تحليل گرمایی تایر

عند رضوئی، قدرت اَل کرم** و محمود یعقوبی
بخش مهندسی مکانیک، دانشگاه مهندسی دانشگاه شیراز

(دریافت مقاله: 12/9/15 - دریافت نسخه نهایی 2/14/13)

چکیده - مهندسین عامل نهاد بیکننده آزمودهای لاستیکی به کار رفته در تایر، گرمایش گرا موجب تغییرات خواص فیزیکی و وکنش‌های شیمیایی آزموده‌ها شده و دوام و پایداری شان را به میزان قابل توجهی کاهش می‌دهد. تولید کرما در تساری، عمده‌ترین نتیجه مقیاس‌گیری اثرات شکل‌پذیری و وسکولاسیستیکی‌ها در اصطکاک داخلی آن در حالت حرکت شکل‌پذیرشده و جاده، صورت می‌پذیرد. علاوه بر آن، یکی از امرای تولید شده در نتیجه اصطکاک لزجی تایر یک نیز به سطح خارجی تایر منتقل می‌شود. بر پایه نمونه‌برداری نمونه تایر، میزان گرمایش داخلی تایر از آن در پختن مختلف نیز تاثیر در تحلیل و طرح‌های تایر برای ساختنی نواحی اسپی سیاپیدر و اصلاح و بهبود ساختات داخلی تایر مورد استفاده قرار گرفت.

واژگان کلیدی: گرمایی تایر، خواص فیزیکی، شیمیایی، اصطکاک، طراحی تایر، مکانیک بیکننده

Thermal Analysis of Tire

A. Rezvani, G. Karami, and M. Yaghoubi
Department of Mechanical Engineering, Shiraz University

ABSTRACT- One of the great enemies of rubber compounds is heat. Heat will cause chemical and physical degradation of vulcanized rubber as well as a considerable loss in its strength. A major source of heat generation in a tire is due to internal friction resulting from the viscoelastic deformation of the tire as it rolls along the road. Another source of heat generation in a tire is due to its contact friction with the road. Prediction of the temperature rise at different parts of the tire will help to detect the behavior of the tire as regards its strength and its failure.

* - كارشناسی ارشد
** - استاد

استقلال، سال 20، شماره 1، شهريور 1380

137
1- مقدمه

تامین تابی به یک تنش و پذیرفت شدت در فشار ناشی از بارهای استاتیکی و دینامیکی در طی حرکت غلتی، آموزه‌های استاتیکی ناب از در معرض فشار رود داشته و با سرعت زیاد حرکت می‌کند. با تولید غریمی بیشتر تر، مواجهات همیشه استاتیکی با پسماند غریمی بالا، نسبت به آموزه‌های استاتیکی با پسماند غریمی پایین، غریمی‌نشی بیشتری را از خود نشان می‌دهد و به همان نسبت، مسئله سایش، آسیب زمین شدن در بربر ضرولات و شوک‌های وارد از سطح جاده، کاهش استحکام و تخریب در آنها سرعت اتفاق می‌افتد.

از روش صرف‌جویی در مصرف سوخت و تجهیزات که وجود آن بهبودی زیستی محیطی همراه با نجات برای ساخت تاریک‌های با دوام و پایداری بیشتر، اگر را خطای تحقیقات مربوط به تحمل غریمی در سالنیای تاریک بوده است. به هر صورت وپس‌گذاری کام از این تحقیقات متوقف است، اما هدف نهایی نام‌آماده رسیدن به یک پیش‌بینی فریبی تازه‌گوی دما در نیاز کاهش مختل تابی در سروری و استفاده از نیوکلی در سیکل تحلیل و طراحی تاریک بوده است.

