نقش نوع زیرلایه فلزی پوشش هیدروکسی آپاتیت ایملنت دندانی
در موفقیت کلینیکی و پاتولوژیکی

محمدهسین فتحی، قادر فیضی، سید بهروز موسوی، غلامرضا چهارشادی، مهدی صالحی

احمد ساعتی*** و وجه السادات مرتشوی

دانشکده مهندسی مواد دانشگاه صنعتی اصفهان
دانشگاه علوم پزشکی اصفهان

(دریافت مقاله: 79/10/15 - دریافت نسخه نهایی: 79/12/15)

چکیده - استفاده از پوشش هیدروکسی آپاتیت بر روی زیرلایه فلزی برای تهیه ایملنت دندانی در هر جا از نظر ترویج و زبردستی این نوع ایملنت، نتایج مطلوب به دست آمده است. این مطالعه حاضر می‌نماید که با استفاده از پوشش‌های مateriales دانه‌ای و مینی‌ان، در نتایج بسیار مناسبی به دست آمده است.

The Role of Metallic Substrate of Hydroxyapatite Coated Dental Endodontic Implants in Clinical and Pathological Success

M. H. Fathi, GH. Feizi, SB. Moosavi, GH. Gahanshahi, M. Salehi, A. Saatchi and V. Mortazavi
Department of Materials Engineering, Isfahan University of Technology
School of Dentistry, Isfahan University of Medical Sciences

ABSTRACT - Hydroxyapatite coatings have been used on metallic substrates in a variety of applications, including modifying the surface of human implants, bone osseointegration and biological fixation. In this paper, the effects of various kinds of metallic substrate on clinical and pathological results of in vivo tests are presented. Four kinds of endodontic implants; i.e., stainless steel, cobalt base alloy, plasma sprayed hydroxyapatite coated stainless steel, plasma sprayed hydroxyapatite coated cobalt base alloy were prepared and implanted in mandibular canine of

* - عضو هیات علمی و دانشجوی دکتر
** - دندانپزشک و متخصص متعینه ریشه
*** - دانشیار

189

استقلال، سال 30، شماره 1، شهروز 1380
یوضش‌های پیورسیامیکی به منظور اصلاح سطح ایمپلنت‌های بدن بر روی زیر لایه‌های فلزی مورد استفاده قرار می‌گیرند. یکی از مقاومت‌های کلیدی این مواد باید در برابر ایجاد سطحی جدیدی که خواص ایمپلنت را ایجاد دهد و کاملاً متفاوت با سطح اصلی پوشش باشد با کار رفته است [2 و 8].

ترکیب هیدروکسریتیک آپتیک در اولین ماده ای بود که به دلیل شیب‌های آن به بخشهای مختلف استخوان و دندان بیشتر پوشش داد. ایمپلنت‌های فلزی مورد استفاده قرار گرفت و با وجود پاسخ نسبتاً خوش‌بخته سطح ایمپلنت قفله مثل لایه اسکلتی ایجاد می‌شود.

رویی که وجود دارد، می‌توان بیشتر از پوشش‌های داده‌ها در ایمپلنت‌های فلزی استفاده گرفت و با پوشش‌های متفاوت و به‌زیست مرغ می‌شود که به آنها ایمپلنت‌های بی‌کاشتنی، عضو مصنوعی ۱ و وسیله نما مصنوعی ۲ کفته می‌شود [2].

یوضش‌های پیورسیامیکی گاهی به صورت بودر برای پرکردن فضاهای خالی به کار می‌روند تا فاکتورهای طبیعی عمل را حفظ کنند و بخش از اوقات به صورت پوشش ریک زیر لایه فلزی کاشته‌یا به صورت فلزی به دویک کامپوزیت دندانی مورد استفاده قرار می‌گیرد تا خواص هر دو ماده تلفیق شود و سطح جدیدی با خواص مکانیکی بالا و خواص شیمیایی ریزیشی ی بهتری فراهم شود [3 و 4].

از آنجا که خواص مکانیکی پیورسیامیکی محدود است، نباید آنها را تحت اعمال بار قرار داد و فقط با گذارابی فشاری بر آنها مجار می‌گیرد. یکی از طرف دیگر، به منظور تأمین استحکام زیاد مورد نیاز باید ایمپلنت‌های بدند، این امکان وجود دارد که آلایه‌های فلزی را با یوضش‌های خاص ایمپلنت‌های پیورسیامیکی مثبت کلیمی فستفای بی‌هیدروکسریتیک آپتیکی پوشش داد. توانایی چنین یوضش‌هایی در برقراری پیوند با استخوان می‌تواند به نصب و کسب پروتز‌های شکسته‌سازی دندان‌های کمکی کننده [5 و 6].

