تحلیل گرمایی تایر

علی رضوئی، قدرت اَ.م.رکم،** و محمدرضا یعقوبی
بخش مهندسی مکانیک، دانشکده مهندسی دانشگاه شیراز

(دریافت مقاله: 17/05/1392 - دریافت نسخه نهایی: 3/05/1393)

چکیده - مهم‌ترین عامل نهایی دکان‌ندازی آزموده‌ها لاستیکی به کار رفته در تایر، گراماست. گرم‌موجه‌های تغییر در خواص فیزیکی و ساختمان شیمیایی آزموده‌ها شده و دوام و پایداری را به میزان قابل ملاحظه‌ای کاهش می‌دهد. تولید گرما در تاپیر، مهم‌ترین عامل نهایی در تغییرات تغییرات شکل‌پذیری و وسکولاستیکی است. ابزار و ابزارکاپ داخلی آن در طی حرکت گردشی در جاده، صورت می‌پذیرد. علاوه بر آن، با تغییر در تقلید راه‌های تاپیر به سطح خارجی تاپیر می‌توان نظریه گرما را ویژه‌تر نمود. به‌همین ترتیب نفوذ گرما به آن و میزان گرامایی آزموده‌ها و افزایش دمای ناشی از آن در یک‌بسانی مختلف تأثیر می‌گذارند در کنار تحلیل و طراحی تاپیر برای مشابهات علمی و تحقیقات و بهبود ساختمان داخلی تاپیر مورد استفاده قرار می‌گیرد.

در پژوهش حاضر، ابتدا داده‌های مورد نیاز تحلیل گرمایی شامل قابلیت‌های آزموده‌ای آزموده‌زدایی لاستیکی تاپیر، مولفه‌های نسبی مواد، گرم‌موجه‌های قابل ملاحظه‌ای آزموده‌زدایی لاستیکی و آزموده‌زدایی لاستیکی در حالت‌های مختلف، مورد بررسی و تحلیل قرار گرفته است. نتایج باعث افزایش شده و توزیع دما در سطح طراحی مختلف آن باورهای است. کشش و زیاد و تحت پاسخگویی سنگین‌های به‌شکلی گرمایی که از مجازات عالی نشان دهنده که انجام قابل می‌باشد. این در مجاورت طراحی دستگاه‌های نشانده که استفاده کرده‌ای که در طی انجام‌نامه شبانه، به‌خصوص در

واژگان کلیدی: گرامایی لاستیکی، گرمایی، طراحی، اجزای محدود، تغییر شکل لاستیک

Thermal Analysis of Tire

A. Rezvani, G. Karami, and M. Yaghoubi
Department of Mechanical Engineering, Shiraz University

ABSTRACT- One of the great enemies of rubber compounds is heat. Heat will cause chemical and physical degradation of vulcanized rubber as well as a considerable loss in its strength. A major source of heat generation in a tire is due to internal friction resulting from the viscoelastic deformation of the tire as it rolls along the road. Another source of heat generation is due to its contact friction with the road. Prediction of the temperature rise at different parts of the tire will help to detect the behavior of the tire as regards its strength and its failure.

** - استاد
*** - کارشناسی ارشد

استقلال، سال 1390، شماره 18، شماره 18380
در آن، پارهایی اعمال شده به نام تاب خالق و جهت حرشت، فشار باز تاب و همچنین شرایط محیط و بایستی که جاده بستگی دارند. طبعاً تاب خالقی که در معرض بار پیشتر قرار داشته و با سرعت زیاد حرشت می‌کنند، بنابراین در تاریکی نیز مواجه می‌شوند. همچنین امپوزه‌ها استاندارد برای بار تاکید گرما در بالا نسبت به آمپوزه‌های استاندارد برای بار تاکید گرما در بالا ویژگی‌های این تغییرات تنها بر همکاری استاندارد مکانیکی است. در آنها، تاریکی استانداردها می‌تواند در نتیجه تغییرات پسماند استانداردها از تاریکی لایه‌های متفاوت شده از رنگی به نام تاریکی از پایین به بالا هست. موجب سیستم گرم در داخل آن شده و آتشکارهای دمایی بخش‌های مختلف نزدیک تابی از افزایش می‌دهند. در صورتی که گرمای تولید شده کنترل به لنگری شد و برای کاهش خواص فیزیکی و ساختاری شعاعی، کاهش کیفیت جدا شدن لایه‌ها (دو پوسته شدن)، جدای شدن نقش از آموزه استاندارد و نهایتاً سوختن آنها را در خواهند داشت. گرمایی که به‌طور ترتیب در داخل تاریک تولید می‌شود و همچنین گرمای تولید شده در اثر اصفهان‌های غیرنما تابی با سطح جاده، بخش‌های مختلف تاریک را که در اینجا حرشت در تفاوت دامنه‌های می‌باشد، به تدریج به افزایش در می‌آید. مناسبی به شرایط کاری پس از طی ساختاری افزایش می‌دهند.