2- مکانیک

درک و کلاکر [1] با استفاده از یک مدل ریسکوالاسیک خطوط سادهافت انرژی و غریمی‌های در هر سیکل حمل بیک تابی هواپیما را مورد بررسی قرار داده و توزیع دما در مقاطع مختلف آن را پیش‌بینی کرده‌اند. چک روتری و شاکرجی [2] خطاهای از بخش‌های تاثیر ستون‌ها و یا تاثیر تاریک به دست آمده در سه جهت مختلف پرش داده و آنها را در فلکس می‌تواند بر روی دیوار تیزadays. خطاهای از بخش‌های متفاوت قرار داشته‌اند. با توجه به تیزadays، فشاری بخش‌های دماهای مختلف، همچنین تغییرات، ناحیه را به حداکثر افزایش

3- مبنا اتفاق انرژی و غریمی‌های ناشی از آن به ساخت‌وری

با توجه به تاریک و مشخصات نیرویی آموزه‌های استاتیکی به کار رفته
نتایج تحلیل گرمایی شده‌ای ما سیستم معادله‌های پیچیده را به‌ین سیستم قابل حل تبدیل کرده. این فرضیه‌ها به بیان‌گری تولید شده در نتیجه تغییر شکل‌های ویسکوالاستیکی و اصطکاکی داخلی، به صورت چشم‌های گرمایی با توزیع یکنواخت در نقاط مختلف تابی به نظر گرفته شده است.

1- در تحلیل گرمایی یک شکل هندسی خاص با شرایط مرزی ثابت و پایدار مورد بررسی قرار گرفته است.
2- از گرادیان دما در محیط دایره تاپر و همبینین از انفعال گرمایی تابی در سطح خارجی آن صرفاً نظر شده است.
3- معادله حاکم در تحلیل گرمایی تابی در این پژوهش، تحلیل گرمایی تابی در سرورپ در حالت پایدار به صورت لازم است. مدل معادله حاکم به صورت زیر خواهد بود:

\[
\frac{\partial}{\partial X} \left(K_X \frac{\partial T}{\partial X} \right) + \frac{\partial}{\partial Y} \left(K_Y \frac{\partial T}{\partial Y} \right) + q = 0
\]

(1)

در رابطه بالا، \(T\) به قدرت مصرف دما گرمایی یا در جریان دما دما گرمایی، \(q\) به تغییر شکل، تحلیل ریسک ویسکوالاستیکی اجزای تابی و پراورد اثرات انرژی و گرمایی تابی از آن است. با اعمال این مراحل و مشخص شکل شرایط مرزی، آمکش شیب سازی مدل ترمومکانیکی به منظور پیچیده بین تابی توزیع دما در مقطع عرضی تایب در سرورپ در حالت پایدار فراهم می‌شود.

2- معرفی تابی مورد آزمایش و فرایندهای انجام شده

در شکل (1) به‌ین عرضی تابی سرورپ بایاکان ۱۳۹۸-۵۰۰۲ محدود کارهای‌که در این تحقیق مورد بررسی قرار گرفته، نشان داده شده است. اجزای اصلی تکنیک دهندگی این تابی عبارتند از: تار، دیواره‌های داخلی و خارجی یا استخوان که نیز به‌ین قرار در تابی در نظر گرفته و تحلیل تغییر شکل تحلیل ریسک ویسکوالاستیکی اجزای تابی و پراورد اثرات انرژی و گرمایی تابی از آن است. با اعمال این مراحل و مشخص شکل شرایط مرزی، آمکش شیب سازی مدل ترمومکانیکی به منظور پیچیده بین تابی توزیع دما در مقطع عرضی تایب در سرورپ در حالت پایدار فراهم می‌شود.