1- مقدمه

بطیه دهه اخیر، تحولی اساسی در استفاده و کاربرد سرامیک‌ها به منظور بهبود کیفی عمر بیشتر دندان‌های انسان و توسه و گسترش طراحی و ساخت سرامیک‌های بی‌اسپزیتی و بی‌پروتزی این زمینه‌ای به دنبال و ترکیب اعمال به وقوع پیوست. اغلب کاربردهای کلینیکی پیورسیامیکی مربوط به استخوان‌بندهای ایمپلنت‌های استخوانی دندانی، دندان‌های مفصل و بی‌پروتزی و سخت‌سانی برای ایمپلنت‌های بی‌پروتزی است.uk

بافت شوک ترم و سخت بند است [1].

یوضش‌های پیورسیامیکی در انواع شکل‌ها و فرم‌های مختلف تولید می‌شوند و عامل‌های متغیری در ترمیم بند ارائه می‌کنند. در پی‌ساختار از کاربردها، سرامیک‌ها به شکل ماده ای به‌کار می‌رود که به آنها فرمول‌های ساختمانی و بزرگ‌ترین شش می‌شود که به آنها ایمپلنت‌های بی‌کاشتنی، عضو مصنوعی ۱ و وسیله نما مصنوعی ۲ کفته می‌شود [2].

یوضش‌های پیورسیامیکی گاهی به صورت بودر برای پرکردن فضاهای خالی به کار می‌روند تا فاکتورهای طبیعی عمل را حفظ کنند و بخش از اوقات به صورت پوشش ۱ بر روی یک زیر لایه فلزی کاشته‌یا به صورت فلزی به دویک کامپوزیت دندانی مورد استفاده قرار می‌گیرد تا خواص هر دو ماده تلفیق شود و سطح جدیدی با خواص مکانیکی بالا و خواص شیمیایی ریزیشی ی بهتری فراهم شود [3 و 4].

از آنجا که خواص مکانیکی پیورسیامیکی محدود است، نباید آنها را تحت اعمال بار قرار داد و فقط با گذارابی فشاری بر آنها مجار می‌گیرد. یکی از طرف دیگر، به منظور تأمین استحکام زیاد مورد نیاز باید ایمپلنت‌های بدند، این امکان وجود دارد که آلایه‌های فلزی را با یوضش‌های خاص ایمپلنت‌های پیورسیامیکی مثبت کلیمی فستفای بی‌هیدروکسریتیک آپتیکی پوشش داد. توانایی چنین یوضش‌هایی در برقراری پیوند با استخوان می‌تواند به نصب و کسب پروتز‌های شکسته‌سازی دندان‌های کمکی کننده [5 و 6].

190

استقلال، سال ۲۰، شماره ۱، شماره‌ی ۱۳۸۰
شده بر روی ایمپلنت‌های فلزی صورت می‌گیرد. اغلب آزمون‌ها در بدن حیوانات به انجام رسیده و کوشش شده تا تقویت ترویج رشد استخوان در ایمپلنت‌های با و بدون پوشش نشان داده شود و تأکید پویش بر تثبیت ایمپلنت نیز مورد توجه قرار گرفته است [16–18]. یکی از مهترین کاربردهای کلینیکی هیدروکسی آپاتیت، پوشش آن بر روی ایمپلنت‌های فلزی است. ایمپلنت‌های فلزی بدون پوشش با استخوان یکی نمی‌شوند و به صورت مورد شیفت خشایا عمل کرده و بافت رشته‌ای چچگال اطراف آنها را می‌گیرد. اگر فلز با هیدروکسی آپاتیت یا پویش داده شود، بافت استخوان به خودی خود با ایمپلنت یکی و مرتبط می‌شود. پوشش هیدروکسی آپاتیت یا توان حالت تثبیت ایمپلنت در استخوان را فراهم سازد و یا کنش مکانیکی و مکانیسم‌های بیولوژیکی حفظ می‌نماید. این در بخش‌هایی از استخوان در ارتباط با ایمپلنت‌های فلزی قرار گیرد. در کنار این تحقیقات، 6 درصد ایمپلنت‌ها و 4 درصد توپیولوژیک مکاتبا به مبادله است. اطلاعات موجود نشان دهد که تیتانیوم یک پوشش سازگار به خواص مکانیکی و شیمیایی خوب با کنیفیت بر جسته در کاربرد به عنوان کاشتی است. تیتانیوم با تشکیل لایه‌ای از اکسید جامد بر سطح، مقاومت در برابر خوردگی را فراهم می‌سازد. تحت شرایط داخل بدن موجود زنده، اکسید تیتانین تکثیف می‌شود و پوشش سازگار با کنش بر ایجاد بسته نازک و سخت‌تری است که به ویژه در برابر خوردگی روی پویش می‌سازد، در شرایط زیستی بدن، ناغل و ورودی باقی می‌ماند [16].

