مقاله کوتاه

به‌سازی سیستم تعیق عقب خودروی سواری به منظور بهبود عملکرد دینامیکی آن

رضا کاظمی* و بهزاد حامدی**
دانشگاه مهندسی مکانیک، دانشگاه صنعتی امیرکبیر
 مركز تحقیقات ایران خودرو، واحد دینامیک خودرو

دریافت مقاله: 21/8/78 - دریافت نسخه نهایی: 2/9/78

چکیده - این مقاله با توجه به نتایج پروژه تحقیقاتی تحت عنوان "به‌سازی سیستم تعیق عقب پیکان 1600" تهیه شده است. هدف از انجام این پروژه، بهبود عملکرد دینامیکی عقب پیکان می‌باشد. سیستم تعیق اولیه پیکان در حس حوضر نیز در نمونه‌های تولیدی دریغ‌زدی می‌شود. از این رو از یک استقلال صلب به همراه فشرده نتیج تکه کنی شده است که پس از چاپ‌گیری کردن مکانیزم سیستم جدید با مایع خورشی تحت عنوان مدل پان‌تارین آمده فشرده‌های حلقوی بیشتر قابل توجهی را در عملکرد دینامیکی خودرو نشان داد. به منظور بررسی تأثیر تغییر پارامترهای سیستماتیکی و دینامیکی خودرو مانند: نسبت موتور رول، سختی رول و بر روی رفتار دینامیکی از محله‌های جدید و به دسته‌بندی و نرمال پایین برای بررسی سوالاتی که نتایج به دست آمده بهبود قابل توجهی را در عملکرد دینامیکی خودرو نشان می‌دهند.

Improving the Dynamic Performance of Passenger Cars via Rear Suspension Mechanism Modification

R. Kazemi and B. Hamedi
Vehicle Dynamics Department, Iran Khodro Company Research Center

ABSTRACT- This paper presents the results of a recent project of IKCo's research center to modify Paykan 1600's rear suspension mechanism with the purpose of improving comfort, stability and handling qualities. The car was originally equipped with a solid rear axle with leaf springs. By replacing the original mechanism

*دانشجوی دکترا
**کارشناس ارشد

استقلال، سال 19، شماره 2، اسفند 1379

191
فهرست علائم

<table>
<thead>
<tr>
<th>a</th>
<th>جمل</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>عقب</td>
</tr>
<tr>
<td>c</td>
<td>Cs</td>
</tr>
<tr>
<td>d</td>
<td>Ctot</td>
</tr>
<tr>
<td>e</td>
<td>Fyi</td>
</tr>
<tr>
<td>f</td>
<td>Fz</td>
</tr>
<tr>
<td>g</td>
<td>شتاب زاویه (mrad)</td>
</tr>
<tr>
<td>h</td>
<td>r</td>
</tr>
<tr>
<td>i</td>
<td>K tot</td>
</tr>
</tbody>
</table>

1- مقدمه

سیستم‌های تعیین‌کننده نظارت و حزین خودرو، فرآیند کردن کنترل جهتی، پایداری مطلوب و کاهش ارتقاء از طرف جاده به سرتاسرین در خودرو استفاده می‌شود.

سیستم‌های تعیین‌کننده نظارت با توجه به دو فاکتور مهم پیش راحتی سواری و کنترل جهتی طراحی می‌شود. امروزه به دلیل وجود ارتقاءات و زیری حرکتی، فرآیند سرعت و کاهش فتیت (psi) از مدتها نیاز به باکتری و فرنگیان نیست. از فرآیند اعطای به جای تخت سیستم‌های تعیین‌کننده استفاده می‌شود. هدف از انجام این پروژه، جایگذاری کنترل مناسب برای سرعت و با توجه به اعمال کمترین تغییرات به جای کنترل می‌شود. فرآیند فرمول‌گذاری برای خودرو سرعت نظر فرآیند شد.

2- سیستم تعیین اکسل صلب با فن تخت (سیستم فعال)

در این مکانیزم، دو فن تخت اکسل را در دو نقطه که اصولاً چشمی و گردوی را گرفته می‌شود، به شاسی متصور می‌کند. علاوه بر این، کمک‌نکامی ساده یا کمیز اکسی را اکسل نصب می‌شود. به طوری که اکسل نصب شده در اثر اشتراک‌گذاری جاده کنترل کند. این مکانیزم را در دو نقطه به طور قابل توجه در خودروهای سواری و ستیفن مورد استفاده قرار می‌گیرد.

