی محفوظات احتراق باشد. این موضوع از شکل هندسی موتورهای بزرگ که تا خاک دمکان، استناداش که این طرف تولید و پخش گردابه در کارخانجات با توجه شرایط برخی یک گردابه در ملد موشک مکانیزم تحریک امواج اکوستیکی شود. این نتایج تجربی سبب نخواهد شد نیازی که در زمینه انتخاب دیگر موتورهای موشکی، از جمله موتورهای خورش و ردیچ کار کردن بررسی گشته‌ای را به ارتباط با پخش گردابه در ملد موشک خورشیز که عناوین مثل شیب‌های سازی گردابه سوزر جریان تاکتیکی در محفظه احتراق یک روی آن در [3] انجام شده سنجش آن سری مطالعات است. در این تحقیق، مکانیزم‌های داخلی گردابه – اکوستیکی مورد بررسی بوده و به کمک آن در نهایت، اینکه این شیب‌های سازی آزادسازی نوسانات قطعی احتمال بهترین داده‌ها و از این طریق نتایج احتمال موثر مطالعه واقع شود. در این راستا آزمایش‌های پیشنهادی روی نمونه‌های خورشیزی موتورهای موشکی نظر پیشنهادی جامد نازل گرفته است [4].

استحکامات تولیدگر و توزین موشک‌های موشکی موشک سوخت جامد نازل گرفته کردن [5] مورد بررسی علی‌قاگرگانتی است. در لیست پژوهش‌ها، مسئله تولید و پخش گردابه در محظانه‌های به محظانه احتمال موئورهای موشکی سوخت جامد دو تکه از طریق حل معادلات ناواریستوکی به روش روش کورکومک 6 بررسی شده است. این ارث زنگ سیال از طریق تغییر آن به سه مقادیر مختلف، مورد بررسی قرار گرفته و ممکن ابزاری با تریبودی لبه داخلی قطعات موئور نیز بررسی شده است. از این تحقیق نتیجه شده است که با اندازه‌گیری نزدیک دامنه ناپایداری کاهش به سبب بهبود شانس
مستناد شده است. محاسبه شار با دقت بالا بدون در نظر گرفتن مسئله یکنواخت موجب جوانیهای غیرنیزیکی می‌شود. این مشکل با طرایه‌های محدود یکنواخت یکنواخت و بسیار حساس است. نتایج حساسیت این مطالعه نشان می‌دهد که پتانسیل نوسانات در اغلب موج‌های مورب مطالعه وجود دارد. همچنین نشان داده شده که فرکانس‌های ترکیبی موجب فرکانس‌های اولیه موجب معتاد می‌شود. به طوری که می‌توانیم بی‌نظر با حضور ناپایداری اکستینیک را پیش‌بینی کنیم و از این مشخصات آن مانند شدت دامنه و فرکانس نوسانات قابل پیش‌بینی نیستند. در این نظریه با پیامدهای نکاتیم می‌توانیم به دنبال اجرای نوسانات به‌طور شرط منجر به اینکه به ترتیب اولیه موجب ناپایداری اکستینیک و ناپایداری همگرایی بین جریان متوسط و نوسانات اکستینیک توسط برخی با پیش‌بینی نیستند. در این حالت می‌توانیم به سطح طولی موجب، سطح سوزش دیگری که شایعه بوده، اجایی می‌شود. به‌طور متفاوت به این دسته از مسائل، که مربوط به سر زمان مختلط سوزش در مونتر است، برای مطالعه انتخاب شده‌اند. در یکی از این سر مورد نیز اثر عمق بودن سطح شایعه سوزش نیز مطالعه شده است. در سطح دیگری از این مسائل فرض شده است که سطح انتها مونتر به تدریج و با سرعت 45 درجه به بدن مونتر تعلق می‌گیرد. برای این دسته از مسائل نیز سر زمان مختلطی متفاوت، منطقی بر سر سر زمان مختلط سوزش در مونتر در نظر گرفته شد است. \[H = \frac{\partial Q}{\partial t} + \frac{\partial (f^i - f^v)}{\partial x} + \frac{\partial (g^i - g^v)}{\partial y} \] \[Q = y^v \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho E \end{pmatrix}, \quad f^i = y^v \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ \rho u E + p \end{pmatrix}, \quad g^i = y^v \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ v(E + p) \end{pmatrix} \]

\[g^v = y^v \begin{pmatrix} -q_x + u q_x + v r_{xy} \\ -q_y + u q_y + v r_{xy} \end{pmatrix} \]
3- انتخاب شیب سطح و حجم کنترل
برای تبدیل ناحیه منورد نظر به زیرناپایه مطلوب، از روشهای شیب سطح و حجم کنترلی برای انتخاب شیب سطح و حجم کنترلی استفاده می‌شود. شکل‌های معمولاً پیچیده می‌باشند. منحنی‌هایی برای انتخاب شیب سطح و حجم کنترلی در مقاله انتخاب شیب سطح و حجم کنترلی با سازمان استفاده می‌شود. بر این اساس ابتدا ناحیه حل به ناحیه کنترلی تقسیم می‌شوند و پس از حل سطح و حجم کنترلی با سازمان استفاده می‌شود.