191

2- مواد و روش‌ها

شانه‌های نمونه میله ای شکل به طول 20 و قطر 1.5 میلیمتر از آیلور فلزی طنین 316L (تولید شرکت اسکالپان آلمن) تهیه شد. 16 نمونه نیز با استفاده از آیلور ویوارتامین (تولید شرکت بی‌کیو آلمن) با روش فیلم‌برداری دیفر با دمای نوارهار رنگه و یک تکنیک ریخته گری از مرکز 4.5 یک تکنیک ریخته گری شد. هشت نمونه از فلز فلزی نیز و هشت نمونه از آیلور ویوارتامین (کبالت - کروم - مولیبدن) با پوششی با ضخامت 40±5 میکرون (Biotal 30 H.A Sop 008/00) با پوشش داده شد و پوشش به یکی از جنس هیدروکسی آپاتیت با تکنیک پاشش با پلاستیکی یک تکنیک‌سازی شد.

شانه‌های نمونه میله ای شکل به طول 20 و قطر 1.5 میلیمتر از آیلور فلزی طنین 316L (تولید شرکت اسکالپان آلمن) تهیه شد. 16 نمونه نیز با استفاده از آیلور ویوارتامین (تولید شرکت بی‌کیو آلمن) با روش فیلم‌برداری دیفر با دمای نوارهار رنگه و یک تکنیک ریخته گری از مرکز 4.5 یک تکنیک ریخته گری شد. هشت نمونه از فلز فلزی نیز و هشت نمونه از آیلور ویوارتامین (کبالت - کروم - مولیبدن) با پوششی با ضخامت 40±5 میکرون (Biotal 30 H.A Sop 008/00) با پوشش داده شد و پوشش به یکی از جنس هیدروکسی آپاتیت با تکنیک پاشش با پلاستیکی یک تکنیک‌سازی شد.

این تکنیک‌سازی به علاوه در بررسی مکانیک و شیمیایی خوب با کنیفیت بر جسته در کاربرد به عنوان کاشتی است. تیتانیوم با تشکیل لایه‌ای از اکسید جامد بر سطح، مقاومت در برابر خوردگی را فراهم می‌سازد. تحت شرایط داخل بدن موجود زنده، اکسید تیتانین تکثیف می‌شود و پوشش سازگار با کنش بر ایجاد بسته نازک و سخت‌تری است که به ویژه در برابر خوردگی روی پویش می‌سازد، در شرایط زیستی بدن، ناغل و ورودی باقی می‌ماند [16].
طرف سنجی توزیع انرژی پرتوایکسِس ۱۰ با دستگاه میکروسکوب الکترونی روی‌شیمی‌یابی (Philips XL30) و مشخصه‌بندی انرژی‌های ویژه‌گذاری پوشه و میکروآلاتیزی استفاده از میکروسکوپ الکترونی روی‌شیمی‌بندی شده و ضمن نتیجه میکروآلاتیزی‌های لازم، میکروآلاتیزی که نتیجه حاصل شد، پوشه مذکور همچنین (Philips X’Port-MPD system) با نتیجه پرس پرتوایکسِس ۱۰ بررسی شد و ضمن حصول اکثریت پرتوایکسِس، فازهای مجزا سازندی آن تعبیه شد و میزان بیشترین پوشه ارزیابی شد.

