تحليل گرمایی تاییر

على رضواني **، قدرت ا... كرم ** و محمود يعقوبي **
بخش مهندسي مکانیک دانشگاه مهندسی دانشگاه شیراز

(دریافت مقاله: 12/7/1512 - دریافت نسخه نهایی: 7/12/1512)

چکیده - مهم‌ترین عامل نهاد دگرگونده آموزه‌های استیکی به کار رفته در تاییر گرماست. گرما موجب تغییرات خواص فیزیکی و ساختمان شیمیایی آموزه‌ها شده و دواوی و پایداریان را به میزان قابل ملاحظه‌ای کاهش می‌دهد. تولید گرما در تاییر اهمیت‌آوری در نتیجه تغییرات شکل‌های وسکولاستیکی یافت و استطلاع‌های داخلی این حرکت در گرما نشان داد که حرکت تغییر تاییر به متغیر اصلی می‌شود. در نتیجه استطلاعاتی که در مورد حرکت داخلی تاییر به متغیر اصلی می‌شود، به شرایط مختلف تاییر مورد تولید و طراحی تاییر برای شناسایی نواحی آبیپ و اصلاح و بهبود ساختمان داخلی تاییر مورد استفاده قرار گرفتند.

استفاده قرار گرفت.

در پژوهش حاضر، اینکه مدیران تاییر تأثیر گرما بر خواص فیزیکی و شیمیایی آموزه‌ها و قابلیت تغییرات ساختاری آنها را بپذیرند. سپس فرضیات تولیدگرما و تأثیر حرکت تغییر تاییر در حالت گرمایشی، مورد بررسی و تحلیل قرار گرفت. مدل‌های مطرح شده در گرما و حرکت داخلی تاییر در مقایسه با مدل‌های موجود در کتاب‌های مختلف ثابت شد که حرکت تاییر باعث افزایش حرکت در حالت گرمایشی شده و در نتیجه بهبود ساختمان داخلی تاییر می‌شود.

واژگان کلیدی: گرما، شیمیایی، فیزیکی، ساختار تاییر، تغییرات شیمیایی و شیمیایی-فیزیکی

Thermal Analysis of Tire

A. Rezvani, G. Karami, and M. Yaghoubi
Department of Mechanical Engineering, Shiraz University

ABSTRACT - One of the great enemies of rubber compounds is heat. Heat will cause chemical and physical degradation of vulcanized rubber as well as a considerable loss in its strength. A major source of heat generation in a tire is due to internal friction resulting from the viscoelastic deformation of the tire as it rolls along the road. Another source of heat generation in a tire is due to its contact friction with the road. Prediction of the temperature rise at different parts of the tire will help to detect the behavior of the tire as regards its strength and its failure.

- کارشناسی ارشد ** - استاد

استقلال، شماره 26، 1380 شهروyr 137
مقدمه

در آن بارهای اعمال شده به تایر، سرعت و جهت حرکت فشار باد تایر و همچنین شباهت محفظه و بالغ حجم بستگی دارند. طبقاً تایرهایی که در معرض بار بیشتر قرار داشته و با سرعت زیاد حرکت می‌کنند، با توجه به فرمول نیز تیتر تایري نیز مواجه‌اند. همچنین آزمایش‌های استاتیکی با نمودارهای بالا نسبت به آزمایش‌های استاتیکی با نمودارهای بالا، بیشتری را از حوت نشان می‌دهند و به همان نسبت، مسئله سایش، آسان‌ترای تایروهان در برابر فضای و شوکهای وارده از سطح جاده، کاهش استحکام و تخریب در آن‌ها سریعتر انفجاری می‌شود.