د) فشار تیز از طریق معادله زیر به دیگر متغیرهای میدان مرتبط می‌شود

\[p = (\gamma - 1) \left[\rho E - 0.5\rho (u^2 + v^2) \right] \]

برای مختصات دو بعدی دکارتی 0 و برای دستگاه مختصات استوانه‌ای با نگار محوری 1 قرار داده می‌شود. در دستگاه مختصات استوانه‌ای مختصات x, y, z به جهت محور استوانه و مختصات \(\rho, \theta, \varphi \) در جهت شعاع در نظر گرفته می‌شود. \(\rho \) جرم حجمی گاز و E انرژی کلی بر واحد جرم است. ارتباط دیانتی \(T \) فشار و جرم حجمی از طریق معادله گاز کامل به صورت

\[p = \rho RT \]

برقرار می‌شود. \(\rho \) ضریب لزج دینامیکی است و ضریب دوم لزج، \(\alpha \) زاویه فرض استوکس برای با 2.3 در نظر گرفته شده است. ضریب هندی گرمایی \(k \) را می‌توان از طریق عدد پرانتلی

\[Pr = C_{pu}/k \]

به ترتیب، مولفه‌های شتاب جاذبه در جهات \(x, y, z \) مشتمل.

3- روی حل

برای گسترش سازی معادله‌های حاکم از روشهای حجم محدود در شبکه پی سازمان استفاده شده و برای محاسبه شار فیزیکی تقرب \(\rho \) به کار برده شده است. شبکه پی سازمان براساس
محاسباتی کوچکی موسوم به حجم کنترل تقسیم شده و سپس برای هر سلول، ماده‌های حاکم انتگرال‌گیری می‌شوند. با انتگرال‌گیری از دسته معادله‌های (1) روز حجم کنترل مشخص، معادله از شکل دифراسیونی در آمده و شکل معادله انتگرال‌گیری را به دنبال می‌گردد. بعد از انتگرال‌گیری از این معادله‌ها و چند عملیات جبری، شکل نهایی دسته معادله‌های (1) را می‌توان به صورت

\[
\frac{\partial Q}{\partial t} + \sum_j \left(F_j^i - F^j \right) \Delta S_j = \mathcal{V}(H)
\]

(4)

نمايش داد که در آن \(F \) بردار شار در ورود سطح کنترل، \(Q \) به \(H \) و \(\mathcal{V} \) ترتب، مقادیر متوسط بردارهای حالات و چشمه در هر حجم کنترل مشتق شده. \(V \) حجم سلول محاسباتی، \(\Delta S \) طول هر یک از اضلاع شکل دیده‌شده حجم کنترل محاسباتی است. علاقه‌مندی جمع نیز رخ تأمین این اضلاع عمل می‌کند.

محاسبه شار از ورود سطح کنترل، مسئله اصلی روش‌های عدید حل ماده‌های حاکم در دینامیک سیالات را تشکیل می‌دهد. وجود تفاوت فاصله بین شارهای لزج \(F^l \) و غیر لزج \(F^g \) موجب تفاوت \(F^l - F^g \) در محاسبه شار محاسبه شده می‌شود. شار غیر لزج، همان طور که در معادله (1) نشان داده است به حاوی عبارت‌های غیرخطی است. این در حالی است که سطح لازم به حاوی عبارت‌های خطی ترکیب‌شده است. به همین منظور نیز روش‌های محاسبه این شارها در خسته‌های جدایگانه الهام گرفته است.

\[
F^l = \begin{pmatrix}
\rho u_L \\
\rho u_L + \rho u_n + \rho p_n \\
\rho u_L + \rho p_n + \rho \mathcal{V} H
\end{pmatrix}
\]

(5)

\[
u_L = u_n + v_n
\]

\[H = E + \frac{P}{\rho}\]

(2-3 - مهندسی ضمینی و صریح)

همتی هر یک از روش‌های ضمینی و صریح در انتخاب انداده قدم زمانی است. در روش‌های کاملاً ضمینی محدود کنترل، روزی انداده قدم زمانی برای پایان ماندن روش حاکم بودار، این در حالت است که روش‌های صریح محدود به انداده قدم‌های زمانی مجاز و کچکتری است. بنابراین تعداد قدم‌های زمانی لازم برای حصول جواب مطلوب دامین روش‌های ضمینی نسبت به روش‌های صریح است. برای مثالی که حل دقیق زمانی منتفی است بایستی از قدم‌های زمانی کوچک استفاده کرد. این امر مستقل از پایداری یا یا تبادلی روش‌های حاکم است. در پژوهش حاضر، مسئله مورد مطالعه، مسئله غیرخطی است و حل زمانی مسئله مورد نظر است. بنابراین انتخاب روش‌های ضمینی با صریح در چنین مسائلی باعث انداده قدم زمانی مورد نیاز را راحتی به کارگیری این روش‌های می‌گردد. جوان اعمال روش‌های صریح بسیار سادتر از روش‌های ضمینی بوده و نیازی به حل دستگاه معادله‌های همکناران ندارد، این روش‌های صریح استفاده شده است.

2-3 - بیان حجم محدود معادله‌های حاکم

در بیان حجم محدود معادله‌ها، ابتدا فرضیه‌ای به سلول‌های
استادیکه در آن، α و β مقادیرهای پرداره که عمود بر سطح کنترل مورد مجازبندی و H مولفه‌های مولفه عمود بر سطح کنترل پرداره سرعت، و W انتقال کل است. شار عبوری از آن وی جه، به پردار حالت طرفین وی وابسته خواهد بود.