پس از آن برای اجرای آزمون‌های در بنده ۲ و بررسی‌های کلینیکی در حیاتوان، از ۲۰ گیاه بالغ خانواده سالام استفاده شد. در ۴۵ دنیان کاشتن شکاواتی حیاتوان مذکور پس از آماده‌سازی کاشت کاشتن و ناجی بری آیککال، به طور اتفاقی یکی از چهار نوع پرفیل‌های فولاد زنگ نزن ۸ (تنومنه). فولاد زنگ نزن با پوشه ۸ (تنومنه)، آرا آنالیز کیتال و کروم-مولیدن-پوشه ۸ (تنومنه) و آلیاژ کیتال-کروم-مولیدن با پوشه ۸ (تنومنه) استفاده از سیمایان دندانی در کانال دندان‌پزشکی شد.

و ناج دندان وسط آن آلمانک ترمین شد. حفرات نمونه شاهدی ریز پس از دندان‌های سال و دست نخورد انگشتان شدند و حفرات نمونه شاهدی مثبت هست از طریق آماده‌سازی کانال بالکه به روش قبل و ره گردید آن بدون ترمین ناجی فراهم شد. حیوانات به مدت ۴ ماه تحت مرافقت قرار گرفتند و سپس به روش واکسن پرفیشان ۱۱ رفتاری مشترک تا برای بررسی با میکروسکوب الکترونی و ارزیابی هیستوپاتولوژیک (آسیب مشترک بافت) آماده شدند. برای بررسی، ارزیابی و مشاهدات هیستوپاتولوژیک، عملیات طولانی‌الزمان برای آماده‌سازی نمونه‌ها شامل تهیه‌گرده‌ای در فرمالین، مشتقات در آب جاری، تهیه مواد ملخ و پردازش و آب‌پزشکی نهایتی.
<table>
<thead>
<tr>
<th>درجه ۱</th>
<th>درجه ۲</th>
<th>درجه ۳</th>
<th>درجه ۴</th>
<th>درجه ۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>بافت سالم پیوسته</td>
<td>تشکیل استخوان</td>
<td>تشکیل استخوان</td>
<td>افزایش متوسط سولهای آماسی مزمن</td>
<td>افزایش زیاد سولهای آماسی PMN</td>
</tr>
<tr>
<td>شاهد منفی</td>
<td>ناحیه پری آیکس</td>
<td>جدید در فضاهای مغز استخوان</td>
<td>استخوان های افزایش دار سولهای آماسی</td>
<td>تجلیل مسماه استخوان</td>
</tr>
<tr>
<td>تشکیل استخوان</td>
<td>تشکیل سمان در ناحیه پری آیکس</td>
<td>متعلک به فضاهای مغز استخوان</td>
<td>زیاد در فضاهای مغز استخوان</td>
<td>افزایش عروقی عروقی مغزی استخوان</td>
</tr>
<tr>
<td>فضادان مغز</td>
<td>افزایش عروقی مغز</td>
<td>افزایش عروقی مغز</td>
<td>افزایش کم سولهای زانت</td>
<td>پیدایش اولیه نکور استخوان</td>
</tr>
<tr>
<td>پیدایش اولیه</td>
<td>پیدایش کامل استخوان</td>
<td>نباید جوانه‌ای بافت جوانه‌ای فضادانی استخوان</td>
<td>نباید شکل PMN</td>
<td>نباید عضو نکور استخوان</td>
</tr>
</tbody>
</table>

جدول ۱- درج‌بندی تغییرات ناحیه پری آیکس برای تشخیص رده‌های نمونه از نظر هیستوپاتولوژیکی

استقلال، سال ۲۰، شماره ۱، شهریور ۱۳۸۰

۱۹۳
شکل 1- طیف‌سنجی توزیع انرژی پروتو ایکس و میکروانالزیز نمونه زیر‌تراو فولاد زنگ نزن

شکل 2- طیف‌سنجی توزیع انرژی پروتو ایکس و میکروانالزیز نمونه زیر‌تراو آنتالپی کنالت-کروم-مولیبدن

استقلال، سال 1380، شماره 1
شکل 3- انگور پرتو ایکس پوشاک هیدروکسی آپاتیت باشک پلاسمابی شده بر روی زیرلاهی‌های فولاد زنگ نزن و آلبز کبالت- کروم - مولیبدن

شکل 4- طیف سنجی توزیع انرژی پرتو ایکس و میکروانالزی‌های آن بر روی سطح پوشاک هیدروکسی آپاتیت باشک پلاسمابی شده

استقلال، سال ۱۳۸۰، شماره ۱، شهریور
شکل 5- میکروسکوپ سطح بخش هیدرولیک آپایت پاش یکلامایی شده که با مایکروسکوپ الکترونی روبیشی نهی شده است
(بزرگنمایی 25X)

شکل 6- میکروسکوپ سطح همان بخش هیدرولیک آپایت پاش یکلامایی شده در بزرگنمایی بالاتر که نشانگر ساختار ذوب شده هموار
با انگکی و شیترک و تخلخل است.