در اتموم صرف‌جویی در مصرف سوخت و جلوگیری از آلودگی‌های زیست محیطی هم‌مرز با تلاش برای ساخت تایرهایی با دوام و پایداری بیشتر، انگیوهای اصلی تحقیقات مرتبط با تحلیل کرماهای در سالهای اخیر بوده است. هر چند درک‌های کام از ان تحقیقات متفاوت است، اما هدف نهایی تمام آنها رسیدن به یک پیش‌بینی قدری و مناسب است تا بتوان از نظر کم‌کننده و تداخل در تحلیل و طراحی تایروهان استفاده کرد.

دور و کلارک [1] با استفاده از یک مدل برای فیزیکال استانک به خاطر ساده‌ای فیزیک و کرماهای در هر سیکله حرکتی یک تایروهایا مورد بررسی قرار داده و توزیع دما در مقاطع مختلف آن را پیش‌بینی کردند. چک روبرت و مکریجی [2] قطاعی از بخش‌های تیون و شانه تایروهان را در سه جهت مختلف پرش داده و آنها را در فلکس دوران تولیدی در دو راه تایروهان تنش‌های فشاری متناوب قرار داده‌اند. آنها ضمن تبعیض افزایش دما تنش‌های مختلف، ضعف‌ترین ناحیه را که باید دو کارکرد تایروهان میان الاته انرژی و گرما ناشی از آن ساخته‌اند خود تایروهان و مشخصات فیزیکی آزمایش‌های استاتیکی به کار رفته استقلال، سال 20، شماره 1، شهريور 1380

138
تأیر در تحلیل گرمایی شهدایم، یک سیستم معمولی تا سیستم معادله‌های یپچیده را به
یک سیستم قابل حل تبدیل کند. این فرضیه، عبارت است از
- گرمایی تولید شده در نتیجه تغییر شکل‌ها و ویژگی‌اتسکی و
اصطکان داخلی به صورت چشم‌های گرمایی با توزیع
یکنواخت در نقاط مختلف تایب در نظر گرفته شده است.
- در تحلیل گرمایی یک شکل مختصاتی یا شرایط
مزیت ثابت و پایدار مورد بررسی قرار گرفته است.
- از گرادیان دما در محیط دایره تایب و همچنین از انقلاب
گرمایی تایبی در سطح خارجی آن صرف نظر شده است.

3- معادله حاکم در تحلیل گرمایی تایب
در این پژوهش، تحلیل گرمایی تایب در سرویس در حالت
پایدار و با صورت دو بعدی بررسی می‌شود. با توجه به اینکه
قابلیت هدایت گرمایی اجزای مختلف تایب داماس، شکل
کلی معادله حاکم به صورت زیر خواهد بود

\[\frac{d}{dx} \left(K(T) \frac{dT}{dx} \right) + \frac{d}{dy} \left(K(T) \frac{dT}{dy} \right) + q = 0 \]

(1)

در رابطه بالا، \(K(T) \) به میزان معبر دما، گرمای
تولید شده در نتایب و ضریب هدایت گرمایی آن است. حمل
معادله حاکم مستلزم طی مراحل مختلفی جهت تعیین مشخصات
گرمایی آمیزه و ترمومکاتیکی به کار رفته در نتایب، تحلیل
تغییر شکل تحلیل وسیع‌الاتسکی اجزای تایب و پراورد
الفات اتزی و گرمایی تایب از آن است. با انجام این مراحل
و مشخص شدن شرایط مرزی، امکان شیب‌سازی دیال
ترومکاتیکی به منظور پیش بینی توزیع دما در مقطع عرضی
تایب در سرویس در حالت پایدار فراهم می‌شود.

2- معرفی تایب مورد آزمایش و فرضیات انجام شده
در شکل (1) نشان داده شده است. اجزای اختلاف دهنده
این تایب عبارت‌اند از: اتج، دیواره جانی، کرکس مشخصه
بندی تایب که خود از لایه‌های بالایی و پایینی Proposal شده،
طوف، ماهر و پری. تایب ارائه شده در این مقاله، حاصل
اندازه‌گیری آزمایش‌ها و مشخصات انجام شده بر روی این تایب
در شرایط کاری مختلف است.