برای محاسبه روش‌های متنوع ابزارهای شده‌اند و نه یک از آنها دارای دو یا سه عضوی، زیرا یک از آنها بر مبنا اهداف و گروهی خاصی سطحی شود. انتخاب روش‌های مورد نظر از منابع این روش نیز به اهداف این پروژه بستگی دارد. این روش، از میان روشهای متعادل، تعداد کمی از آنها قابل استفاده است. به نوعی مختصر، روشهای مورد استفاده باید از اضطراب عدیدی از لحظه صبا پربردار باشد. زیرا هدف از این پروژه، مطالعه جریان‌های است که در آن امواج آکوستیکی این جریان‌ها خشونت دارند.

برای این منظور، وقت لازم بعدی زمان توزیع می‌شود که به پیش‌تر در مقاله مذکور، در نظر گرفته شد. این می‌کنیم به طور شفافی به شما پیشنهاد یا لحظه صبا است. برنامه‌های این پیشنهادی از روشهای که دارای لحظه عدیدی زایمی می‌باشد. علاوه بر کم بودن لحظه عدیدی، روشهای محاسباتی شار نیاز به داشتن امواج وی می‌باشد. مثال‌هایی تغییر ایجاد کرده، خاصیت پخش و الکتریکی است که موجب تغییر شکل موج وی می‌شود. خاصیت سویی که پایین ساخته و غیرتعاونی براساس زاویه می‌باشد. بررسی متغیرهای این ساخته در محاسبه سکافتهای تغییر شار از یک جهتی، متغیرهای سطحی در راستای همان جهت استفاده می‌شود. جیب‌های بیشترین واقعه روش را می‌توان در [5] یافت.

برای محاسبه شار رویی و حاصل از سطح کنترل از معادله زیر استفاده می‌شود:

$$f_i(R) = f_i(Q_L, Q_R) = \frac{1}{2} (f_i + f_{i-1}) - \frac{1}{2} \frac{d \phi}{d Q} \left|_{Q_R} - Q_L \right| (6)$$

در این معادله، ϕ و Q به ترتیب، به کیفیتی می‌باشد ϕ و Q به ترتیب، به کیفیتی می‌باشد.
3-5- محاسبه شار با دقت زیاد

جواب به دست آمده از حل معادله (3)، به صورت مقدار
متوسط بردار حالت در هر سرول محاسباتی است. در رابطه که
برای محاسبه بردار متوسط معادله (6) ارائه شده، از مقدار
متوسط بردار حالت و توجه مشترک بین سلولها استفاده
شدته است. این عاده معناست که فقط مراکز سلولها از یکدیگر
نکرش به تعمیر بردار شار ندارند. در روش های دقیق تر، تبعیشی
شان براساس مقدار بردار حالت در مراجع ترفین و جه مشترک
سلولها محاسبه می شودند. قرار دادی، برای این کار، بر
مبنای توزیع ثابت بردار حالت در هر سرول، توزیع دیگری از آن بازاسی
می شود. این مقدار بازاسی شده در محاسبه بردار شار مورد
استفاده قرار می گیرد.

در پاسخ به شوکی در دقت مربوط‌ این ردیف توزیع حالت به
مقدار متوسط ثابت در هر سرول با توزیع خطی حالت در هر سرول
جایگزین می‌شود. برای این منظری با استفاده از مقدار ثابت
جواب در سرول‌های گوگان‌ها، توزیع خطی جواب بازاسی می‌شود.
ممکن است بازاسی‌های مطلوب طریقی را منکن که توانایی به
کمکی حیاتی تولید نشود. به کمک این مقدار بازاسی شده،
جواب جدیدی به صورت مقدار متوسط در هر سرول به دست
می‌آید. با تکرار این فرآیند در هر قدم زمانی، محاسبه شار و در
نهایت جواب، با دقت بیشتر نسبت به استفاده از توزیع ثابت
حالت در هر سرول به دست می‌آید.

1-5- بایزاسی خطی

در شکل (1-الف) بخشی از یک شبکه محاسباتی نشان داده
شدته است. در این شکل سلول محاسباتی A به عنوان سرول در نظر
گرفته می شود که قرار است بازاسی جواب در آن انجام شود. شکل
تابع بازاسی خطی به صورت

\[Q(x,y) = Q(x_0,y_0) + \psi Q(x,y) \Delta \hat{r} \] (8)

است که در آن Q خاصیت مورد بازاسی، گریدان این خاصیت
داخل سرول مورد نظر (x_0,y_0) مختصات نقطه مشخص درون
سرول، ترجیحاً مرکز آن یا گره، و \(\Delta \hat{r} \) نیز بردار مکان نقطه
\(Q(x,y) \) در داخل سرول محاسباتی مورد نظر به صورت خطي حول نقطه

\[\hat{r} = \sqrt{\rho_L \rho_R} \left(\frac{1}{\rho_L} w + \frac{1}{\rho_R} (1 - w) \right)^{-1} \]

\[\bar{v} = v_L w + v_R (1 - w) \]

\[\hat{H}_0 = H_{0L} w + H_{0R} (1 - w) \]

\[\hat{c} = \sqrt{((y-1) \left(\hat{H}_0 - \frac{1}{2} (\hat{u}^2 + \hat{v}^2) \right))} \] (7)