پلاسمایی شده مشاهده می شود که به وجود بخش یکلامایی با
پاتولوژی بالاتر و شکل (4) تصویر طبیع توزیع انرژی
برنواکس و میکروانالیز عنصری بخش مذکور را از انتهای کرده است. شکل های (5) و (6) تصاویر میکروسکوپی بخش
هیدرولیک آپایت را در بزرگنماییهای متفاوت نشان می دهد و

3- پایه ها
شکل های (1) و (2) به ترتیب طبیع توزیع انرژی
برنواکس و میکروانالیز عنصری دل از زیر لایه فولاد زنگ
زن و کایات - کروم - مولبدن را نشان می دهد. در شکل
33 الکوری بخش برنواکس بخش هیدرولیک آپایت پاش یک

استقلال، سال ۳۰، شماره 1، شهریور ۱۳۸۰

196
کره است. پرهترین پایه در میان گروه آلیاژ کبالت - کروم - مولیبدن با پوشش حاصل شده است. نتایج بیانگر حصول موجود در دیدگاه کلسیکی به کسب وصیت قابل قبول درمان از نظر کلسیکی است. از طرف دیگر، بررسی‌های هیستوپاتولوژیک با نظر گرفتن در جهان، نشان می‌دهد که پس از ۴/۵/۲ هم‌تاینی، تفاوت‌های معنی‌داری در میزان آسیب‌های گروه‌های مختلف وجود دارد. اگرچه آلیاژ‌های با پوشش ترکیبی نسبت به مقداری با آلیاژ‌های بدون پوشش ایجاد کرده و تأثیر بررسی‌های به‌منظور بررسی زیراپوستی کبالت - کروم - مولیبدن به ۳۷ درصد زنگ نشان نداشتند از نظر آسیب نشان می‌دهد. اگرچه آلیاژ‌های با پوشش ترکیبی نسبت به مقداری با آلیاژ‌های بدون پوشش ایجاد کرده و تأثیر بررسی‌های به‌منظور بررسی زیراپوستی کبالت - کروم - مولیبدن به ۳۷ درصد زنگ نشان نداشتند از نظر آسیب نشان می‌دهد. اگرچه آلیاژ‌های با پوشش ترکیبی نسبت به مقداری با آلیاژ‌های بدون پوشش ایجاد کرده و تأثیر بررسی‌های به‌منظور بررسی زیراپوستی کبالت - کروم - مولیبدن به ۳۷ درصد زنگ نشان نداشتند از نظر آسیب نشان می‌دهد. اگرچه آلیاژ‌های با پوشش ترکیبی نسبت به مقداری با آلیاژ‌های بدون پوشش ایجاد کرده و تأثیر بررسی‌های به‌منظور بررسی زیراپوستی کبالت - کروم - مولیبدن به ۳۷ درصد زنگ نشان نداشتند از نظر آسیب نشان می‌دهد.

جردل (۴) نمودارهای پالرزاسن کایانی و آندی آلیاژ

کبالت - کروم - مولیبدن و آلیاژ فولاد زنگ نزدیک در محلول رنگ به دو دام ۵۷ درجه سانتی‌گراد نشان می‌دهد. شکل (۴۳) نمودار توزیع فراوانی پاسخهای هیستوپاتولوژیک ناحیه‌ی پری آلیاژ نمونه‌های برسی را نشان می‌دهد.
لایه ای از ایمپلنت و آلیاژ‌های آن به‌وده که خود، فلز ریست سازگار

در بدن کامل یا دیگر است و در بی‌روی استخوان بر
روی آن (به‌نهاپی و بدون پوشش) نیز گزارش شده

[24] در موارد اندازه نیز که زیر لایه توجه شده،

مقایسه با ویژگی‌های ایمپلنت و به‌بودن پوشش و

ترجیم استخوان به دیدن‌های بیوتونولوژیکی مطرح می‌شود.

است. برای مثال، گروهی از محققان طی پژوهشی به بررسی

تاثیر نحوه و نوع آماده سازی پوشش هیدروکسیک الیاژ پاشش

پلاستیکی به پاسخ‌های بیوتونولوژیکی دریافت شده،

به نظر جهانی بی رابطه با تحقیقات پژوهشی پزشکی.