میزان اتفاق انرژی و گرمایی ناشی از آن به ساختارهای دامنه تاریک و مشخصات فیزیکی آمپوزه‌های استاندارد به کار رفته.
تاپر در تحلیل گرمایی شدیدانم تا سیستم معادله‌های پیچیده را به یک سیستم قابل حل تبدیل کند. این فرما گُرفه‌دان‌‌زاده گرمایی، ارائه شده در تبیین تغییر شکل‌های روش‌کالکی و اصطلاحات داخلی به صورت چشم‌های گرما به توزیع یکنواخت در نقاط مختلف تاپر در نظر گرفته شده است.

۲- در تحلیل گرمایی یک شکل هندسی خاص با شرایط مزیت تابید و پایدار مورد بررسی قرار گرفته است.

۳- از گردانان دما در محیط دایره تابی و همچنین از انفصال گرمایی ناشی در سطح خارجی آن صرف نظر شده است.

۳- معادله حاکم در تحلیل گرمایی تابی در این پژوهش، تحلیل گرمایی تابی در سرویس، در حالت پایدار و به صورت دو بعدی بررسی می‌شود. با توجه به اینکه قابلیت هدایت گرمایی اجرای مختلف تابی تابع داماسک، شکل کلی معادله حاکم به صورت زیر خواهد بود.

\[
\frac{\partial}{\partial X} \left(K_T \frac{\partial T}{\partial X} \right) + \frac{\partial}{\partial Y} \left(K_T \frac{\partial T}{\partial Y} \right) + q = 0
\]

(۱) در رابطه بالا، \(K_T \) به ترتیب مصرف دما گرمای و \(\frac{\partial}{\partial X} \) و \(\frac{\partial}{\partial Y} \) به ترتیب علائم مختلف گرمای تابی در تابی و تحلیل تغیر شکل، تحلیل روش و روش‌کالکی اجرای تابی و پراوردت اتفاقات و گرمایی ناشی از آن است. با انجام این مراحل مشخص شدن شرایط مرزی، امکان مشابه سایت مدل ترمومکانسی به منظور پیش بینی توزیع دما در مقطع عرضی تابی در سرویس در حال پایدار فراهم می‌شود.

۲- معرفی تابی مورد آزمایش و فراینده انجام شده در شکل (۱) برش عرضی تابی سواری پایینی انددازه ۵۹۶۸ و ۳۹۸۰ محصول کارخانه‌های دیگر که در این تحقیق سوپرپرسی قرار گرفته، نشان داده شده است. اجزای اصلی تکمیل دهنده این تابی عبارتند از: تبیین دو گرهِ خانه‌ای، کرکس یا استخوان بندی تابی که خود از لایه‌های بالایی (۱۳) و زیرین (۱۴) تشکیل شده.

۳- طوفان فری (۱۵) و گری (۱۶). نتایج ارزشی‌های در این مقاله حاصل اند می‌توان به تأیید شده از این مقاله، حاصل انداره گری به آزمایش‌ها و محاسبات انجام شده به ران تابی در شرایط کاری مختلف است.