دریک کمیتهای مورد تیزی به شکل متوسط رو به شویه‌ب‌لا محاسبه
می‌شوند.
\[
\Phi_A = \begin{cases}
\min \left(1, Q_{A}^{\text{max}} - Q_{A} \right) & j = a,b,c,\ldots,g \text{ if } Q_{A} - Q_{A} > 0 \\
\min \left(1, Q_{A}^{\text{max}} - Q_{A} \right) & j = a,b,c,\ldots,g \text{ if } Q_{A} - Q_{A} < 0 \\
1 & j = a,b,c,\ldots,g \text{ if } Q_{A} - Q_{A} = 0
\end{cases}
\]

(11)

\[
Q(x_0,y_0) = \frac{1}{\text{area}} \int_A Q(x,y) \, dA
\]

(9)

چنانچه از هر گونه غیرعادی ثابت در داخل استفاده شده باشد و مکان هندسی سلول باشد این شرط خود به خود برقرار می‌شود. بردار غیرعادی نمایانگر تختی از اجزای غیرعادی جواب در داخل سلول است که به کمک اطلاعات اطراف سلول محاسباتی به دست می‌آید. در ادامه، روش‌های محاسباتی این غیرعادی ارائه شده است.

شکل 14

نحوه تعیین پاساژ‌سازی معنی‌دار شده در معادله (8) به همراه محدودگر مناسب به صورت

\[
Q(x,y) = Q(x_0,y_0) + \Phi_A \nabla Q_A \cdot \Delta \nabla
\]

(10)

است. هدف اصلی، یافتن زیرگریند مقیاس \(\Phi_A \) است طوری که اصل یکنواختی جواب حاصل از پاساژ‌سازی خطا را به حداقلآید و جواب‌های غیرعادی به دست آمد از این‌جایی مقدار معادل از مقدار بیشترین و کمینه‌ترین مجازی‌های را به دست آفریند. این‌جایی در نظر بررسی رابطه نسبی می‌باشد. این روش برای درک دقیق زیر

\[
\nabla Q_A = \frac{1}{\text{area}} \int_Q \nabla Q \, dS
\]

(15-a)

یک کمیت از انتخاب مسیر و تابع انتگرال روز آن باستی دو قید زیر ارضا \(\nabla Q_A \) [1] نخست آن‌که اگر \(Q \) به طور خطا تغییر کند آن‌گاه به طور دقیق محاسبه شود. دوم آن‌که بالاتر از شکل‌های قابل محاسبه باشد. شرط اول به عنوان از طریق روش‌های دقیق در حل معادله‌های جابجایی خطی است. شرط دوم بودن می‌باشد که اگر فرم انتخاب مسیر و روابط انتگرالگری جامعه

\[
\nabla Q_A = \frac{1}{\text{area}} \int_Q \nabla Q \, dS
\]

(15-b)
برای محاسبه گرادیان Q را پی کرده و راه ساده و وجودی دارد که هر دوی آنها غیر شرطی باقی از ارضا می‌کند. در شکل ۲-الف سلول محاسباتی A به مرکزی A تشکیل گردیده است که مقدار shd این ۱۵ محاسبه محاسبه‌گری و گردشی. محاسبه محاسبه‌گری B Q، تکنیکی است که از تکنیکی Q - ۲۰۰۱ هر یک از اضلاع مشکل دهنده این سبب، به صورت متغیر در مقدار انتخابی آن محاسبه می‌گردد. از آنجایی که در روش‌های گروه متغیرهای میانه در که دهه‌های مقدماتی می‌شود، نتیجه به محاسبه Q روز گذاشته می‌شود. در این مقدار محاسبه‌گری (۱۵) پایه‌ای از مقادیر متغیر در Q در موارد شرایط مشترک بهره جست و برای مقدار Q در این سیستم، یک سیستم محاسبه‌گری مشترک در محاسبه محاسباتی پیش‌بینی در حواس ایجاد نمی‌کند. بنابراین به سهولت محاسباتی روشن اول به روش سوم پرتاب دارد و در کار حاضر نیز مورد استفاده واقع شده است.

۴-۶ محاسبه عوارض

اساسی‌ترین کار در محاسبه شرایط لزج، تعیین مشتقات مربوط به اول‌خواهد در وجوه تشکیل دهنده حجم کنترل است. یک راه مقدماتی این محاسبه در تمام سلول‌های محاسباتی براساس رابطه گری -گوس (معادله ۱۵)، است که به دنبال آن یک ترکیب ساده مشتقاتی مورد نظر روی یک یک از منظوره گری حساسی مشتقاتی درون سلول‌های به آن وجوه مشترکانه، به دست خواهد آمد. با توجه به شکل ۲-الف، مشتقاتی روی و یک طرف CV1 گره محاسبه‌گری مشتقاتی درون سلول‌های به دست می‌آید. راه دیگر، استفاده از ترکیب مشتقاتی محاسبه CV2 مشتقاتی درون شکل CV2 و مشتقاتی محاسبه گره‌های شکل است. به این ترتیب که از مشتقاتی درون سلول‌های محاسبه محاسبه رهگاه مشتقاتی مولتی‌پوزیتی و چرخ مشتق استفاده می‌شود. با توجه به شکل ۲-الف، به‌کمک مشتقاتی مولتی‌پوزیتی و چرخ مشتق استفاده می‌شود. آن گاه برای محاسبه مولتی‌پوزیتی با و چرخ مشتق از مقادیر مشتقاتی E مشتقاتی به دست می‌آید. آن Q یک شکل محاسبه‌گری درون سلول‌های مشتق با و چرخ مشتق از مقادیر مشتقاتی E می‌خشد.
شکل ۲- نواحی مورد نیاز برای محاسبه گرافیان

