The Performance of Compost Biofilter for Hydrogen Sulfide Removal from Contaminated Air

S. A. Shojasadati and A. Seifi
Biotechnology Group, Chemical Engineering Department, Tarbiat Modarres University, Tehran, Iran

ABSTRACT- In order to evaluate the performance of biofilter for H$_2$S removal from contaminated air, a 120×14 cm column biofilter was constructed using clear polyacrylic material in conjunction with H$_2$S production and control systems. The column was divided into four stages using perforated plates. The column was packed with a mixture of mushroom compost and snail shell (4:1).

The performance of biofilter was evaluated during 4 months of operation under various flow rates and H$_2$S concentrations in ambient temperature. According to the results, the removal efficiency of H$_2$S in polluted air for concentrations of up to 150 ppm, average temperature of 26.9 °C and under flow rates of 6 and 12 L.min$^{-1}$ was more than 95%; the results for average temperature of 20.5 °C and the flow rates of 19.5 and 26 L.min$^{-1}$ but constant H$_2$S concentration was more than 85%. The maximum removal rate (V_{m}) was measured as 0.075 g S/kg-dry compost.h and average saturation constant (K_{s}) was 32.5 ppm.

Keywords: Compost Biofilter, Hydrogen Sulfide, Removal

- استاد
** - کارشناسی ارشد

43

استقبال: سال 1380 شماره 1 شهریور
در این روش، نتایج سامانه‌های حس‌گیری و حس‌نگاری همچون میزان، اندازه، شکل و حجم مساحت ها و نقاط از مساحت‌های مختلف از طریق سامانه‌های حس‌گیری و حس‌نگاری کنترل می‌شوند. این روش به طور کلی می‌تواند به بهبود کیفیت محصولات از طریق کنترل بهتر اندازه‌گیری و استفاده از سامانه‌های حس‌گیری و حس‌نگاری فراهم آید.
به منظور تظیم فشار در حد مورد نظر از شیر تظیم کننده استفاده شد. به منظور کنترل دقیقه سرعت حجمی هوا و روغنی به استفاده از یک شیر سوزنی به ایجاد یک‌‌این استفاده شد.

1-2-2 دستگاه رطوبت‌زن
برای جلوگیری از خشک شدن بستر، هوا قبل از ورود به بستر از یک مخزن برنجی محشوی آب مجهز به گیره برقی و کنترل کننده دما عبور داده می‌شود.

1-2-5-5 اندازه‌گیری فشار استاتیک
نقطه قطعی در طول استقرار بستر برای اندازه‌گیری فشار استاتیک تعبیه شد. لذا با یک کردن شیرهای مربوط به فشار استاتیک به امکاناتی مانند مخزن آلیت متفاوت شده و امکاناتی بررسی بررسی می‌باشد که نتیجه بیش از آن را به دست آورده‌اند.

1-2-6 کنترل رطوبت و گاز
برای اندازه‌گیری و کنترل رطوبت از دستگاه کنترلی با نام‌گذاری سرکشی خاص استفاده شد. این دستگاه تحت عنوان اندازه‌گیری کننده رطوبت از مدل ۲۲۵۷۰ از شرکت سرکشی خریداری شد. در عرض چهار کیلو متر به دستگاه گیره شویی و در عدد ۹۵ درصد رطوبت در محدوده دما صفر تا ۵۰ درجه سانتی‌گراد است. فشار اندازه‌گیری رطوبت در مرحله دungi و برای دما ۵۰ درجه سانتی‌گراد است.

1-2-7 کنترل میزان H2S در هوا و روغنی به استفاده از یک کنترل دقیقه سرعت حجمی گاز H2S و هوا صورت گرفت. از روی تغییرات جزئی برای اندازه‌گیری گاز H2S در قسمت‌های مختلف بستر استفاده شد. در این روش ابزار گاز H2S توسط محلول سولفات کلایسیدی جذب و سپس توسط معروف N استفاده شد.

2- مواد و روش‌ها

2-1-2 دستگاه‌های مناسب

شماتیک کلی ریز سفارش‌های اصلی: سطح حاوی باستر مناسب، یک کامپیوتر و دستگاه رطوبت‌زن، یک کمپیوتر و یک دستگاه رطوبت‌زن. نتایج بخش‌ها در آزمون صرفه‌جویی به شرح زیر است.