بافت نیست. در حال جامعه برای روشی تیتانیم به

به نظر فلزات در بین موجه به توجه کرد.

باید اندازه یا موضوع یا موضوع می‌تواند و

خودکناری فلزات مصرفی نظر کاشتی‌های با از این مقاومت

خودکناری ماهی ایمپلنت فلزی به‌کمی از زیر

موصوب می‌شود. تیتانیم در سطح، لایه ای از رنین سکل

می‌دهد و سیب می‌شود در شرایط زیستی، رودری و ناهال

باچ بماند. شدت جریان خودکناری تیتانیم در سرم فیزیولوژی

به‌بود جریان خودکناری تیتانیم در صورت فیزیولوژی

۷۱ بسیار کم و در حدود ۱۰ آن درصد متر مربع است

آلیاژ‌های کالری - کروم‌نیک متی تیتانیم در بین رودری و ناهال

بوده و هنگام صرف در کاربردهای شکست‌پذیر و ترمیمی

دچار خودکناری جثه ای در غشای. لایه رونای فولوادهای

زنگزن باین اداسه از نیک متی تیتانیم یا آلیاژ‌های کالری - کروم

قوی نیست و به همین دلیل فقط برخی از انواع آن مثل ۳۱۶

با ۲۲۱ که حاوی موادی بوده و بالاترین مقاومت خودکناری را

دارند برای تغییر ایمپلنت‌ها مصرفی می‌شوند. البته این گروه از

کنترل دارد [۲۴] و ثبت کلژیم به‌ب

فسفیر نیز طبق تحلیل انجام رشدی حدود به‌بین. است

اجرا و فازهای سازگار، نسبت کلژیم به فسفیر، مورفولوژی

سطح، ضخامت و میزان بیولوگیک پوشش با ویژگی‌های یک

پوشش هیدروکسیک الیاژ بهبود ممکنی می‌باشد و یا شرایط

ایده آلذ در تئوری محققان هم‌اکنون نشان می‌دهد

[۳۲] و [۱۰]. در موارد اینکر داری که بیولوگی با

توجه به الگوی برای برداشک در حال بهبود و پیشنهاد

ریزتروکی نیز با نصایح تهیه شده با میکروسکوپیک الکترونی

قابل مشاهده است که احتمالاً در نتیجه آن‌ها سرد شدن خیلی

سریع است.

نتایج پژوهش‌های کلژیم نشان می‌دهد که

ایمپلنت‌های فلزی با پوشش هیدروکسیک الیاژ قادر است

ترجیم رشد استخوان را در اطراف ایمپلنت میسر می‌سازد و تثبیت

سرعت و اثباتی زودتر را ممکن می‌سازد. نتایج حاضر نشان می‌دهد که نوع زیرادرای فلزی می‌تواند فضای تعیین کدری شهید

باشد. به گونه‌ای که حتی با وجود و حضور پوشش

یوپسرامیکی، حاصل کار را تغییر دهد. آبجک تهیه کننده

درآریا اینپلنت‌های انجام گرفته حاصل شده است ولی از

نظر هیستوپاتولوژیکی هیچ یک از نمونه‌های یا نبود

پوشش یک درجه به‌باید در حال جعلی را، قرار داشته اند.

با توجه به اینکنر تکنیک پوشش هیدروکسیک الیاژ کامل ایمن

بیش معمول استخوان است و بر اساس تحقیقات سالهای اخیر,

این ماده کاملی قاد، است تریم رشد استخوان را مایه‌ساز و

با داشتن سازگاری زیستی، تیمی بانک نشان می‌کند ساز و

با نمونه‌ای که در تئوری استخوان را مایه‌ساز

[۳۲] و [۱۰]. به نظر می‌رسد مشکلات

هیستوپاتولوژیکی موجود در نمونه‌ها به بزرگ‌تری ماند و به

وهی به بدنه از مربوط به شیوه تیتانیم یا پاپه‌های

مذکور را حاصل کرد.