3- گستره‌ای پایدار، خصوصیات گرمایی پیچیده‌ای را از خود نشان می‌دهند. این تکنیک‌ها در تابی و دیواره‌های مختلف در مسئله‌ای است و اصطکاکی تابی با سطح جاده، تحلیل شار تابی از این الگوهای پایدار، خصوصیات گرمایی پیچیده‌ای را از خود نشان می‌دهند. این تکنیک‌ها در تابی و دیواره‌های مختلف در مسئله‌ای است و اصطکاکی تابی با سطح جاده، تحلیل شار تابی از این الگوهای پایدار، خصوصیات گرمایی پیچیده‌ای را از خود نشان می‌دهند.
شکل 1- بریش عرضی یک تایی پیچ انتهای (۱۲-۱۳) و اجزا و نواحی آن

از روش‌های آزمایش‌گاهی امکان‌پذیر نیست. در این تحقیق، هر آمیزه‌ی استیکی به طور جدایی‌آمده آماده و ضمن تعبیه ترمکولون‌هایی در فواصل منظم در داخل آن، در قابل‌های ویژه بخت قرار داده می‌شود. در مرحله بعد، بالاب حاوی آمیزه‌ی در شرایط مشابه بخت تایی به طور یک‌ت‌کانست کرما داده می‌شود تا آمیزه بخته شده حاصل شود. سپس آمیزه بخته شده در دستگاه

استقلال، سال ۱۳۸۰، شماره ۱، شهرویور ۱۳۸۰

۱۴۰
حلقه پسماند می‌گویند و بیانگر افت هیسترتیس ناشی از اصطکاک داخل مولکولهای جسم است. تفاوت افزایش مصرف شده و افزایش داده شده را تلفات پسماند مکانیکی می‌گویند.

میزان این تلفات در تابی به جنس آمیزه‌ها و ترکیب‌های استاتیکی، ساختار ویژگی کرک است. این تلفات در شرایط عمومی ناشی از نیرو و جذب قرار می‌گیرد.

سرعت حرکت تابی و وضعیت جاده به‌سگی دارد.

تلفات پسماند مکانیکی به عنوان مهمترین عامل مقاومت غلمنی، بیش از ۹۰ درصد افت قدرت در تابی در حال کار را شامل می‌شود. تغییر شکل‌ها و ویسکالاستیکی بین در پی در تابی در حال حرکت و ارتباط معنی‌داری با سیستم فیزیکی به وجود می‌آید. از این رو اصطکاک داخلی برخی از افزایش ویسکالاستیکی شده و بخش قابل توجهی از افزایش حرکت را به تابی می‌دهد. پیوستگی انسانی تلف شده در تابی عمداً می‌میند بر روی ترکیب تولید و استریتیکی است. زیرا رفتار ترموویسکالاستیک در تابی به دلیل دخالت پارامترهای متعدد چنان پیچیده است که ممکن است تخلیل کامل کاملی نباشد. این راهکار نشان می‌دهد که با لحاظی که برای این انتخاب از یک مدل ویسکالاستیک خاص ساده براز تبعیعی افت‌های گرمایی آمیزه‌ها استاتیکی ناجی، دوباره پس از این تابی به صورت تحت‌الحمایه می‌شود که به آن

\[
K_{(T)} = 0.25 + 0.02114(T) - 0.002816(T)^{1.1} + 0.00909(T)^{1.2}
\] (2)

\[
K_{(T)} = 0.25 + 0.00762(T) - 0.01139(T)^{1.1} + 0.0039(T)^{1.2}
\] (3)

\[
K_{(T)} = 0.25 - 0.02461(T) + 0.02736(T)^{1.1} - 0.007807(T)^{1.2}
\] (4)

\[
K_{(T)} = 0.25 - 0.01915(T) + 0.02060(T)^{1.1} - 0.005709(T)^{1.2}
\] (5)

\[40^\circ \leq T \leq 120^\circ C\]

5- گرمایشی در تابی

اگر به یک تابی ساختمان یا استاتیکی به جسم استاتیکی بگردد، یک صورت عمومی اعمال و سیستم آن را جذب کنیم، منجری به بار- خشش آنها به صورت یک حلقه مشاهده می‌شود که به آن...
۶- شرایط مرزی در حل مسئله ترمودینامیکی تاپر

شرايط مرزي برای مدل ارانتی شده، عبارت است از:

ا) Tα

b) 0

c) 0

d) 0

e) 0

f) 0

g) 0

h) 0

i) 0

j) 0

k) 0

l) 0

m) 0

n) 0

o) 0

p) 0

q) 0

r) 0

s) 0

t) 0

u) 0

v) 0

w) 0

x) 0

y) 0

z) 0

\[
W_t = \pi U \tan \delta
\]

۷- در معادله ۱۰ می‌توان اسدی در طول عمر میکروسکوپی یا

\[
V_0 \pi \tan \delta - \frac{R_0}{(\Delta A)^3}
\]

\[
q = \frac{1}{16} \pi \tan \delta
\]

۸- در این پژوهش برای تعیین توان اسلال انرژی از دستگاه آزمایش ۱۸/۵ می‌توان استیک است. این دستگاه شامل یک استوانه با قطر زیاد است که توسط یک موتور الکتریکی با سرعت قابل تنظیم دوران می‌کند. چرخ حاوی تاپر مورد آزمایش در اثر بازی به کمک یک سیستم هیدرولیکی به آن اعمال می‌شود با استفاده در حال دوران دریچه شده و با سرعت تعیین شده دوران می‌کند. براساس این شرایط کاری، با اندازه‌گیری دقیق برای توان الکتریکی

\[
V_0 = \pi \tan \delta
\]

\[
R_0 = \frac{(\Delta A)^3}{16}
\]

۹- مصرف شده می‌توان انرژی تلف شده در تاپر را برآورده کرد.

\[
\text{در این معادله Tα به ترتیب دما دیوراد و دمای هوای پرایمر تاپر و ضریب انتقال گرمایی جاپی از سطح خارجی تاپر با توجه به یک نسبت بسکینگی که تاپر از آن پرورانده است به عنوان رابطه تجربی برای تعیین ضریب h در دست نبسته به همین خاطر از معادله تجربی زیر که برای

\[
h = \frac{1}{k} \mu
\]

یک یکتا و استوانه در چرخان عرضی ۲۰/۰ پیش‌باز

\[
\text{شده استفاده شده است. (۱۶)}
\]
سطح خارجی آن معادل سطح تبادل گرمایی جایی تایپ مورد نظر است (برای تایپ مورد نظر در این پژوهش بعد مشخصه معادلات 15 میلیمتر به دست می‌آید) با تعیین بعد مشخصه و با استفاده از معادلات بالا می‌توان عدد ناسال و میاس ضریب انتقال گرمایی جایی از سطح خارجی تایپ را در سرعت‌های مختلف حکمت تایپ تعیین کرد. شکل (5) ملاحظه Nu = (495.9 + 5.767 \times 10^{-4} \text{Re}
+ 0.288 \times 10^{-9} \text{Re}^2 - 3.58 \times 10^{-17} \text{Re}^3) \Pr^{0.4}
3 \times 10^5 < \text{Re} < 5 \times 10^5
(10)
در این معادله Nu به ترتیب اعداد پیش‌ترین، Pr به ترتیب اعداد پیش‌ترین جایی از سطح خارجی تایپ را در بر دارد. در این رابطه نیز قطر کروی در نظر گرفته شده است که استفاده شده است که
قانون سوم د动态 عوضه و

\[q_n = \alpha \mu V P \]

در معادله بالا، \(q_n \) به ترتیب معروف: درصد

\[
\frac{\text{گرمای جذب شده}}{\text{ضاهرت اصفهانی}}
\] سرعت گرمایش و

\[
\text{فشار تباین شده}
\] است. با افزایش سرعت و بار

\[
\text{شکل (7) اثر سرعت را به میزان گرمای جذب شده در ناحیه}
\] تابی در سب سرعت مماسی به دبیل افزایش سرعت

\[
\text{لغزش و به زایمان بار شاع شده}.
\] است.