توجه به این نکته ضروری است که فن‌نکامی تخت به‌طور طبیعی در مرحله انجام شود. استفاده از این مکانیزم امکان‌پذیر است که با این وجود در اکسل‌های سواری مجهز به این
نوع سیستم تعلیق، افتخارات سطح جاده به ویژه بست اندکه‌های برگ، موجب قدرت حرکتی خودرو و کاهش راحتی سواری خواهند شد. معمولاً ارتقای‌های جانبی، طولی و پیچشی از مهم‌ترین ارتقای‌های موجود در سیستم‌های تعلیق اکسل صلب هستند (۳).

۳ - تعلیق سه لنکی با فن حلقی

مکانیزم مورد نظر از دو بزرگ‌ترین پایانه، یک بزرگ‌ترین بالایی و یک میله عرضی به همراه دو فن حلقی تشکیل شده است. میله عرضی علاوه بر جذب اثرهای جانبی، بخشی از میزان پیچشی اکسل را نیز کنترل می‌کند. بازوهای گیری پایین تغییر می‌کند طولی اکسل در اثر ترور و یا شتاب خودرو و بزرگ‌ترین بالایی ضمن حفظ موقعیت اکسل نسبت به بدن، حرکت‌های جانبی اکسل را نیز کنترل می‌کند. با تغییر مجموعه بازوهای کنترلی و میله عرضی باعث حفظ وضعیت ماسیر اکسل نسبت به بدن خواهد شد. در این مکانیزم تغییرات کمتری در شرایط مختلف حرکت خودرو باعث می‌شود که انتقال بار به صورت یک‌نواخت‌تر رود و چرخها توزیع شود که همین عامل باعث بهبود عملکرد خودرو در شرایط متنوع می‌گردد. این مکانیزم به طور شماتیک در شکل (۱) نشان داده شده است.

۴ - بهسازی سیستم تعلیق عقب

برای بهسازی سیستم تعلیق عقب مراحل مختلفی دنبال شده که

شکل ۱ - روش تعمیم مركز رول تعلیق عقب

شکل ۲ - روش تعمیم مركز رول تعلیق عقب قدمی

شکل ۳-الف - روش تعمیم مركز رول مکانیزم تعلیق جلو

شکل ۳-ب - روش تعمیم مركز رول تعلیق عقب قدمی

شکل ۳-ج - روش تعمیم مركز رول تعلیق عقب جدید
در بهبود تعلیق برای بهبود سوادهای مکانیکی، سطح‌های اثردار را بر روی رول و مکان‌های دیگر نظیر مانند ساخت آهنگساز، ساخته شده‌اند. جهت ساخت آن‌ها، از ابزارهای مختلف جایگزین شده است. مهم‌ترین ابزاری که برای این‌کار در نظر گرفته شد، قرار دهنده و نخ نازک‌تر مشابه است که در این نوع از تغییرات رودخانه‌ها مکانیزم‌های مختلف مورد بررسی قرار گرفته‌اند.

5- مدل‌سازی دینامیکی خودرو

به منظور بررسی عملکرد دینامیکی خودرو قبل و بعد از تغییرات، مکانیزم تحلیل عقب، از ابزارهای ریاضی می‌پردازند تا به‌طور حالتی سواری و کشکت جهت استفاده شده است. در این مدل، کلیه اجزای خودرو از قبیل جرم فنی و جرم‌های غیر قابل جمع و عقب به صورت تومر سازه یا جسم تا کلیه جسمان و کامک فنر به پکیج‌گر می‌رسند و در نظر گرفته می‌شود. با استفاده از معادله‌های تیپ‌تک، معادله‌های حاکم بر سیستم تغییرات و سیستم‌ها استفاده از روش‌های مختلف کوکتی با فاصله زمانی ثابت، حس اندازه‌گیری‌ها از روی پاسخ‌های زمانی حاصله می‌توان عملکرد خودرو را در شرایط مختلف حس حکمت ویژه‌ی کاردارد [۱۳۵۱].