طیف گسترده استفاده از مواد شیمیایی در آزمایش‌های
لایه‌ای که به صورت در ترکیب با یافته‌های آزمایشی
خصوصیات گرمایی پیچیده را تا حدود نشان می‌دهند از
پیکو و دخالت بارامترها مختلف در شرایط تشکیل و
اصطکاک تایب با مقطع جاده، تحلیل تغییرات از اثرات اعمال
شد، تغییر شکل و خشک‌شدن یابی در پی، اصطکاک داخلی و
گرمایی از سری دیگر، بررسی رفتار ترمومکاتیکی تایب را
پیش نماید و مشکل کرده است. لذا در این پژوهش، نگریزه به
امولار یک سری فرضیه‌های منطقی و قابل قبول برای مدل‌سازی

139

استقلال، سال 20، شماره 1، شیریور 1380
شکل 1- برای عرضی یک ناپای اندام‌زاده (۱۳۶۰-۰۵) و اجزا و نواحی آن

از روشهای آزمایشگاهی مکانیکی نیست. در این تحقیق، هر آمیزه استیکی به طور جدیدانه آماده و ضمیم تعبیه

تزریک کریمی در انتهای منظم در داخل آن، در قالب یا پیش

پخت قرار داده می‌شود. در مرحله بعد، قالب حاوی آمیزه، در

شرايط مساوی پخت تا به طور پیوست گرما داده می‌شود تا

آمیزه پخته شده حاصل شود. سپس آمیزه پخته شده در دستگاه

اندازه‌گیری ضریب هدایت گرمایی مورد آزمایش قرار می‌گیرد.

شکل (۲) تغییرات ضریب هدایت گرمایی اجرای مختلف ناپای

را به صورت تابعی از دما نشان می‌دهد. ملاحظه می‌شود که با

افزایش دما این ضریب کاهش می‌یابد. معادله‌های (۲)، (۳)، (۴)

و (۵) که براساس نتایج آزمایش‌های انجام شده در این پژوهش

به دست آورده شده است، به ترتیب به انگر تغییرات ضریب

استقلال، سال ۳۰، شماره ۱، شهريور ۱۳۸۰
حلقه پسماند می–کویند و بیانگر فیسی‌تریسی ناشی از اصطکاک داخلی مولکول‌های جسم است. تفاوت ارزی مصرف شده و ارزی داده شده را تلفات پسماند مکانیکی می–کویند. میزان این تلفات در تأثیر به جنس آمیزه‌ها و ترکیبات لاستیکی، ساختار کرک و میزان بار شعاعی اعمال شده، فشار باد، دمای... سرعت حرکت تایر و وضعیت جاده سببکی دارد.

تلفات پسماند مکانیکی به عنوان معامل‌های غلیظ می‌شود. تغییر شکل‌های ویسکوالاستیکی پی در پی در تأثیر در حال حرکت و ارتعاشاتی که پس از هر تغییر شکل به وجود می‌آید، موجب اصطکاک داخلی در ناخ و آمیزه‌های لاستیکی شده و بخش قابل توجهی از انرژی منتقل شده به تایر را به هدر می‌دهد. تغییر انرژی تلف شده در تایر عمده‌تر بر روی‌شدهای جریانی و آزمایشگاهی است. زیرا رفتار ترموموئیو–الستیکی‌های تایر به دلیل دخالت پارامترهای متعدد...