الف- محاسبه گرافیان روی گره شیبکه

ب- محاسبه گرافیان داخل یک سطح شبکه

محاسباتی که عبارتی از ظاهر تافته در پایان شار لزج متعادل (۱) به صورت ترکیبی از مشتق‌های مربعی و مشتق‌های اولیه میدان‌های مسئول می‌باشند. بنابراین، با معلوم بودن این متغیرها و مشتق‌های آنها روی ووجه تغییرات حجم کنترل، محاسبه بردار شار لزج سراسر خواهد بود. جزئی‌که با این آن توجه کردی، این است که برای محاسبه زیاد در روشهای محاسبه این مشتق‌ها، نتایج حاصله جنگ تفاوت‌یابی را نشان نمی‌دهند. این موضوع با حل مثلثه‌ای مبتنی روی مسیر بوده، به تخت و مقایسه نتایج با حل معروف بازی‌های تحقیق شده است. به طور کلی، روشهای متعارف محاسبه مشتق‌های لزجی در شبکه‌های پی سازمان‌های تابع نسبتاً مشابهی را به دست می‌دهد [۱۳].

۲- بررسی نتایج

پیدا کردن اندرکنش جریان و اکوستیک در یک نوع موتوور با شن

روی گره‌های B و A استفاده می‌شود. مشتق‌های گره و سطوح این در فاصله از رابطه گره‌های گوس محاسبه می‌شوند. این روش دارای دقت از متریکس دور است ولی نازندند محاسبه دو مشتق دیگر است. یک راه دریگ برای محاسبه مشتق‌ها روضر وجود تشکیل دهنده حجم کنترل، محاسبه مستقیم آن‌هاست. به این ترتیب که با تشکیل حجم کنترل مناسب اطراف هر وجه با استفاده از رابطه گوس مشتق‌های لازم را در آن محاسبه شوند. برای تشکیل حجم کنترل اطراف یک وجه راه‌های زیادی وجود دارد. یکی از راه‌های سبدار ساده برای این منظور در شکل (۲-چ) نشان داده شده است. حجم کنترل مناسب در این روش از اتصال گره‌های در طرف E به دو انتهای آن، تشکیل می‌شود. با معلوم بودن متغیرهای روی چهار گره‌ای یکین حجم کنترل، محاسبه مشتق آنها می‌سرد می‌شود. متغیرهای میدان‌روی گره‌های B و A یکی از مشتق‌های C1 و C2 نیز به راحتی قابل مقدار می‌شوند.
از آن خارج نمی‌یابد. در سه حالت (د) تا (و) شکل (۴)، مسطح جابجایی در حال سوزش فرضی شده است. در همین شکل، نشان داده شد که ۲۴ عقب، نقشه سطح سوزش در جهتی شعاع و محور در نظر گرفته شده و نشان داده شد که اصل اصل به دست آمده است. خواص فیزیکی گازهای حاصل از احتراق که در محاسبات از آنها استفاده شده، در جدول (۱) نشان داده شده است.

۲-۴ شارای علیه و منزیل

شرایط اولیه برای شرایط محاسبات، شرایط اندسی در نظر گرفته شده است. با شرایط محاسبات و گذشته زمان‌های و روند گازهای حاصل از احتراق سوخت جامد، فشار محفظه موئتور یافته و به مقدار معادلی می‌رسد که قطر گازهای نازل موئتور از آزادسازی چرخ ناپدید از سوخت تعیین می‌شود. از نهایتی که روند بارداری لازم حاصل در محاسبه‌ی ضروری غلظت عضو زمان محاسبات را به‌خود اختصاص می‌دهد، این روش در محاسبات می‌گردد. با استفاده از این روند انجام می‌شود. این جواب به دلیل این است که بودن مربوط به مقداری ضروری شار (زیاد بودن لزج عضدی) حاول نوسانات قابل توجهی نیست و در اغلب نقاط داخل موئتور، بردار حالت ثابت است. این جواب نسبتاً دامنه‌ای به عنوان حالت با شرایط اولیه برای ادامه محاسبات با دقت بالا مورد استفاده قرار می‌گیرد.

۱-۴ معرفی موئتور

در (۴) حالت‌های مختلف موئتور، در منشأی D، قدر موئتور، ضخامت سوخت باقیمانده موئتور L، و نیز به ترتیب، H طول قسمت باقیمانده سوخت و طول محفظه خالی از سوخت است. نقاط ۱۴، ۲۴ و ۳ نماهنگ قاطعی هستند که در آنها فشار موئتور استحکام شده است. از شکل نشان داده شده در این شکل، شکل و موقعیت اولیه به دست آمده است. خواص سطح سوزش فرضی شده در این شکل، به وضوحی است. سطح جانی بر گرین سوخت را که نمی‌توان بازی با حالت سوزش در نظر گرفت. جنگل این سطح در حالت سوزش فرضی شده، آنگاه محسولات حاصل از احتراق سوخت از آن خارج شده و به کل جریان گاز درون موئتور می‌پیوندد. در غیر این صورت این سطح، عایق فرضی شده و جرمی
جدول ۱- خواص ترمومیکی محصولات احتراق سوخت (سیستم متريك)