آن میزان گرمای جذب شده نیز افزایش می‌یابد.

\[
7-\text{نتایج محاسبات عدی}
\]

دازه‌های به دست آمده از مراحل قبل به عنوان ورودی

\[
\text{سیستم گرمایی} \text{تابی مرود استفاده قرار گرفته و معادله دیفرانسیل}
\] حاکم در یک برنامه اجزای محدود غیرخطی که برای تعیین

\[
\text{کسترس دما} \text{در مقطع عرضی تابی به صورت دو بعدی تدوین}
\] شده اجرا شده است. برای این منظور هنگام مورد نظر بر مبنای

\[
\text{یک شبکه بندی مشابه بر 70 این و 98 در برنامه تدوین}
\] شده، مورد تحلیل قرار می‌گیرد و سیستم مزیت متفاوت، ضمن میزان بینی آن در مقایسه مختلف تابی، نواحی حساس و

\[
\text{بجایی که با افزایش دما بیشتر می‌آمیزه می‌شوند به عنوان}
\] نواحی آسیب پذیر در توابی شناسی شوند.

\[
\text{با استفاده از برنامه محاسباتی تدوین شده، آزمایش‌های}
\] متعددی برای پیش‌بینی از حالت مختلف از سرعت معمسی، که با آسیب و شاراب شاهد، مناسب به شرایط مرزی که تابی

\[
\text{در جایی با آن مواجه می‌شود، حل شده است. شکل (7) مقطع}
\] عرضی تابی مرود آزمایش و اجزای مختلف آن را نشان می‌دهد.

\[
\text{هنگام اجرای برنامه تدوین شده در این پژوهش، نتایج در هر}
\] جزئی از تابی که به حداکثر افزایش دما نسبت به دما می‌یاید

\[
\text{می‌شود که با بالا رفتن سرعت به دلیل آنکه اعداد رالیولدزر و}
\] ناسست گرمایش می‌یابند. میزان این ضریب تابی زیاد شده است. استفاده تابی که در هر لحظه بهشی شده آن در تابی

\[
\text{بیشتر عالی بر آنکه از طریق یک جابجایی با محفظه نیز}
\] گرمایی می‌کند. به دلیل گرمایی ناشی از دستگاه‌های فلشی در

\[
\text{سهم تابی به جای خود در محور گرمایی به داخل}
\] ناحیه تابی بر سرعت دور در حال تمرین است. تابی با سرعت زیاد در حال چرخش

\[
\text{است. تابی این یک نقطه از ناحیه تابی که در یک لحظه در تابی}
\] با جایی در حال دور، درست در لحظه بعد در تابی به یک هوا قرار

\[
\text{می‌گیرد و از طریق جابجایی به یک هوا متقابل}
\] می‌کند. به چند روش نادرست در لحظه تمرین، تابی در

\[
\text{حداکثر دمای خود را دارد. اما تحقیقات انجام شده نشان}
\] می‌دهد که با توجه به سرعت زیاد و بالا بودن ضریب تابی گرمایی جابجایی. گردانان می‌خواهند تابی قابل

\[
\text{احتمال است (7) اجماع بین تابی در تابی}
\] اعمال است. \(\text{هر چند که سهم تابی به جای خود در محور گرمایی}

\[
\text{ثابت به درون تابی و انتقال گرمایی جابجایی از سهم آن را که}
\] در واقع مقدار میانگین این دو در کل ناحیه تابی است، تابی

\[
\text{در این ناحیه تابی در نظر گرفته می‌شود. این شرط مزیت مرکب را}
\] می‌توان به صورت زیر نشان داد

\[
q_n = X_n \left[h(T_n - T_W) + X_2(q_0) \right]
\]

در این معادله، \(q_n \) جبران گرمایی مجدد در ناحیه تابی، تابی

\[
\text{ضریب انتقال گرمایی جابجایی از سهم خارجی تابی}
\] و

\[
\text{مورد تابی در دمای دیواره و دمای هوا پیرامون تابی}
\] \(T_n \) ممعن‌درصدی از سهم تابی ناحیه تابی است که به تابی در

\[
\text{تابی با هوا و به جای قرار دارد و}
\] تابی گرمایی در سهم

\[
\text{جبران گرمایی در سهم}
\] گرمایی در سهم

\[
\text{می‌توان به صورت زیر قابل محاسبه است}
\] تابی وارد می‌شود از معادله زیر قابل محاسبه است
شکل 5- تغییرات ضریب انتقال گرمایی جایی در سطح خارجی تایر (۱۳-۶۵) بر حسب سرعت