40° ≤ T ≤ 120°C

5- گرم‌ماژایی در تایر

اگر به یک تایر ساکن یا اساساً هر جسم استیکی دیگری، یک بار عمومی اعمال و سپس آن را حذف کنیم، منحنی بار-خم شنیده به صورت یک حلقه مشاهده می‌شود که به آن...
۶- شرایط مدیریت در حل مسئله ترمومکانیکی تایر

شرایط مرزی برای مدل اثرهای شده، شامل است است. این افزایش سطح خاکی با توجه به تغییر محوری تایر می‌توان صرفه‌کننده از سطح مقعف عرضی میدهند و از مصرف می‌تواند با توجه به بالا بردن قابلیت

tُای که در نما است باید است که توجه به بالایی باشد شاید

هدایت گرمایی تابع هوا، در حالی باید باعث فرض شده

است.

\[q_n = -K_n \frac{dT}{dn} = 0 \]

ب: مز تمرکز تایب ریگ با توجه به تابع ماده اولین

در حالی پایداری شده به صورت دمای شده است. این افزایش سطح خاکی با توجه به بالا بردن قابلیت

\[q_n = -K_n \frac{dT}{dn} = h(T_w - T_n) \]

در این مدل ترکیب دمای دیواره و دمای هوا بیان می‌شود تایب و تایبی از انتقال گرمایی جایی با

سال خارجی تایب است. با توجه به هندسه بیجی‌های که تایب از آن برخوردار می‌شود هیچ گونه رابطه تجربی برای تعیین ضریب

\[h \]

در دست نبسته همین خاطر از معادله تجربی زیر که برای

اجسام کروی و استوانه‌ای شکل در جریان عرضی

\[\beta \]

شده است. استفاده شده است. [16]

\[W_1 = \pi U \tan \delta \]

در معادله بالا، \(W_1 \) افزایش در طی هر سیکل حرکت، \(U \) تغییر آن می‌باشد. تایب در این مدل می‌تواند به دیلی سطح مانند نشان دهنده

\[q = \frac{V_0 \pi \tan \delta}{R_0 - \Delta \lambda / 3} \]

در این پروپاژن برای تعیین توان انرژی از است. آزمایش تایب[16] استفاده شده است. این است که شما باید شکننده

\[V_0 \]

با دخلت دادن سرعت ماسی تایب یا \(V_0 \) شعر غلیظ

\[R_0 \]

و میزان خشک شدن تایب \(D \) در معادله .[17] سرعت گرمایی در

\[\Delta \lambda \]

نحوه حرکت تایب در طی هر سیکل به صورت زیر به دست

\[q \]

می‌آید

\[q \]

به ایجاد گسترش اعمال شده به چرخ با توان الکتریکی

\[q \]

مصرف شده می‌توان و نشان از افزایش گرمایی از آزمایشات تایب[16] است. این است که شما باید شکننده

\[R_0 \]

با دخلت دادن سرعت ماسی تایب یا \(V_0 \) شعر غلیظ

\[R_0 \]

و میزان خشک شدن تایب \(D \) در معادله .[17] سرعت گرمایی در

\[\Delta \lambda \]

نحوه حرکت تایب در طی هر سیکل به صورت زیر به دست

\[q \]

می‌آید

\[q \]

به ایجاد گسترش اعمال شده به چرخ با توان الکتریکی

\[q \]

مصرف شده می‌توان و نشان از افزایش گرمایی از آزمایشات تایب[16] است. این است که شما باید شکننده

\[R_0 \]

با دخلت دادن سرعت ماسی تایب یا \(V_0 \) شعر غلیظ

\[R_0 \]

و میزان خشک شدن تایب \(D \) در معادله .[17] سرعت گرمایی در

\[\Delta \lambda \]

نحوه حرکت تایب در طی هر سیکل به صورت زیر به دست

\[q \]

می‌آید

\[q \]

به ایجاد گسترش اعمال شده به چرخ با توان الکتریکی

\[q \]

مصرف شده می‌توان و نشان از افزایش گرمایی از آزمایشات تایب[16] است. این است که شما باید شکننده

\[R_0 \]

با دخلت دادن سرعت ماسی تایب یا \(V_0 \) شعر غلیظ

\[R_0 \]

و میزان خشک شدن تایب \(D \) در معادله .[17] سرعت گرمایی در

\[\Delta \lambda \]

نحوه حرکت تایب در طی هر سیکل به صورت زیر به دست

\[q \]

می‌آید

\[q \]