طیف گسترش‌های استفاده از مواد شیمیایی در آزمایش‌های لاستیکی که به صورت در ترکیب با یافته‌های تخمینی، خصوصیات گرمایی پیچیده‌ای را از خود نشان می‌دهند از یک‌و دخلت پرتاب‌های مختلف در مسئله تابی و اصطلاحات تابی باطل جاده، در حاشیه نشان از تابی اعمال شده، تغییر شکل و خشکش پی در پی تکنیک‌شناسی داخلی گرمایی از زیست‌دهی، بررسی رفتار ترمومکانسی تابی را پیش‌بینی، مشکل کرده است. لذا در این پژوهش، ناگزیر به اعمال یک سری فرضیات منطقی و قابل قبول برای مدل‌سازی
شکل 1- برش عرضی یک تاییر پایان‌اندازه (۱۲۳-۶۰) و اجزا و نواحی آن

از روش‌های آزمایشگاهی امکان‌پذیر نیست. در این تحقیق، هر آمیزه‌استیکی به طور چندانی آماده و ضمیم تعبیه می‌شود. در فواصل منظم در داخل آن، در قالب‌های وریزه‌ای پخت قرار داده می‌شود. در مرحله بعد، قالب حاوی آمیزه‌ای یکپارچه در شرایط متفاوت پخت تاییر به طور یک‌نویس کرما داده می‌شود. این آمیزه پخته شده حاصل شود. سپس آمیزه پخته شده در دستگاه استکلال، سال ۳۰، شماره ۱، شهريور ۱۳۸۰

۱۴۰
حلقه پسماند نمک‌گویند و بیانگر افت هیسترسی ناشی از اصطکاک داخلی مولکول‌های جسم است. تفاوت ارزی مصرف شده و انرژی داده شده را تلفات پسماند مکانیکی نمک‌گویند.

میزان این تلفات در تابی به جنس اتمسفر و ترکیب‌های استیکی، ساختاری ساخت و ساختار بندی دمای سرعت حرکت تابی و وضعیت جاده بستگی دارد.

تلفات پسماند مکانیکی به عنوان مهم‌ترین عامل مقاومت غلتی بیش از ۹۰ درصد افت می‌پذیرد در حالت کار را شامل می‌شود. تغییر شکل‌ها ویسکوستاسیکی پی در پی دیت تابی در حالت حرکت و ارتعاش‌های که پی‌زده ویسری شکل‌ها به وجود می‌آید، موجب اصطکاک داخلی در نف و آموزه‌های استیکی شده و باعث افزایش سختی در نف و آموزه‌های استیکی می‌شود. تعیین انرژی تلف شده در تابی عمدتاً مبنای بر روش‌های تعیین و آزمایش‌گاهی است. زیرا رفتار ترموویسکوستاسیکی تابی به دلیل دخالت پارامترهای متعدد چنان پیچیده است که نمی‌توان مدل تحلیلی کامل دیفیسی برای آن به وجود آورده. ساده‌ترین شکل برخورد تحلیلی با این امر استفاده از یک مدل ویسکوستاسیک خطی ساده برای تعیین افت

$$K(T) = 0.25 + 0.02114(T) - 0.02816(T)^{1.1} + 0.00909(T)^{1.2}$$ \hspace{1cm} (2)

$$K(T) = 0.25 + 0.00762(T) - 0.01139(T)^{1.1} + 0.0039(T)^{1.2}$$ \hspace{1cm} (3)

$$K(T) = 0.25 - 0.02461(T) + 0.02736(T)^{1.1} - 0.007807(T)^{1.2}$$ \hspace{1cm} (4)

$$K(T) = 0.25 - 0.01915(T) + 0.02060(T)^{1.1} - 0.005709(T)^{1.2}$$ \hspace{1cm} (5)

$$40^\circ C \leq T \leq 120^\circ C$$

5- گرمایشی در تابی

اکر به یک تابی ساقه یا اساساً هر جسم استیکی در دستگاه یک بار عمودی اعمال و سپس آن را حذف کنید. منحنی بار - خمش آنها به صورت یک حلقه مشاهده می‌شود که به آن

141

استقلال. سال 30، شماره 1، شهریور 1380
6- شرایط مرزی در حل مسئله ترمومکانیکی تایر

شرایط مرزی برای مدل ارائه شده، عبارت است از:

این دلالت دادن سرعت ماماسی تاییر (V0) شعاع عمق (R0) و میزان شکل تاییر (D) در معادله (1). نرخ گرمایی در واحد حجم تاییر در طی هر سیکل به صورت زیر به دست می‌آید [1]

\[Q = 0.161 \cdot \frac{V_0 \pi \tan \delta}{R_0 - \Delta/3} \]

در این پروپئش برای تعیین توان اسلال افزیزی از دستگاه آزمایش‌های استفاده شده است. این دستگاه شامل یک استوانه با قطر زیاد است که توسط یک موتور الکتریکی با سرعت قابل تنظیم دو ماهک چرخ دیواری تاییر مورد آزمایش در دو باری که توسط یک سیستم هیدرولیکی به آن اعمال می‌شود با استاندارد حلال دوران ذره می‌شود و با سرعت تغییر سطح ذره می‌کند. براساس این شرایط کاری، با انداده‌گیری گستاری اعمال شده به چرخ با توان الکتریکی مصرف شده می‌توان انرژی تلف شده در تاییر را برآورد کرد.

در این مدل نرخ افزایش همکاری ناشی از خاصیت هیسترزیس آموزه‌های استخوانی به صورت یک جمله معنی‌گذاری در معادله [10] بیان شده که تا نیمی از معادله تجربی که برای پایه‌ی اجسام کریو و استوانه‌ای شکل در جریان عرضی 10 پیش‌نهاد شده است. [17]
سطح خارجی آن معادل سطح تبادل گرمایی جایی نیست مورد نظر است (برای نمودن نظر در این پژوهش، بعد مشخصه معادل 15 میلیتر به دست می‌آید). با تعیین بعد مشخصه و استفاده از معادله با ما توان عده ناسیت و مسیب ضریب انتقال گرمایی جایی از سطح خارجی تایی را در سرعت‌های مختلف حرکت تایی تعیین کرده، شکل (5). ملاحظه نیست که

\[
\text{Nu} = (495.9 + 5.767 \times 10^{-4} \text{Re}) + 0.288 \times 10^{-9} \text{Re}^2 - 3.58 \times 10^{-17} \text{Re}^3 \text{Pr}^{0.4}
\]

\(3 \times 10^5 < \text{Re} < 5 \times 10^5 \)

در این معادله، \(\text{Nu} \) به ترتیب اعداد پیوست \(\text{Re} \) و \(\text{Pr} \) به ترتیب اعداد پیوست \(\text{Nu} \) به ترتیب اعداد پیوست

شکل 3- تلفقات پسماند مکانیکی تاییر (30-60) در بال ردیعات

شکل 4- تلفقات پسماند مکانیکی تاییر (30-60) در سرعت

143
می‌شود که با بایا رفتین سرعت به دلبیل آن‌که اعداد ریتولرگ و
ناتسل افزایش می‌یابد، میزان این ضربی نزدیک زیاد شده است.
د: ناحیه ناحیه که در هر لحظه به‌خستی آن در تناز با
جای است. علاوه بر آن‌که از طرف جایی با محفظه نیز
گرم‌کننده دیل می‌گردد از کاهش گرماسی به داخل
سطح تناز با جای است. در عرض کیل جبرای گرماسی به داخل
ناحیه ناحیه نزدیک زیاد. تابی با سرعت زیاد از حال چرخش
است، نتایبین یک نقطه از ناحیه ناحیه که در یک لحظه در تناز
با جایه قرار دارد، درست و سطح لحظه بعد در تناز با
گردن خورا از طرف جایی به به‌میان می‌گردد،
می‌کند. چند که در تناز در لحظه ترک زمین
حداکثر دمای خود را دارد، اما تحقیقات انجام شده نشان
می‌دهد که با توجه به سرعت زیاد و بایایان ضربی نزدیک
گرماسی جایه جایی. گرایشان دو روزی دارایی محیطی تابی قابل
اعمال است (۷). یبتارایان در تحلیل دویدای تابی برای در نظر
گرفتن آثار سه بعدی یک شرط مزیت شامل گرماسی
ثبت به درون ریز و انقلاً گرماسی جایه جایی از سطح آن را
در واقع مقدار میانگین یک در دو در کلی ناحیه ناحیه تابی است. برای
موزا ناحیه در نظر گرفتن می‌شود. یک شرط مزیت را
می‌توان به صورت زیر نشان داد.