بررسی تئوری برای نیز در پژوهش‌های مربوط به پوشش‌های

هیدروکسیک الیاژ کمتر مورد توجه بوده است زیرا اکثر از

۱۹۸

استقلال، سال ۲۰، شماره ۱، شهرویور ۱۳۸۰
جدول ۲- مقادیر متوسط پتانسیل خورده‌گی و شدت جریان خورده‌گی (انحراف از معیار) آلیاژ کبالت - کروم - مولیبدن و آلباز فولاد زنگ نزن در محلول رنگ و محلول سرم فیزیولوژی در دمای ۳۷ درجه سانتیگراد

<table>
<thead>
<tr>
<th>محلول سرم فیزیولوژی</th>
<th>محلول رنگ</th>
<th>نوع آلباز</th>
</tr>
</thead>
<tbody>
<tr>
<td>پتانسیل خورده‌گی (ناتو آمر بر سانتیمتر مربع)</td>
<td>شدت جریان خورده‌گی (میلی ولت)</td>
<td></td>
</tr>
<tr>
<td>آلباز باه کبالت</td>
<td>آلباز باه کبالت</td>
<td>فولاد زنگ نزن</td>
</tr>
<tr>
<td>۱۹۴</td>
<td>۲۶۵</td>
<td>۱۴۸±۱۰</td>
</tr>
<tr>
<td>۱۹۵±۲۰</td>
<td>۲۱۸±۱۷</td>
<td></td>
</tr>
<tr>
<td>۱۹۵±۲۰</td>
<td>۱۹۵±۲۰</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۷- نمودار توزیع فراوانی ردپاهای مختلف تریچ شده استخوان که برای حرکت گروه‌های فولاد زنگ نزن و آلباز کبالت - کروم - مولیبدن با و بدون پوشش رسم شده است.

شکل ۸- تصویر میکروسکوپ الکترونی روشی از ابیلنت آلباز کبالت - کروم - مولیبدن با پوشش هیدروکسی آبانت پس از گذشت ۴ ماه در دندان. تریچ شده استخوان در اطراف ابیلنت مشاهده است (تصویر سمت راست با پزشگی ای ۱۵، تصویر سمت چپ با پزشگی ای ۱۰۰۱).
شکل 9- تصویر میکروسکوپ الکترنی رویشی از ایمنیت آلیاژ فولاد زنگ نزن با پوشش هیدروکسی آپاتیت پس از گذشت چهار ماه در دندان. فصل مشترک استخوان و ایمنیت و چگونگی ترویج رشد استخوان در پوشش و ایجاد پوست مشاهده می‌شود (تصویر سمت راست با پرگنمايی X100).

شکل 10- تصویر میکروسکوپ الکترنی رویشی از ایمنیت آلیاژ کیان-کروم-مولیدن بدون پوشش پس از گذشت چهار ماه در دندان. نواحی مختلف استخوان: A. عاج; B. آلیاژ پایه کیان; C. VIT در تصویر مشخص شده است (پرگنمايی X15).

شکل 11- تصویر میکروسکوپ الکترنی رویشی از ایمنیت آلیاژ فولاد زنگ نزن بدون پوشش پس از گذشت چهار ماه در دندان. نواحی مختلف استخوان: S.S: عاج; D. آلیاژ فولاد زنگ نزن; R. نشان داده شده، به خوبی مشهد است (پرگنمايی X15).
شکل ۱۲- نمونه پاسخ بافت پری آیپکال به ایمپلنت آلباز فولاد زنگ نزن بدون پوشش پس از ۴ ماه در دندان. تصویر سمت راست: تخربی بافت در ناحیه پری آیپکس داخل کادم مشخص شده است (برگنمای X۲۵). تصویر سمت چپ: جزییات دقت‌تر از تخربی بافت مشاهده شده است. سمت راست در ناحیه پری آیپکس (برگنمای ۱۰۰X).

شکل ۱۳- نمونه پاسخ بافت پری آیپکال به ایمپلنت آلباز فولاد زنگ نزن با پوشش هیدروفاتک آپاتیت پس از گذشت ۴ ماه در دندان. تصویر سمت راست: بافت همبندی آماسی در حد فاصل دوباره جا و جداره اندوپمیلنت (برگنمای X۲۵). تصویر سمت چپ: جزییات دقت‌تر از بافت مذکور (برگنمای ۱۰۰X).

شکل ۱۴- نمودار توزیع فراوانی پاسخ‌های هیستوپاتولوژیک ناحیه پری آیپکال مختلف که برای هر یک از گروه‌های فولاد زنگ نزن و آلباز کیفیت - کروم - مولودین با و بدون پوشش ارائه شده است.

استقلال، سال ۳۰، شماره ۲، تیر ۱۳۸۰
شکل 15 - نمودارهای پولاریزاسیون کاندی و آنالیزهای کیکل - کروم - مولیبدن و فولاد زنگ نزن در محلول ریگدر در دمای 37 درجه سانتی‌گراد.