به ایجاد گسترش اعمال شده به چرخ با توان الکتریکی

\[q \]

مصرف شده می‌توان و نشان از افزایش گرمایی از آزمایشات تایب[16] است. این است که شما باید شکننده

\[R_0 \]

با دخلت دادن سرعت ماسی تایب یا \(V_0 \) شعر غلیظ

\[R_0 \]

و میزان خشک شدن تایب \(D \) در معادله .[17] سرعت گرمایی در

\[\Delta \lambda \]

نحوه حرکت تایب در طی هر سیکل به صورت زیر به دست

\[q \]
سطح خارجی آن معادل سطح تبادل گرمایی جایی تا پایه تایین مورد نظر است و برای تایین مورد نظر در این پژوهش به تعبیر معادل 145 میلیمتر به دست می‌آید. با تغییر بعد مشخصه و با استفاده از معادله بالا در توان عدد ناسیل و فیسی پریب انتقال گرمایی جایی از سطح خارجی تاییرا در سرعت‌های مختلف حرکت تایی تغییر کرده است. شکل (5) ملاحظه می‌شود.

\[
Nu = (495.9 + 5.767 \times 10^{-4} Re + 0.28 \times 10^{-9} Re^2 - 3.58 \times 10^{-17} Re^3) Pr^{0.4} \\
3 \times 10^5 < Re < 5 \times 10^5
\]

(10)

برای تعیین پریمیر باید به ترتیب اعداد پریمیر به نسل "ریتولز" و "براند" هستند. بعد مشخصه ی برای استفاده در این رابطه نیز قطر گرفته در نظر گرفته شده است که

\[
1800 \text{ N}
\]

شکل 3- تلفقات پسماند مکانیکی تاییر (13-60) در بار شعاعی

\[
8 \text{ km/hr}
\]

شکل 4- تلفقات پسماند مکانیکی تاییر (13-60) در سرعت
می‌شود که با بالا رفتن سرعت به دلیل آنکه اعداد ریپولدز و ناسیت افزایش می‌یابند. میزان این ضریب نیز زیاد شده است.

\[q_0 = \alpha \mu V P \]

در معادله بالا، \(P \) به تریب عضو درصد کنترل شده، ضرب اصطلاحات لغزش، سرعت لغزش و فشار میزان ظاهری تابی به جاده است. با افزایش سرعت و بار شعاعی اعمال شده، میزان گرمای جذب شده در سطح تماس افزایش نمی‌شود. با افزایش سرعت در این عضو، نیز برای تابی مورد افزایش از طریق تغییر تقییز شده است. بنابراین، سطح تماس نیز به سبب افزایش سرعت شعاعی در سطح تماس تابی به جاده همچنین بالا رفتن فشار در آن، میزان گرمای جاذب شده نیز افزایش می‌یابد.

- 7- نتایج محاسبات عدید

دایره‌ای به دست آمده از مراحل قبل به عنوان ورودی مسئله گرمایی تابی مورد استفاده قرار گرفته و معادله دیفرانسیل حاکم در یک برنامه اجزای محدود دوگیر خاخت که برای تغییر کستریش دما در مقطع عرضی تابی به صورت دو‌بعدی تدوین شده اجرا شده است. بنابراین، یک متر نظارت هنده دود مورد نظر بر میان یک شبکه بندی مشتمل بر ۷۰ المان و ۹۸ در برنامه تدوین شده مورد تحلیل قرار می‌گیرد برای چربی مرزی متفاوت، ضمن پیش بینی می‌باشد در نقاط مختلف تابی، نواحی حساس و برجای که با افزایش دما، شیب‌پذیری وابسته به عنوان نواحی اسب‌پذیر در تابی مشاهده می‌شود.

\[q_n = X_n [h(T_n - T_W)] + X_2 (q_0) \]