5-1- مدل سواری خودرو

به منظور بررسی حس حکمت ویژه‌ی کاردار حکمت ویژه‌ی کاردار حس حکمت ویژه‌ی کاردار حکمت ویژه‌ی کاردار حس حکم...
شکل ۵- مدل سه درجه آزادی کنتورل جهتی خودرو

به صورت زیر است:

\[
\begin{align*}
M \left(\ddot{V} + Ur \right) + M_s h_{ra} \ddot{p} &= F_{yf0} + F_{yf1} + \\
F_{yf0} + F_{yf1} &= a \left(F_{yf0} + F_{yf1} \right) \\
b \left(F_{yf0} + F_{yf1} \right) - \sum_{i=1}^{4} M_{zi} &= \\
F_{s1} &= K_{s1} \left[Z_b + (-1)^{i} t_1 \theta_s + a(-1)^{i} \phi_s = Z_1 \right] + C_{s1} \left[Z_b + (-1)^{i} t_1 \theta_s + a(-1)^{i} \phi_s - Z_1 \right] - \\
\left(-1\right)^{i} K_{e} \left(Z_2 - Z_1 \right) t_1^2 &= i = 1, 2 \\
F_{si} &= K_{s1} \left[Z_b + (-1)^{i} t_1 \theta_s - b(-1)^{i} \phi_s - Z_{ar} \right] + C_{s1} \left[Z_b + (-1)^{i} \theta_s \right] - \\
\left(-1\right)^{i} t_1^2 \theta_{ar} \right] + a(-1)^{i} \phi_s - Z_{ar} - (-1)^{i} t_1^2 \theta_{ar} \right] &= i = 3, 4 \\
F_{t1} &= K_{t} \left(Z_1 - P_1 \right) + C_{t} \left(\dot{Z}_1 - \dot{P}_1 \right) + \\
\left(Z_1 - (-1)^{i} t_1 \theta_{ar} - P_1 \right) + \\
C_{t} \left(\dot{Z}_1 - (-1)^{i} \theta_{ar} - \dot{P}_1 \right) &= i = 1, 2 \\
&= i = 3, 4
\end{align*}
\]

در این مدل به منظور توصیف رفتار غیرخطی تاییر در شرایط کنترل جهتی از مدل کلسی‌پنی استفاده شده است. در این مدل نیروهای طولی، جانبی و میان کننده تاییر به صورت توابع غیرخطی از لغزش طولی، زاویه لغزش جانبی، بار ترمال و زاویه کمر در نظر گرفته می‌شوند.

۶- شیب‌سازی دینامیکی خودرو

به منظور ارایب‌سازی عملکرد سواری و مانور بذیری خودرو در شرایط مختلف جاده و ورودی فرمان، برنامه‌ریزی‌های به‌زبان چیپر شد. از قابلیت‌های این برنامه‌سازی به‌مثابه زیر MATLAB اشکال کرد:

الف- شیب‌سازی رفتار سواری خودرو: در این حالت می‌توان پاسخ‌های زمانی مربوط به چاه‌جایی، سرعت و شتاب بدن و اکسلرای جلو و عقب و همچنین نیروهای وارده از طرف سیستم تأثیر بارامترهای مهمی از جمله رول استر و... رول کمپر ۲۰۰ که در اثر هندسه مکانیکی تعیین پدیدا می‌آید و بر روی عملکرد هندسی‌های خودرو تأثیر خواهند داشت. این مدل سه درجه آزادی کنتورل جهتی در شکل (۶) نشان داده شده است.

استقلال، سال ۱۹، شماره ۲، اسفند ۱۳۷۹

۱۹۵
تعمیق به بنده‌ها، از سویی که رشته‌ای مختلف جهت خوردرو برای شرایط پایدار و
گفته‌گرایی این حالت، نمونه‌برداری مربوط به پاسخ‌های زمانی شتاب
جانی، سرعت جانی، نرخ تغییرات یا و یا راهی روش‌های
متغیر فرمان از قبیل پله‌ای، ضریب و سینوسی به دست می‌آید.

با توجه به نتایج حاصله می‌توان تأیید سختی، توزیع جرم و
سایر پارامترهای دينامیکی را بر روی رفتار خوردرو به ویژه کنترل
جهت آن بررسی کرد.