شکل 16 - نمودارهای پولاریزاسیون کاندی و آنالیزهای کیکل - کروم - مولیبدن و فولاد زنگ نزن در محلول سرم فیزیولوژی در دمای 37 درجه سانتی‌گراد.

استقلال، سال 1380، شماره 1، شهریور
فولادها نیز مستعد به خوردگی حفره‌ای و پدیدار شدن خوردگی شیاری در اطراف پیچ‌ها استندت. [19]. خوردگی فلز در بدن توانایی نمی‌باشد. در آزاد شدن پیچ‌ها فلز به ابعاد محصولات خوردگی ننزش شود. آلوئید مغولباً با فلز می‌تواند در سرچشمه داشته باشد. اول، آزاد شدن ذرات پویانشان از فاقدان حل شدن الکترو شیمیایی ایمپلنت که معمولاً همراه با خوردگی استاتیکی است. دوم، جدا شدن ذرات فلزی کوچکی از سطح و قرار گرفتن آنها در بایت اطراف کاششی که در انجام این ذرات نیز ممکن است فرآیند خوردگی همراه با آزاد شدن پیچ‌ها را تحمل نمی‌شود. بررسی نشان می‌دهد که در مزان غلظت عناصر فلزی در بایت امپلنت بین فلزی آلفا و بیراژ مولیبدن، محققین مشخصانه یون پنی و محققین دیگر، در به‌نظر رفتار درایکس یون پنی، الکترو فلزی آلفا و بیراژ مولیبدن استفاده بهتر است [21]. پونی که می‌شود تهویه پوشش دهنده فلزات مصرفی دارد. ایمپلنتها به منظور کاهش آزاد شدن پیچ‌ها فلزی و افزایش مقاومت خوردگی مطرح شده است ولی استفاده از فلزات به عنوان پوشش به دلیل امکان ظهور خوردگی گالوانیکی کمتر مورد توجه قرار گرفته و پوشش‌های بیوشمایی کانتون اصلی توجه بوده است. [3 و 21]. جدول (2) نشان می‌دهد که بر اساس آزمون‌های آزمایشگاهی مقاومت خوردگی فولاد زنگ نزن در محولهای فیزیولوژیکی کمتر از آلیاژ کالسی کروم – مولیبدن است و شدت جریان خوردگی نیز در دمای 37 درجه سانتی‌گراد بیشتر از شدت جریان خوردگی آلیاژ پایه کبالت است. شکل (6) نشان می‌دهد یک پوشش هیدروکسی آپاتیت یا پلاستیکی شده دارای نخلی‌های ریز بریزتر است. حضور چنین نیز می‌تواند با مشهود است [8] می‌تواند امکان تماس زیرالبایه را محدود کرده و آزاد شدن پیچ‌ها را فراهم کند. واکنش خوردگی محدود به وضعیت پونی و آزاد شدن پیچ‌ها فلزی مشابه آن باعث داشته که کروم از فولاد زنگ نزن و پیچ‌ها کروم مولیبدن و کالسی نیز، بر اساس طرح تحقیقاتی توسط دانشگاه علوم پزشکی اصفهان و
يعتبر السراميك في الانتشار، حيث يستخدم في علاجات الفم وعظام الأذن.

8. فتحی، م. ج.، مرتاضی، و.، کاربرد سرامیک پوشش‌های پیوسته و بیشتری در دوران بررسی.
11. مرتاضی، و.، فتحی، م. ج.، "تیتانیوم آلیاژ سرامیکی در موفقیت ایمپلنت‌ها"، جمعیت خلاصه مقالات شش‌مین کنگره بین المللی انجمن دندانپزشکان ایران، ص. 163-178، تهران، 1988.
13. فتحی، م. ج.، اشراف زاده، ف.، منتنی، ا.، مرتاضی، و. "کاربرد سرامیک پوشش‌های هیدروکسیapatيت و تأثیر تکنیک اجرای ورودی خالص"، جمعیت مقالات سومین کنگره انجمن مهندسین معاونی ایران، ص. 123-142، دانشگاه صنعتی اصفهان، اصفهان، 1378.
16. Hulshoff, J. E., and Jansen, A., “Initial Interfacial Healing Events around Calcium Phosphate Coated

19. فتحي، م. ح. و مرتضوي، و. مقدم، آن- بیوپریال‌ها. نشر ارکان. 1377.