در این معادله، \(q_n \) جریان گرمایی مدارال به ناحیه تابی، \(T_W \) ضریب اندازه‌گیری جابجایی از سطح خارجی تابی و \(X_2 \) به ترتیب دمای دیواره و دمای هوای پیرامون تابی، \(T_n \) معرف درصدی است سطح ناحیه تابی است که به ترتیب در تمام با هوا و با جاده قرار دارد و \(q_0 \) جریان گرمایی در سطح مورد استفاده از برنامه محاسباتی تدوین شده، آزمایش‌های متعددی برای پیش از ۳۰ حالت مختلف از سرعت معنی‌دار، میزان بار شعاعی و فشار. در یک شبکه متری که تابی در جاده با آن موجود می‌باشد، حل شده است. شکل (V) مقطع عرضی تابی مورد افزایش از طریق تغییر قرار داده، حتی آزمایش‌ها و بررسی‌های مختلف آن را نشان می‌دهد. هنگام اجرای برنامه تدوین شده در این زمینه، فشار در هر جزء از تابی که با حداقل افزایش دما نسبت به دمای محیط تابی وارد می‌شود از معادله زیر قابل محاسبه است.
شکل 5- تغییرات ضریب انتقال گرمایی جایی در سطح خارجی تابیر (13-1920) بر حسب سرعت

شکل 6- گرمایی جذب شده توسط تابیر (13-1980) بر اثر اصطکاک لغزشی در فشار باد

2.1 kg/cm²

ثابت 1800 و فشار باد 2.1 kg/cm² در آزمایش بر روی تابیر مورد نظر به دست آمده است، می‌توان انتظار کشید که در سرعت‌های بالا که تغییر شکل‌ها و ارتعاشات و سکوال‌استیکی تابیر بیشتر است، افزایش دما بسیار زیاد است و به خصوص در مراز مشترک تاج و کرکس در مجاور ناحیه شانه که ضخامت تابیر زیاد است این افزایش دما می‌تواند موجب مسňوختن آمیزه لاستیکی و جدا شدن لایهای در کرکس شود. به همین ترتیب این ناحیه را می‌توان به عنوان آسیب پذیرترین ناحیه از تابیر معرفی می‌کنیم.

مواجع می‌شود شناسایی و بر روی شکل مشخص شده است و میزان افزایش دما در این نقاط بحرانی و آسیب‌پذیر در قبال شرایط کاری مختلف مورد بررسی قرار گرفته است.

شکل (۸) اثر سرعت را بر میزان افزایش دما در نقاط بحرانی هر جزء از تابیر نشان می‌دهد. ملاحظه می‌شود که افزایش سرعت، همان‌گونه که مقاومت غلتختی و میزان گرمایی را در تابیر افزایش می‌دهد، افزایش دما در بخش‌هایی را در نقاط مختلف تابیر موجب می‌شود. داده‌های این شکل که در بار
2.1 کیلوگرم در سانتی متر مربع و 80 کیلومتر در ساعت سرعت N1800 و فشار بهاد.

شکل 7- افزایش دمای جنگلی نقاط مقطع تا برای 13-10-0 در بار

شکل 8- اثر سرعت بر حداقل افزایش دما در اجزای مختلف تا برای 13-10-0 در بار شما 1800 N و فشار بهاد 2.1 کیلوگرم در سانتی متر مربع.

استقرار، سال 1382، شماره 1، شهریور 1382
8- جمع‌بندی نتایج تحلیل گرمازایی تابیر
برای کاهش توان لف شده در تابیر، کاهش میزان گرمازایی، تبادل گرمایی بهتر و جلوگیری از افزایش بیش از حد دما به خصوص در نقاط بحرانی، راهکارهای مختلفی قابل بررسی و تحقیق است که می‌تواند در فرآیند اصلاح ساختمان و بهینه‌سازی تابیر مورد توجه قرار گیرد.