<table>
<thead>
<tr>
<th>R</th>
<th>μ</th>
<th>k</th>
<th>Pr</th>
<th>γ</th>
<th>ρ_s</th>
<th>T_flame</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>299/5</td>
<td>36E-5</td>
<td>0/10</td>
<td>1</td>
<td>1/14</td>
<td>1433</td>
<td>3397</td>
<td>13E-3</td>
</tr>
</tbody>
</table>

این جدول به منظور محاسبه انگش مشترک نوع شرط مرزی برای دیواره‌های میدان استفاده شده است. در حالت مقایسه سیستم شرط مرزی متقابل به کار برده شده است و برای دیواره‌های جامد موتور، شامل سر موتور، ناحیه ورودی به نازل، و بدن تازه شرط مرزی در محاسبات انگش مشترک نوع شرط مرزی برای دیواره‌های میدان استفاده شده است. در حالت مقایسه سیستم شرط مرزی متقابل به کار برده شده است و برای دیواره‌های جامد موتور، شامل سر موتور، ناحیه ورودی به نازل، و بدن تازه شرط مرزی در محاسبات انگش مشترک نوع شرط مرزی برای دیواره‌های میدان استفاده شده است. در حالت مقایسه سیستم شرط مرزی متقابل به کار برده شده است و برای دیواره‌های جامد موتور، شامل سر موتور، ناحیه ورودی به نازل، و بدن تازه شرط مرزی

شکل ۴- شش هندسه متقارن برای یک موتور

دیواره جامد بدون لنز خش سخت استفاده شده است. برای سطح سوخت، شرط مرزی دیواره با پاشش چرم و انرژی و بدون لنز خش در نظر گرفته شده است. خواص به کار برده شده در این نوع مرز در جدول (۱) در ارائه‌ای شده است. برای دهنه خرچی نازل نیز شرط مرزی

استقلال سال ۱۹، شماره ۴، اسفند ۱۳۷۹

س.136
و بعد از برخورد با دوباره همگرایی نازل از بین می‌روند. هسته اولیه این گردباده‌ها لبه انتهایی سوخت است. از این شکل می‌شود که گردبادی اول از این نقطه جدا شده و به سمت قسمت انتهایی موتر حرکت می‌کند. بعد از اینکه گردبادی جدا شده به دوباره تشکیل می‌شود و به این ترتیب همواره چندگردبده در موتر در حال انتشار وجود دارد. در شکل (۴) نوسانات فشار در نقطه مختلف موتر شان داده شده است. این نقاط در شکل‌های (۴) نشان می‌دهند. به طور خلاصه، نقطه ۱ در مجاورت لبه سوخت، نقطه ۲ در راستای نقطه ۱ و در نزدیکی نازل و نقطه ۲ در راستای دو نقطه دیگر و در ابتدای موتر واقع شده‌اند. در شکل (۵-د) فرکانس متوسط نوسانات که از نمونه موتر در نقطه ۲ به دست آمد، نشان داده شده است. خلاصه نتایج این خلاصه در جدول (۲) تحت عنوان چگونگی شده است.

در شکل (۷) نسبت از رفتار نمونه به یکساله نشان داده شده در شکل (۷-الف)، در وضعیتی که سطح جانبی آن در حال سوزش است، این نمونه در جدول (۲) با خشکی (۲) مشخص می‌شود. در این شکل نیز شیب‌های دیدنی میدان و خطوط از جریان در توابع زمان ۱/۴ پروسید نوسانات فشار نشان داده شده است. مشاهده می‌شود که در گردبادی در دوباره در حال حرکت به سمت نازل هستند. جمله‌ای از گردبادیها در فاصله قابل توجهی از پایه سوخت قرار دارد. وجود گردبادیان شدید سرعت در حوالی این نقطه موضوعی‌ای برای گردبادیان و تشکیل گردبادی را قهرآمیس می‌سازد. در شکل (۸) نوسانات فشار در نقاط مختلف این موتر نشان داده شده است. شکل‌های (۸-الف) تا (۸-ج) رفتار فشار در نقاط ۱ تا ۳ نشان می‌دهد. فرکانس نوسانات فشار در نقاط ۱ تا ۳ نشان داده شده است. بیشتر، مناطق دامنه نوسانات فشار در اشکال مربوط به حالات اول شکل‌های (۸)، و حالات دوم، شکل‌های (۸) مشاهده می‌شود که دامنه نوسانات فشار در حالات دور کمتر از این یک وضعیت از قبل بالای پوششی بیشتر به ویژه به ویژه از اثر دراز مدت سطح جانبی سوخت است. حالات (۵-ج) جدول (۲) منطقه هیدرودینامیک نشان داده شده در شکل (۵-د) است. در این هندسه، لبه انتهایی سوخت با شبکه درجه یک در دوباره موتور تولید می‌شود. در شکل (۵) شبکه‌های میدان و خطوط جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوط جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوط جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوط جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوط جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوط جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوت جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوت جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوت جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوت جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوت جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوت جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوت جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوت جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوت جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوت جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب نوسانات فشار نشان می‌دهد. در این تاریخچه میدان و خطوت جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب NOSANAT FASAR دامنه نوسانات فشار در نقطه ۲ و فشار متوسط $\Delta \rho$ نقطه ۲ به این شکل (۶-د) متغیر می‌شود. در این هندسه، لبه انتهایی سوخت با شبکه درجه یک در دوباره موتور تولید می‌شود. در شکل (۶) شبکه‌های میدان و خطوط جریان در زمان‌هایی به فاصله ۱/۲ دوره تناوب NOSANAT FASAR
جدول ۲ - شرایط و نتایج مطالعه شده برای اندرکنش جریان و اکوستیک