\[q_n = X_1 \left(h(T_\infty - T_w) + X_2 q_0 \right) \]

در این معادله، گرماسی باید در تناز ناحیه q_n،
ضریب انقلاً گرماسی جایه جایی از سطح خارجی تابی
\(h \) به تریم دمای دیور و دمای هوای پیرامون تابی،
\(X_1 \) و \(X_2 \) تابی معروف درصدی از سطح ناحیه ناحیه تابی است. که به تریم در
تناس با هوا و با جایه قرار دارد و

7- نتایج محاسبات عدید
داه‌های به دست آمده از مراحل قبل به عنوان وروتی
متناهی گرماسی تابی استفاده قرار گرفته و معادله دیفرانسیل
حاکم در یک برنامه اجزای محدودونه‌ای که برای تبیین
گسترش دما در مقطع عرضی تابی به صورت دو بعدی تدوین
شد اجرا شده است. برای این منظور هندسه مورد نظر بر منابع
یک شبکه بندی مشتمل به ۷۰ دما و ۹۸ دما در برنامه تدوین
شده مورد تحلیل قرار می‌گیرد برای شرایط مزیت متفاوت،
 ضمن پیش‌بینی دما در نقاط مختلف ناحیه ناحیه، ناحیه حساس و
بهرایی که با افزایش دمای بیشتری مواجه می‌شوند به عنوان
نواحی آسیب‌پذیر در تابی شناسی‌شنوند.

با استفاده از برنامه محاسباتی تدوین شده، آموزش‌های
متعددی برای بینش از حالات مختلف از سرعت مسایلی
میزان بار شفاف و شارد، مناسب به شرایط مزیت که تابی
در جایه این واگذار می‌شود، جایه اجرا است. شکل (۷)
مقطع عرضی تابی میزان آزمایش و اجزای مختلف آن را نشان می‌دهد.
هندسی اجزای برنامه تدوین شده در این پژوهش، تا در هر
جزء از تابی که بیان ده‌ها آزمایش دما نسبت به دما محیط

استقلال، سال ۳۰، شماره ۱، شهریور ۱۳۸۰

144
شکل 5- تغییرات ضریب انتقال گرمایی جایی در سطح خارجی تاییر (۱۳–۶۰) بر اساس ت franca گرار و سرعت

شکل 6- گرمای جذب سطح توسط ناحیه تاییر (۱۳–۶۰) بر اساس اصطکاک لغزشی در فشار باد

ثابت N۱۸۰۰ و فشار باد ۲.۱ kg/cm^2 در آزمایش بر روی تاییر مورد نظر به دست آمده است، می‌توان است که در سطح‌های بالا که تغییر شکل‌ها و ارتعاشات ویسکالاستیکی تاییر بیشتر باشد، افزایش می‌باشد و به خصوص در مرز مشترک تاییر و کرکس در مجاور ناحیه شانه که ضخامت تاییر زیاد است این افزایش وسیله موند موجب سوختن آمیزه لاستیکی و جدا شدن از کرکس شود. به همین دلیل این ناحیه را می‌توان به عنوان آسیب پذیرترین ناحیه از تاییر معرفی مواجه می‌شود شناسایی و بر روی شکل مشخص شده است و میزان افزایش با ناحیه و آسیب‌پذیری در قبال شرایط کاری مختلف مورد بررسی قرار گرفته است.

شکل (8) اثر سرعت را بر میزان افزایش دما در نقاط حیرت‌های جزء از تاییر نشان می‌دهد. ملاحظه می‌شود که افزایش سرعت همان‌گونه که مقاومت غلظتی و میزان گرمایی را در تاییر افزایش می‌دهد، افزایش دمای بیشتری را در نقاط مختلف تاییر موجب می‌شود. داده‌های این شکل که در بار

۱۴۵

استقلال، سال ۴۰، شماره ۱، شهریور ۱۳۸۰
۸- جمع‌بندی نتایج تحلیل گرمایی تابی

برای کاهش یافته نفوذ شده در تابی، کاهش میزان گرمایی، تبدیل گرمایی دیل و جلوگیری از افزایش بیش از حد دما به خصوص در نقاط بحرانی، راه‌کارهای مختلفی قابل بررسی و تحقیق که در موسوم فرد نمایان شده برای اصلاح استراتژی و بهبهانه‌ی تابی مورد نظر قرار گرفت.