شکل 6- گرمایی جذب شده توسط تایر (۱۲-۶۵) بر اثر اصطکاک لغزشی در فشار با دمای

2.1 kg/cm²

اثبتهای N۱۸۰۰ و فشار با دمای 2.1 kg/cm² در آزمایش بر روی تایر مورد نظر به دست آمده است، می‌توان این است که در سرعت‌های بالا که تعدیل تغییرات شکل و ارتباطات ویسکالاستیکی تایر بیشتر است، افزایش می‌باشد زیاد است و به خصوص در مرز مشترک تایر و کرکس در مجاور ناحیه شانه که ضخامت تایر زیاد است این افزایش دمای می‌تواند موجب سوختن آمیزه لاستیکی و جدا شدن لیاهای در کرکس شود. به همین خاطر این ناحیه را می‌توان به عنوان آسیب‌پذیرترین ناحیه از تایر معرفی مواجه می‌شود. شناسایی و بر روی شکل مشخص شده است و میزان افزایش دما در این نقاط بحرانی و آسیب‌پذیر در قابلیت شرایط کاری مختلف مورد بررسی قرار گرفته است.

شکل 8- اثر سرعت بر پرمیان افزایش دما در نقاط بحرانی هر جزو از تایر نشان می‌دهد. ملاحظه کنید که افزایش سرعت، همان‌گونه که مقاومت غلتکی و میزان گرمایی را در ناحیه افزایش می‌دهد، افزایش دما در بیشتری را در نقاط مختلف تایر موجب می‌شود. داده‌های این شکل که در بار
شکل ۷- افزایش دمای چند نقطه از مقطع تا در بار N1800 سرعت 80km/hr و فشار باد 2.1 kg/cm²

شکل ۸- اثر سرعت بر حداکثر افزایش دما در اجزای مختلف تا در بار N1800 شماوع 13-۶۵ در بار شماوع 1800N و فشار باد 2.1 kg/cm²

استقلال سال ۳۰، شماره ۱، شهریور ۱۳۸۰
8- جمع‌بندی تحلیل گرمایی تابی

برای کاهش توان نفوذ شده در تابی، کاهش میزان گرمایی، تبادل گرمایی بین درجه‌ی حرارتی افزایش یابی از جهت درجه‌ی حرارتی افزایش و تحقیق است که می‌تواند در فرایند اصلاح ساختمان و بهبود سازی تابی مورد توجه قرار گیرد.

سقیف شناخت 71 از جمله پارامتری‌های طراحی نیاز محض می‌شود که تغییر کندن میزان تغییر شکل‌ها و ارتقاعات متعاقب آن در طی حرکت تابی است. مهندسی عمال‌های موثر بر سقیف شناخت تابی، شرایط و افزایش فشار باد، همکاری لازم و بروز تغییرات خارجی، می‌تواند باعث نهایی شود تا بتواند کاهش مقاومت شکل‌ها و تغییرات آن را نشان دهد. در این موارد، به توجه باید به طرف برون تجربه و سطح نسبی که در یکدیگر که به روش سیستم بایسان ریز می‌تواند که با کاهش نسبت منظر 91.5، می‌تواند افزایش عرض تابی نسبت به ارتفاع آن و افزایش فشار باد، به طور هم‌زمان، نیازمند تغییر منفی به یکوای در پارامتر را خصوصی کرد و ضمن آن با کاهش خمش‌ها و ارتقاعات، و ایجاد هسته‌ای گرمایی تابی، تولید گرمایی را در طی تابی داد.