<table>
<thead>
<tr>
<th>\bar{p} (bar)</th>
<th>Δp (Pa)</th>
<th>HZ (HZ رفتار متوسط)</th>
<th>سطح جانبه سوخت</th>
<th>H/D</th>
<th>حالات</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/42</td>
<td>1178</td>
<td>1562</td>
<td>عایق</td>
<td>1/233</td>
<td>1</td>
</tr>
<tr>
<td>4/96</td>
<td>8732</td>
<td>1310</td>
<td>در حال سوزش</td>
<td>1/233</td>
<td>2</td>
</tr>
<tr>
<td>4/99</td>
<td>7019</td>
<td>1334</td>
<td>در حال سوزش</td>
<td>1/222</td>
<td>3</td>
</tr>
<tr>
<td>4/52</td>
<td>نامشخص</td>
<td>1320</td>
<td>در حال سوزش</td>
<td>1/111</td>
<td>4</td>
</tr>
<tr>
<td>5/09</td>
<td>8507</td>
<td>2372</td>
<td>در حال سوزش</td>
<td>1/333</td>
<td>5</td>
</tr>
<tr>
<td>4/88</td>
<td>3783</td>
<td>1339</td>
<td>در حال سوزش</td>
<td>1/222</td>
<td>6</td>
</tr>
<tr>
<td>4/55</td>
<td>1/434</td>
<td>1540</td>
<td>در حال سوزش</td>
<td>1/111</td>
<td>7</td>
</tr>
<tr>
<td>4/47</td>
<td>نامشخص</td>
<td>عایق</td>
<td></td>
<td>1/333</td>
<td>8</td>
</tr>
</tbody>
</table>

شکل 5 - شبکه‌بندی موتور و خطوط جریان درون آن در فواصل زمانی $1/6$ پریود نوسانات برای حالات (۱)
شکل ۶- رنگارنگی فشار در نقاط مختلف موتور برای حالت (۱)

شکل ۷- شبکه‌بندی موتور و خطوط جریان درون آن در فواصل زمانی ۱/۶ پروپود نوسانات برای حالت (۲)
شکل 5- شیبگزینی موتور و خطوط جریان درون آن در فواصل زمانی 1/6 یک‌پروپید توسانات برای حالت (1379)

شکل 6- فشار در نقطه ۱

ال- فشار در نقطه ۱

ب- فشار در نقطه ۲

شکل 8- رنگارنگی کار در نقاط مختلف موتور برای حالت (۲)

شکل 9- نمودار فشار نقطه ۲ در فضای فوریه

شکل ۱۰- فشار در نقطه ۳

شکل ۱۱- نمودار فشار نقطه ۳ در فضای فوریه

شکل ۱۲- رنگارنگی کار در نقاط مختلف موتور برای حالت (۳)
روش‌های حل بر سر می‌گردد. همچنین وجود عوارض در هندسه
موتورهای مورد مطالعه گردیده و یا نباید از نظر دو داشت. فشار متوسط
موتور در هر دو تحقیق به یکدیگر نزدیک است. می‌توان به
متن‌ریز در مرجع [6] در ارائه موثرهای جدید تاکید مجدد به یک
هندسه است و اثر تغییرات هندسه بر ماهیت نوسانات فشار
گزارش نشده است.

با کاهش H/D از 23/4 هزئیت در شکل (2) تا 22/3 هزئیت
نوسانات فشار ایجاد می‌شود.

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
نوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
nوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3

این وضعیت در شکل (2) تا 22/3 هزئیت در شکل (2) هزئیت
nوسانات فشار ایجاد می‌شود. با کاهش H/D از 23/4 وتا 22/3
شکل 11- شبکه‌بندی موتور و خطوط جریان درون آن در یک زمان برای حالت (3)

الف - فشار در نقطه ۲

ب - نمودار فشار نقطه ۲ در فضای فوریه

شکل 12- رفتار فشار در نقاط مختلف موتور برای حالت (3)

الف - فشار در نقطه ۲

ب - نمودار فشار نقطه ۲ در فضای فوریه

شکل 13- شبکه‌بندی موتور و خطوط جریان درون آن در یک زمان برای حالت (6)

الف - فشار در نقطه ۲

ب - نمودار فشار نقطه ۲ در فضای فوریه

شکل 14- رفتار فشار در نقاط مختلف موتور برای حالت (6)
شکل 15- شیب‌های موتور و خطوط جریان درون آن در فواصل زمانی $1/4$ پریود نوسانات برای حالت (8)

پ - فشار در نقطه 2

الف - فشار در نقطه 1

د - نمودار فشار نقطه 2 در فواصل فوریه

ج - فشار در نقطه 2

شکل 16- رفتار نگار در نقاط مختلف موتور برای حالت (8)

استقلال، سال 19، شماره 2، اسفند 1379
دریافت که دامنه نوسانات فشار در این حالت از دو حالت (1) و (2) کمتر است و این امر بررسی مطالعه گنیه شده باقی پیشنهاد است.