سپس شعاعی از جمله پارامترهای طراحی ناب محبوب می‌شود که تغییر کننده میزان تغییر شکلها و ارتعاشات منتفی آن در طی حرکت تابی است. همچنین عامل مؤثر بر سفیدی شعاعی تابی، فشار افزایش تبدیل و حمله به دمای گونه که در پوسته حاضر نشان داده شده موجب کاهش مقداری در کاهش شکل‌ها می‌شود. نه تنها بر روی خیر شرود، اما در ذخیره درون کرده و خطر جای تابی به طرف بیرون تبدیل یافته و طول تابی با گردیده کاهش پایداری و عدم ثبات در حركت دامنی می‌باشد. به همین خاطر به نظر می‌رسد که بتوان یک کاهش نسبت منظر.99‌یعنی افزایش حداکثر نسبت به ارتفاع آن و افزایش فشار به‌طور هم‌مانند تباعت منفی و تغییر این دو یا اثرات و ضمین آن یا کاهش حمایه‌ها و ارتعاشات و اسکاله‌وپیگی نابی‌کاری تابی، تولید گرم‌ها را در تابی کاهش داد.

راه حل دیگری که در فرآیند بهینه‌سازی ناب یافته تابی می‌تواند مورد توجه قرار گیرد، طراحی نابی‌کاری می‌باشد. برای این منظره می‌تواند به‌صورت خاصی به دلایل زیر فرض نماید تابی. ناب تابی از مواد که کاهش مقدار هست‌کرده‌کرده باشد یا افزایش مقدار تغییر که کمترین و سبک‌ترین از سرعت‌های بالا و هنگام تعیین می‌باشد. در عدم سایر بخش‌های تابی از امکان‌ها وسیله‌های ساخته شده که تا کاهش افزایش نابی‌کاری، بخش‌های تابی از امکان‌ها وسیله‌های تابی به‌صورت انرژی افزایش تابی نماید. تغییر دیدگی شده در نابی‌کاری، در مجموع به کاهش مقدار تغییر نابی‌کاری تابی می‌تواند در فرمول‌سازی آمیخته‌ها به خصوص در نابی‌کاری ناب به‌صورت افزایش قابلیت هدایت

کد: به طور مشاهده در میزان 100 هرم چند متوسط افزایش دما در تابی 38.3\% است، اما تاکید کردم که به ترتیب با افزایش دمای حداکثر 74\% و 54\% می‌تواند. در همین حال حداکثر افزایش دما در ناحیه دیواره جانی، به دلیل ضخامت کم و سطح گسترده تابی می‌تواند با محیط 41\% است و در ناحیه دیواره ابستراهمیث مشاهده اگر یا تغییر به‌صورت لاکتیکی با کار رفته در این ناحیه نمی‌کند (حد تحول آمیخته‌های لاکتیکی حدود 125\% است).26

(۹) اثر بار شعاعی‌ها اغلب شده را بر میزان افزایش دما در نقاط بحرانی متغیر تابی نشان می‌دهد. همان‌گونه که افزایش بار به دلیل افزایش دمای دامنه و ارتعاشات ناب، مقدار افزایش و تولید گرم در تابی بر بستهای کیف بسیاری افزایش دما را در اجرای مختلف تابی موجب می‌شود. داده‌های این شکل که در سرعت ماسی 80 km/hr و فشار بود داده‌های این شکل که در سرعت ماسی 2.1 kg/cm2 در مرز تابی و کروم در مجاور ناحیه دامنه نشان می‌دهد. به طور مثال در شعاعی 300 بیوتون، تابی و کروم تابی به ترتیب با حداکثر افزایش دما به عنوان 75\% و 78.5\% موانع موجود می‌شود در حالی که حداکثر افزایش دما در ناحیه دیواره 42\% و متوسط افزایش دما تابی 41.07\% است.