راه دیگری که در فرآیند بهبود سازی تابی می‌تواند افزوده شود هسته‌ای با کاهش نسبت منظر 91.5، با کاهش خمش‌ها و ارتقاعات و جلسه‌های تغییر منفی به یکوای در پارامتر را خصوصی کرد و ضمن آن با کاهش خمش‌ها و ارتقاعات، و ایجاد هسته‌ای گرمایی تابی، تولید گرمایی را در طی تابی داد.

کردن، به طور مشاهده می‌شود که در افزایش دما در تابی 38.38 درجه سانتی گراد درجه سانتی گراد شد و در 80 می‌سانتی گراد، در همین حال حداکثر افزایش دما در ناحیه دیواره گنجینه به دلیل ضخامت کم و سطح گسترده تابی می‌باشد. این می‌تواند با محیط 41 درجه سانتی گراد است و در چنین حالتی باید ابتدا این میزان لاستیکی به کار رفته در این ناحیه نیاز کند (حد تحمل آزمایشات لاستیکی حدود 125 درجه سانتی گراد است).

اشکال (9) اثر بر شعاعی اعمال شده را بر میزان افزایش دما در نقاطه اجرا در ناحیه مختلف تابی نشان می‌دهد. همان گونه که افزایش دما با بلوک، ماکواری، و تغییرات تابی، می‌تواند در تابی نشتی و افزایش دما را تغییر دهد. این می‌تواند در حالی که حداکثر افزایش دما در ناحیه دیواره 42 درجه سانتی گراد است.

اشکال (10) اثر پوشانه در ناحیه حداکثر افزایش دما در نقاط بحرانی مصرف می‌شود در افزایش گرمایی بلوک، در مراحل ناحیه گرمک به 80 می‌سانتی گراد. به طور مثال در هر صادق 30 بینیت، تابی و کرکس تابی به حداکثر افزایش دما در میان 78.5 درجه سانتی گراد و 78.5 درجه سانتی گراد می‌شود در حالتی که حداکتر افزایش دما در ناحیه دیواره 42 درجه سانتی گراد است.

استدلرال سال 1389 شماره 1380

147
گرمایی آن می‌تواند در نیازهای گرمایی بیشتر تا یا بر هوا و
جلوگیری از افزایش بیش از حد در این ناحیه مؤثر باشد.
یکی از دلایل افزایش بیش از حد دما در ناحیه تا یا بر
ضخامت زیاد تا یا بر در ناحیه شانه است. این ضخامت زیاد از
یکسو، افت هیسیتریسیس و گرمای تولید شده در تا یا بر را افزایش
می‌دهد و از نظر دیگر موجب کننده نشدن دفع گرمایی از تا یا بر

2.1kg/cm²

80km/hr

اشتغالات سال ۱۳۸۰ شماره ۱ شهریور ۱۳۸۰

شکل ۹- اثر بار شعاعی بر حداکثر افزایش دما در اجساز مختلف تا ۱۲۰-۶۰۰ در سرعت ۸۰km/hr و فشار باد ۱.۵m/s

شکل ۱۰- اثر فشار باد بر حداکثر افزایش دما در اجساز مختلف تا ۱۲۰-۶۰۰ در سرعت ۸۰km/hr و سرعت ۱.۵m/s
باید گرمایی بیشتر با محیط، کاهش استطلاعات لغزشی و سیر مناسبی در سطح ظرفیت با جاده کاهش استطلاعات آبودیناتمیکی و جلوگیری از حبس شدن هوا در زمان ظرفیت با جاده، نیز از جمله مواردی است که می‌تواند مورد بررسی و تحقیق بیشتر قرار گیرد.

واژه‌نامه

1. viscoelastic deformations 10. Flexmeter Goodrich
2. heat build up 11. moving heat source
3. rolling resistance 12. side wall
4. bias tire 13. top ply
5. crown 14. sub ply
6. carcass 15. bead
7. mechanical hysteresis losses 16. filler
8. steady state 17. thermoviscoelastic
9. inflation pressure 18. drum tester
19. heat source
20. cross flow
21. Nusselt Number
22. Reynolds Number
23. Prantel Number
24. radial stiffness
25. aspect ratio
26. pattern

مراجع