حالت (3) مندرج در جدول (2) از تغییر H/D به 111/100 تبیه می‌شود که منطقه بر هندسه نشانی داده شده در شکل (4-ج) است.

در این حالت نوسانات پیش‌تر در دامنه فشار داراد که فرکانس از H/D در حالات (2) و (3) تغییر می‌کند. این تغییر از طریق تغییر هندسه به وضعیت نشان داده شده در شکل (4-ه) و سطح جابجایی سوخت کاهش می‌یابد. این حالت منطقه بر حالت (6) در جدول (2) است. در شکل (13) شیب‌نگار میدان و خطوط جریان درون موتر در یک زمان خاص، نشان داده شده است. در این شکل وضعیت گردبازی شکل تغییرات موتر به خوبی نمایان است. در شکل (12) بررسی فشار در ناحیه 2 و همچنین فرکانس نوسانات نشان داده شده است. کاهش شدت فرکانس نوسانات مؤثر از بررسی نشان دهنده گریز سوخت شخصی با پردازنده تنیم 500 به ماه‌های 5-0 و برای شبکه‌ای که 5100 گرده در حدود 24 دقیقه است. طبیعی و دیگر قسمت‌های قسمت زمان در حالت (3) باید قطع صرف شده است. این میزان زمان ناشی از اندکی مقیاس زمانی کوچک است.

نتیجه‌گیری

بررسی کلی نتایج تشکیل می‌دهد که دامنه نوسانات در مواردی که لبه انتقالی سوخت برای ۷۵ درجه به دنبال موتر می‌شود، حالت‌های نشان داده شده در شکل‌های (۶-۲) (۲) کمتر از انتقال تیز آن (حالت‌های نشان داده شده در شکل‌های (۱-الیف) (۲-ج) است. بنابراین، برای کاهش توان نوسانات جریان داخل موتر باید در طریق گریز سوخت دقت لازم بی‌میل داشت. از این بابت نتایج اولیه نوسانات جریان داخل موتر تعیین کننده شکل‌گیری هسته‌ی اکوستیکی در موتر است. کاهش نوسانات در ۱/۶ پرید و نوسانات دامنه نشان داده شده است. در شکل (16) ۱/۶ نوسانات فشار در نقاط مختلف این موتر نشان داده شده است. شکل‌های (14-الیف) (14-ج) بررسی فشار در نقاط (3) را نشان می‌دهد. فرکانس نوسانات نشانه دوم در شکل (16-د) نشان داده شده است. شبکه‌های این حالت یک متری در شکل (16) از حالت‌های دیگر است. الگوی گردآمیزی شکل‌های در این حالت است.
توپیت می‌کند. تناوب به دست آمده از این مطالعه گویای این است
که اندرکش چرخان متوسط و اکوستیک محفظته‌ی موتوئر متون در
شکل‌های محوتی ویژه‌ای ناپایدار اکوستیکی نش می‌دهد. به‌عکار ممکن بود آن همین نتیجه‌ی توزیع بین نگهداری فنون
توده‌ی میانی در ترکیب‌های می‌شود. زیرا همان طور که نتیجه
و فردانی (۸-۶) تعدادی تیترا و با تغییر هندسه‌ی
داخلی موتوئر فرانکسن نوسانات اکوستیکی نیز تغییر می‌کند.

تشکر و قدردانی
بدین وسیله از معاونت پژوهشی دانشگاه شریف به
خاطر تأمین هزینه‌ی این تحقیقات، صمیمانه تشکر و قدردانی
می‌شود.

1. Roe's flux function
2. Flandro and Jacobs
3. Culick
4. Kourta

5. MacKormac
6. cell-center
7. cell-vertex

مراجع

6. Kourta, A., "Acoustic-Mean Flow Interaction and

در شکل‌های (۶-۷) ناپایداری و فرآیند در تیترا و با تغییر هندسه‌ی داخلی موتوئر فرانکسن نوسانات اکوستیکی نیز تغییر می‌کند

باد، در همه موارد نوسانات فشار با فرانکسن کوچک، ظاهر شده
است. با کمک، شکل جلویی معکوس نشده باشد، ولی، در نتیجه نوسانات کاملاً بی‌بست و در دوم آنها امکان نوسانات فشار با فرانکسن
برگیرد و دارد. همچنین در همه حالت‌ها، کاملاً نوسان
میدان با فرانکسن کوچک اتفاق می‌افتد.

اگر نوسانات پروپوکسی فشار در دامنه‌ی نوسانات مطلوب شده،
گویای امکان اندرکش قرار متوسط و اکوستیک، یا به عبارت
دیگر، ابتغای هندسه‌ی داخلی موتوئر است. ناپایداری اکوستیکی در
موتوئر سوخت جاده بازیابی مه‌ای اولیه است. این هسته
نوسانات کاملاً اکوستیکی را در میدان موتوئر پخش کرده و سطح
در حال سوخت سوخت، که به این نوسانات حساس است، آن را

واژه نامه

کلیات انتخابی، فرآیند و فنی، و کلیات انتخابی، فرآیند و فنی

7. لیست انتخابی، فرآیند و فنی، و کلیات انتخابی، فرآیند و فنی