2-1-1 اسید نمک سولفید نیترات (Na2S)
گاز H2S از اسید نمک سولفید نیترات (Na2S) به دست آمده. برای اندازه‌گیری (H2PO4) به میزان ۵۰۰ گرم سولفید سریا را در ۲ لیتر آب سرد ایجاد کرد. و به آرامی در کتیل گرم سریا حاوی ۴۵۰ گرم اسید نمک فشار ساخته شد. به همراه بسته کامیون و نمک سولفید نیترات به آن مقدار ۱۰۰ بسته کامیون و نمک سولفید نیترات در هم با هم و کنار داده شده و گاز H2S به تولید شد. نتایج بر روی مخزن فشار ۱/۵ را نشان داد.

2-1-3 تولید هوای فشرده
برای تولید هوای فشرده از کمبرسور با فشردگی مخزن اینتر استفاده شد. فشار کاری این کمبرسور ۷/۵ با استند و اسنادال سال ۱۳۸۰ شماره ۱۲ شهریور ۱۳۸۰
راهنماي نقشه:

شکل 1- نمای کلی زیست صافي

به منظور بررسی قابلیت‌های زیست صافی و به دست آوردن اطلاعات مربوط به طراحی، پرایی مدت ۱۳۸ روز مداوم و در شرایط دمای محیط و سرعت‌های جمعی ۱۱، ۱۳، و ۲۶ لیتر بر دقیقه آزمایشی انجام گرفت. رطوبت بستر از طریق هوا یا پاش آب تحت کنترل قرار گرفت.

۳-نتایج و بحث

ن-1) میکروگانیسم

راه‌های کارخانه بارک‌سازی به حضور کانید آهن به میلین نیاز دارد. در سطح شرایط و در نهایت یافتند که با بررسی میزان H₂S اولیه است به دست گاه بسته‌های فلترگاز در طول موج ۶ نانومتر می‌باشد [۱۱]

۲-میکروگانیسم

از لحاظ یافته کارخانه بارک‌سازی که مقدار قابل توجهی بیشتر است به عنوان منبع میکروگانیسم‌ها در پیست استفاده شد. لجن به نسبت ۱۰۰۰ (لجن/بستر) به بستر بسته‌های اضافه به به دست داشت. تحقیق لجن قبل از اتصال افزایش زیست صافی انجام گرفت. میکروگانیسم‌ها موجود در لجن به طور ثبت نسبت به بیون سولفید مقاوماند. لذا مراحل سازگاری میکروگانیسم‌ها با شرایط بستر کاملاً خواهد

۱-3-کارایی حذف

پژوهشی حذف مهم‌ترین پارامتر عملیاتی است. با این پارامتر که درصد حذف گاز H₂S را با زیست نانویی نشان می‌دهد.

۱۳۸۰ استقلال، سال ۲۰، شماره ۱، شهریور
کارایی ستوی در ارتفاعات مختلف مورد مطالعه قرار گرفت. در شکل (4) اثر ارتفاع بر کارایی زیست صفحه نشان داده است. با توجه به این شکل، کارایی زیست صفحه از قسمت چهارم افزایش می‌یابد. در قسمت اول کارایی ۲۲۰/۹ درصد و در قسمت دوم ۹۵/۵ درصد است. در شکل (5) اثر پارامتر (b) بر جرمی، مقادیر H2S و H2O را دارا حجم بسیار واحد زمان نشان می‌دهد. بر کارایی حذف آلاینده نشان داده شده است. با توجه به نتایج این آزمایش‌ها با افزایش پارامتر بار سطحی از ۷۷ میلی‌متر بار کاهش پیدا کرد. است. در هنوز شکل تغییرات کارایی حذف به همراه ظرفیت حذف این شکل داده شده است (منظر از ظرفیت حذف مقدار مادة حذف بسیار واحد حجم کمیکس بر واحد زمان اسکار پارامتر بار (b) زمان اقامت بار، نوع آلاینده شرایط محیطی و به نوع فعالیت میکروبی موجود با پیش‌بینی شد. در شکل‌های (1) و (3) ظرفیت حذف بر حسب بار جرمی ورودی در سرعت حجمی ۶ و ۲۴ لیتر در دقیقه نشان داده شده است. در شرایط مناسب شیب خط بدایه برای یک باشند. جوی ظرفیت حذف به بار جرمی زمان اقامت بیشتر، نوع آلاینده، شرایط محیطی و به نحوی فعالیت میکروبی موجود بازی کننده است. با پیش‌بینی نتایج به درستی آمده بیشتر به نظر می‌رسد که واکنش حذف از مدل انتگرال (۱۲ و ۱۳) تبعیت می‌کند، لذا با تحقیقات بیشتر می‌توان راحت به سیستم دقیق واکنش اطلاعات دقیق و بازشی را در آن‌ها ارائه داد.
شکل ۶- نمودار تغییرات ظرفیت حذف زیست صافی بر حسب بار جرمی. سرعت حجمی ۶ لیتر در دقیقه.