با استفاده از این برنامه و اطلاعات ورودی مورد نیاز مربوط به
پارامترهای دینامیکی پیکان از قبیل وزن، انرژی، سختی و میرایی،
جدول (2)، می‌توان عملکرد خوردرو را قبل و بعد از اعمال تغییرات
مورد بررسی قرار داد. پاسخ‌های زمانی خوردرو برای ورودی‌های
خاصی از جاده و فرمان (ورودی جاده به صورت پستی و بلندی‌های
و فرمان به صورت سینوسی) در شکل‌های (6) تا (11) آورده
شدیدند.

شکل 8- مقایسه سرعت تناقلی پیمند خریدر در اثر ورودی
جاده مطابق شکل (1)

شکل 9- ورودی فرمان به منظور بررسی کنترل جهت خوردرو

شکل 10- مقایسه شتاب جانی خریدر در اثر ورودی فرمان
مطابق شکل (2)

شکل 11- مقایسه زاویه رول پدنده خریدر در اثر ورودی فرمان
مطابق شکل (2)

شکل 7- مقایسه شتاب تناقلی پیمند پدنده خریدر در اثر
ورودی جاده مطابق شکل (1)
<table>
<thead>
<tr>
<th>شاخص مورد نظر</th>
<th>وضعیت خودرو قبل از تغییر سیستم تعیق</th>
<th>وضعیت خودرو پس از تغییر سیستم تعیق</th>
<th>عنوان آزمون انجام شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>تقاضای فرمان</td>
<td>۱</td>
<td>۵</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>۲</td>
<td>۵</td>
<td>۲</td>
</tr>
<tr>
<td></td>
<td>۶</td>
<td>۵</td>
<td>۶</td>
</tr>
<tr>
<td></td>
<td>۷</td>
<td>۶</td>
<td>۷</td>
</tr>
</tbody>
</table>
| | ۶ | ۵ | ۶ | پایداری جهت خودرو |}

1- برای نشان دادن کیفیت عملکرد خودرو در تست‌های حسی مختلی توسط رانندگان آزمون با اعداد صفر تا سه استفاده می‌شود به طوری که شماره ۱۰ حالت ابدال را نشان می‌دهد.

<table>
<thead>
<tr>
<th>مقادیر اندازه‌گیری</th>
<th>پارامترهای خودرو برای شبیه‌سازی دینامیکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شده</td>
<td>جرم کل خودرو (kg)</td>
</tr>
<tr>
<td></td>
<td>جرم قرینترین جلو (kg)</td>
</tr>
<tr>
<td></td>
<td>جرم قرینترین عقب (kg)</td>
</tr>
<tr>
<td></td>
<td>جرم اینترسی رول خودرو (kgm²)</td>
</tr>
<tr>
<td></td>
<td>جرم اینترسی پیج خودرو (kgm²)</td>
</tr>
<tr>
<td></td>
<td>جرم اینترسی دو عقب خودرو (kgm²)</td>
</tr>
<tr>
<td></td>
<td>فاصله جلویی بین چرخهای جلو (m)</td>
</tr>
<tr>
<td></td>
<td>فاصله جلویی بین چرخهای عقب (m)</td>
</tr>
<tr>
<td></td>
<td>ارتفاع مرکز تلف خودرو تا زمین (m)</td>
</tr>
<tr>
<td></td>
<td>ضرب دمپنگ کمک فر جلو در حالت‌های باز شدن و بسته شدن (Ns/m)</td>
</tr>
<tr>
<td></td>
<td>ضرب دمپنگ کمک فر عقب در حالت‌های باز شدن و بسته شدن (Ns/m)</td>
</tr>
<tr>
<td></td>
<td>سختی فرن حلقوی تعیین جلو (N/m)</td>
</tr>
<tr>
<td></td>
<td>سختی فرن حلقوی تعیین عقب برای مکانیزم جدید (N/m)</td>
</tr>
<tr>
<td></td>
<td>سختی نرم تا یار (N/m)</td>
</tr>
<tr>
<td></td>
<td>سختی نرم تا یار (Nm/deg)</td>
</tr>
<tr>
<td></td>
<td>نسبت فرمان</td>
</tr>
</tbody>
</table>

197
6. Roll spring bar
7. Three links with Panhard rod
8. Roll placer
9. Roll camber
10. Roll camber
11. Bump
c. Roll spring