(۱۰) اثر فشار در حال حاضر افزایش دما در نقاط بحرانی متغیر تابی مورد نظر نشان می‌دهد. این داده‌ها که در سرعت ماسی 80 km/hr و تحت بار ناپایت 1800N به دست آمده‌اند، بنابراین آن به‌صورت شکل که کاهش فشار نهاد. تغییر شکل‌ها و ارتعاشات ناب، به‌صورت کاهش سطحی تعیین آن افزایش یافته و گرمایی باعث افزایش دمای نابی‌کاری تابی شده. در این آزمایش ناب حداکثر افزایش دما تابی نشان داد و کروم در مجاور ناحیه همی‌بینه بسیار است و میزان افزایش دما در تابی 1.5 kg/cm2 دما در ناحیه ابستراهمیث مشاهده شده در تابی به 58\% و 57.5\% است.

است.1800
شکل 9- اثر بار شعاعی بر حداکثر افزایش دما در اجزای مختلف تاپر 12-50% در سرعت 80km/hr و فشار باد 2.1kg/cm²

شکل 10- اثر فشار باد بر حداکثر افزایش دما در اجزای مختلف تاپر 12-50% در 7000 و سرعت 80km/hr

گرمایی آن میتواند در تبدیل گرمای پیشتر تاپر با هوا و جلوگیری از افزایش بیش از حد دما این ناحیه مؤثر باشد. یکی از دلایل افزایش بیش از حد دما در نقاط بینایی تاپر ضخامت زیاد تاپر در ناحیه شانه است. این ضخامت زیاد از پیکو افت هیسترزیس و گرمای تولید شده در تاپر یا افزایش می‌دهد و از سوی دیگر موجب کند شدن دفع گرمای از تاپر می‌شود. افزایش انرژی لبه عاج در ناحیه شانه نه تنها اثرات ناشی از ضخامت زیاد را کاهش می‌دهد، بلکه با افزایش سطح تبدیل گرمایی در این ناحیه، انتقال گرمایی از تاپر به هوا نیز افزایش می‌یابد. تأثیر سرعت، فشار باد و بار شعاعی اعمال شده بر میزان اتفاق انرژی و تولید گرمای در تاپر به طور مشروط در این
تغییر در نقش تأثیر بر پیش دارایی سطح گرمایی و
تابدل گرمایی بیشتر با میثاق، کاهش اصطکاک دیفروشی و میزان
سایش در سطح تمام به جاده، کاهش اصطکاک بارودینامیکی
و جلوگیری از حس شدن هوا در زمان مسیر با جاده، نیاز آن
جمله موارد است که می‌تواند مورد بررسی و تحقیق بیشتر
قرار گیرد.

واژه‌نامه

1. viscoelastic deformations
2. heat build up
3. rolling resistance
4. bias tire
5. crown
6. carcass
7. mechanical hysteresis losses
8. steady state
9. inflation pressure
10. Flexmeter Goodrich
11. moving heat source
12. side wall
13. top ply
14. sub ply
15. bead
16. filler
17. thermoviscoelastic
18. drum tester
19. heat source
20. cross flow
21. Nusselt Number
22. Reynolds Number
23. Prandtl Number
24. radial stiffness
25. aspect ratio
26. pattern

مراجع

1. Dodge, N., and Clark, S. K., “Tire Modeling and
 Contact Problems Heat Generation in Aircraft
 Tires,” Computer & Structures, Vol. 20, No. 1-3,
 1985.
2. Chakraborty, S. K., and Mukherjee, D. P. “Study of
 Heat Build-Up of a Cured Tire Using a Goodrich
 Thermomechanical Model to Predict the
 Temperature Distribution of Steady State Rolling
 Tires,” Tire Science and Technology, TSTCA,
 Tread Temperature in Actual Contact Areas,” Tire
 Science and Technology, TSTCA, Vol. 22,
5. Rezvani, A., “Measurement of Tire Thermal
 Properties & Finite Element Analysis of Heat
 Transfer in Tire,” M. S Thesis, Shiraz University,
 1998.
6. Zukauskas, A., Convective Heat Transfer in Cross
 Flow, Handbook of Single-Phase Convective Heat
 Compounds,” Mechanics of Pneumatic Tires,
 Washington D.C.: U. S. Department of
 Transportation, 1975.