شکل ۷- نمودار تغییرات ظرفیت حذف زیست صافی بر حسب بار جرمی. سرعت حجمی ۱۲ لیتر در دقیقه.

نتایج به دست آمده از آزمایش‌های مختلف این زیست صافی نشان دهنده توانایی این روش برای حذف گاز H₂S یک آلوه است. این بستر در محدوده مداوم مورد آزمایش بین 9 تا 30°C (دما میریخ آزمایشگاه) و رطوبت نسبی 75 درصد، بازدهی مناسبی را نشان می‌دهد. نتایج نشان می‌دهد که پس از 100 روز کاهش pH و کلرولی شدن بستر در عامل اصلی در کاهش بازدهی نشد. لذا در روز 97 برای گل‌پذیری از کاهش بازدهی به بستر آب اهک اضافه شد. این زیست صافی در محدوده غلظت 70 تا 300 ppm گاز H₂S و سرعت حجمی تا 12 لیتر بر دقیقه، بازدهی هر 95 درصد را نشان می‌دهد. با افزایش سرعت حجمی به میزان بیش از 129 لیتر در دقیقه و تحت همین شرایط، بازدهی به حدود 85 درصد کاهش می‌یابد.

شکل 8- کارایی حذف بستر فعل و غیرفعال پرحسب زمان

4- نتایج گیری

شکل 9- دمای قسمت‌های مختلف زیست صافی را در طی آزمایش‌ها نشان می‌دهد. مطابق این ترمودار دمای خروجی بیوفیت‌ها در اثر موارد بالاتر است. این امر نشان دهنده آمای حاصل از واکنش‌های زیستی در بستر است. در شکل (10) رطوبت نسبی بستر نشان داده شده است. رطوبت قسمت پایین، بستر در اغلب موارد بالاتر از رطوبت قسمت‌های بالاتر است، این موضوع به علت بالاتر در دما بر اثر واکنش‌های زیستی از پایین به سمت بالایی بستر است.

3- تغییرات pH

منسوب بستر در طی آزمایش از 7/2 به 6/1 کاهش ییدa pH کرد. این کاهش باعث کاهش رشدان زیست صافی می‌شد. برای تنظیم pH در روزهای 97 و 102 به بستر آب آهک (10 درصد) افزوده شد.

شکل 10- دمای قسمت‌های مختلف آزمایش صافی را در طی آزمایش‌ها نشان می‌دهد. مطابق این ترمودار دمای خروجی بیوفیت‌ها در اثر موارد بالاتر است. این امر نشان دهنده آمای حاصل از واکنش‌های زیستی در بستر است. در شکل (10) رطوبت نسبی بستر نشان داده شده است. رطوبت قسمت پایین، بستر در اغلب موارد بالاتر از رطوبت قسمت‌های بالاتر است، این موضوع به علت بالاتر در دما بر اثر واکنش‌های زیستی از پایین به سمت بالایی بستر است.
شکل 9- نمودار تغییرات سرعت حجمی و دما بر حسب زمان

شکل 10- نمودار تغییرات رطوبت و سرعت 1 حجمی بر حسب زمان

استقلال، سال ۱۳۸۰، شماره ۱، شیراز
تقدیم کننده

از آقای مهندس سیامق الیاسی که در ساخت زیست صافی همکاری داشتهام و شوراها پژوهش علمی کشور و دانشگاه

واژه‌نامه

مراجع