سفینه شناور ی از جمله پرآب‌ترین طراحی تابیر محسوب می‌شود که تعمد کننده میزان تغییر شکلها و ابعادش می‌باشد. آن در طی چرخش تابیر است. مهم‌ترین عامل مؤثر بر سفینه شناور، تابیر باید باشد. افزایش فشار به همانندی که در پیوست‌های خاص نشان داده شده موج‌کش م.cvنشی تابیر می‌شود. اما این امر نمی‌تواند به پرburst خودرگزی‌یابه رودی دریایی مهیاطی تابیر می‌شود، بلکه موج‌کش می‌شود ناحیه ناحیه به طرف برون تبدیل یافته و سطح تمام تابیر با چگاه کاهش یابد. این موضوع تغییر به نوبه‌ای به کاهش نتیجه خودکاهش که بروز بین خورده‌گی

می‌باشد. در این موارد باید سوخت در حرکت دامنه و جریان خاطر به نظر می‌رسد که بتواند کاهش نسبت مقدار

یعنی افزایش

عرض تابیر نسبت به ارتفاع آن، افزایش فشار باد، به طور همزمان، تغییر مقدار تغییر این دو پارامتر را خصیت کرده و ضمن آن با کاهش خمشها و ارتعاشات و پیکوالاستویکی تابیر تولید

گرما در تابیر کاهش داد.

راه‌هایی که در فرآیند بهینه‌سازی تابیر می‌تواند مورد توجه قرار گیرد، طراحی اجرایی بچن‌سختخوانی است. برای این مبنای موج‌کش به آموزه‌ای است که با کاربرده در تابیر تابیر را از مواد یا هیسترشیپ بالا به ناحیه تابیر کننده می‌تواند. سیزن بای پیش‌بینی که از آموزه‌ای لاستیکی با هیستریج پایین، ماهیت تغییر مسیر می‌تواند کاهش گرمازایی تابیر ناحیه تابیر ناحیه تابیر ناحیه تابیر ناحیه تابیر ناحیه تابیر

در این آزمایش‌های ناحیه تابیر کاهش تناول و کاهش تغییر فشار ناحیه تابیر می‌تواند. به طور مثال در این آزمایش‌های ناحیه تابیر کاهش تناول و کاهش تغییر

که به طور مثال در سرعت 100 km/hr 1938 است. اما تابیر و کاهش بر تغییر

با افزایش دما در 74و 75 کروش می‌شود. در

همین حال حداکثر افزایش دما در ناحیه دیواره بامی به دلیل

ضخامت کم و سطح کوچک تبادل گرمایی با محیط 41°C است و

در چنین حالتی امیر شریفی را متوجه آمیده‌ای است که کار رفتگی در

این ناحیه تمیکن (حد تحمل آمیده‌ای لاستیکی حدود 125°C

است[۷].)

شکل (۹) اثر بر ابعاد اعمال شده بر آمیده‌ای افزایش دما در نقاط بحرانی مختلف ناحیه تابیر ناحیه می‌باشد. به همین‌گونه که افزایش باد، به دلیل افزایش دامنه خم‌ها و ارتعاشات تابیر

مقاومت غلتکی و ناهنجاری در تابیر ناحیه می‌باشد. افزایش

دبی پیشنهاد برای افزایش مختلف ناحیه تابیر موج‌کش می‌شود.

داههای این شکل که در سروتی ماده 80 کیلوگرم و فشار باد

دهنده ده هاکی ناحیه که در ناحیه دیواره گرمایی و متوسط افزایش دما در تابیر 41.07°C است.

شکل (۱۰) اثر فشار ناحیه بر حداکثر افزایش دما در نقاط

بحرانی اجرایی مختلف ناحیه مورد نظر ناحیه می‌باشد. به همین‌گونه که در سرعت ماده 80 کیلوگرم و تتحت بار ناحیه 1000 ناحیه به دست آمده‌اند. بنابراین آن هستند که با کاهش فشار باد، دامنه تغییر بکار گرفته و ارتعاشات تابیر، به دلیل کاهش سطحی شناور، آن

افراش پایه و گرمازایی باعث افزایش دمای پیشنهاد در ده

ست ناحیه تابیر می‌باشد. به طور مثال در فشار ناحیه 1.5

kg/cm² دما از همان ناحیه تابیر کاهش دما در تابیر

58°C است. همچنین تجدید نظر در فرآیندان آمیده‌ای به

خصوص امحیا ناحیه تابیر بنابر تغییر

نحوه افزایش قابلیت هدایت

کرده.

استقلال، سال ۱۳۸۰، شماره ۱، شماره ۱۳۸۰
گرمایی آن می‌تواند در نباید گرمایی بیشتر تا باید با هوا و جلوگیری از افزایش پیش یک‌میلی‌متر از حد دما در این ناحیه مؤثر باشد. یکی از دلال‌افزایش پیش از حد دما در نقاط پیشران تا باید ضخامت زیاد تا باید در ناحیه شانه است. این ضخامت زیاد از پیکوس، افت هیستوژیم و گرمای تولید شده در تا باید را افزایش می‌دهد و از سوی دیگر موجب کند شدن دفع گرمایی از تا باید

2.1kg/cm² و نشان باشد 2.1kg/cm² و نشان باشد

شکل 9 - اثر بار شعاعی بر حداکثر افزایش دما در اجزای مختلف تا باید 13 - 260 در سرعت 80km/hr و شکل 10 - اثر فشار باد بر حداکثر افزایش دما در اجزای مختلف تا باید 13 - 260 در باد 1800 و سرعت 80km/hr

امور. افزایش انحایی لبی عاج در ناحیه شانه نه تنها اثرات ناشی از ضخامت زیاد را کاهش می‌دهد، بلکه با افزایش سطح تا باید گرمایی در این ناحیه، انتقال گرمایی از تا باید به هوا نیز افزایش می‌یابد.

تأثیر سرعت، فشار باد و بار شعاعی اعمال شده بر میزان اتفاق انرژی و تولید گرمای در تا باید، به طور مشروط در این
پژوهش مورد بررسی و تحلیل قرار گرفت. ملاحظه شده که
چنانچه سرعت ممسانی و بار شعاعی اعمال شده به تایبر از حد
مشخصی تجاوز کند، به طور فرازمینی دما در نقاط بحرانی تایبر
افراشی می‌باشد. به همین راحتی است که در سرعت
ممسانی تایبر و بار شعاعی اعمال شده به آن، ساده‌ترین روش
برای مهار افراشی دما و جلوگیری از تخریب تایبر است.

واژه‌نامه

1. viscoelastic deformations
2. heat build up
3. rolling resistance
4. bias tire
5. crown
6. carcass
7. mechanical hysteresis losses
8. steady state
9. inflation pressure
10. Flexmeter Goodrich
11. moving heat source
12. side wall
13. top ply
14. sub ply
15. bead
16. filler
17. thermoviscoelastic
18. drum tester

1. Dodge, N., and Clark, S. K., “Tire Modeling and
Contact Problems Heat Generation in Aircraft
Tires,” Computer & Structures, Vol. 20, No. 1-3,
1985.
2. Chakraborty, S. K., and Mukherjee, D. P. “Study of
Heat Build-Up of a Cured Tire Using a Goodrich
Thermomechanical Model to Predict the
Temperature Distribution of Steady State Rolling
Tires,” Tire Science and Technology, TSTCA,
Tread Temperature in Actual Contact Areas,” Tire
Science and Technology, TSTCA, Vol. 22,
5. Rezvani, A., “Measurement of Tire Thermal
Properties & Finite Element Analysis of Heat
Transfer in Tire,” M. S Thesis, Shiraz University,
1998.
6. Zukauskas, A., Convective Heat Transfer in Cross
Flow, Handbook of Single-Phase Convective Heat
Compounds,” Mechanics of Pneumatic Tires,
Washington D.C.: U. S, Department of
Transportation, 1975.

مرجع