مقاله کوتاه

بررسی پاسخ دینامیکی و پایداری خودروهای لولایی حامل سیال با صفحات عرضی

ایرانی اسماز دل‌زاده، **مهندس حمیدرضا بهرامی ور** و **نوید نیک‌صفت**

دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف

بخش مهندسی محصول، شرکت ساپکو

(دریافت مقاله: ۱۳۹۹/۴/۸ - دریافت نسخه نهایی: ۱۳۹۹/۸/۲۳)

چکیده - در این پژوهش دینامیکی و پایداری خودروهای طولی لولایی به ویژه خودروهای حمل سیال مورد تجزیه و تحلیل قرار گرفته است. سیال توجه به هنین خودروهای حمل سیال در حمل و نقل مواد سوختی و مایع و همچنین پایین گرفتن ابزارهای لولایی پایداری این نوع خودروها استفاده از صفحات عرضی در مخزن آن‌ها و چگونگی تأثیر صفحات عرضی بر روی پایداری و فشار دینامیکی خودرو مطالعه و نشان داده شده که جنس صفحات عرضی می‌تواند برای افزایش پایداری لولایی خودروهای طولی لولایی حامل سیال، اثرات مختلفی این آتات حکمی سطح در آن دینامیکی و پایداری خودروهای لولایی مهندسی را تبدیل به کمک یک مدل عرضی خودرو، پایداری جابجا را با توجه به شتاب استاتیک و ازکونی تحلیل کرده و با توشته و تعیین مدل، اثر نصب صفحات عرضی در مخزن آن نوع خودروها بر پایداری شده است. با استفاده از مدل Yaw Plane نشان داده شده که تغییر پایایی‌های مؤثر، زمینه خودرو به بهینه شود. در هر دو مدل ایجاد می‌شود. نکته‌ای هم‌اکنون باید برکناری باشد که نگاهی به جدایی و نقد شده است که دیگر این پژوهش را به راه‌اندازی یک کورنگی ریاضی و یک برنامه را به ای پایداری لولایی، مدل‌های طولی پایداری، ازکونی صفحات عرضی

واژگان کلیدی: دینامیکی خودرو، مخزن، خودروهای طولی لولایی، پایداری، ازکونی صفحات عرضی

Dynamic Analysis and Stability of Articulated Liquid Cargo Vehicles with Tank Baffles

E. Esmailzadeh, H. R. Bahrampuri and N. Niksefat

Department of Mechanical Engineering, Sharif University of Technology, Tehran
Product Engineering Department, SAPCO, Tehran, Iran

ABSTRACT- Articulated liquid cargo vehicles transporting inflammable fuels and dangerous chemical products require special consideration when traveling on urban roads or cruising at highway speeds. The road safety and handling of these kinds of vehicles may be adversely affected when negotiating sharp turns or travelling on slippery roads, which may result in either lateral instabilities or complete rollover of these tanker vehicles. Moreover, directional instabilities in these kinds of vehicle may also introduce an excessive yaw swing or may initiate the jack-
فهرست علائم

<table>
<thead>
<tr>
<th>علامت</th>
<th>توضیح</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z_{Ri})</td>
<td>شاخص عرضی اعمالی به خودرو</td>
</tr>
<tr>
<td>(Z_{ui})</td>
<td>فاصله بین دو تابی داخلی بر روی محور قسمت خودرو</td>
</tr>
<tr>
<td>(Z_{FRI})</td>
<td>فاصله جفت نابین بر روی محور قسمت خودرو</td>
</tr>
<tr>
<td>(Z_{li})</td>
<td>نیروی تبدیل شده در مکانیک خودرو</td>
</tr>
<tr>
<td>(Z_s)</td>
<td>نیروی قرنیز از سطح جاده</td>
</tr>
<tr>
<td>(\psi)</td>
<td>سپیدنی محور قسمت خودرو</td>
</tr>
<tr>
<td>(\Phi_i)</td>
<td>نیروی خودرو</td>
</tr>
<tr>
<td>(m_n)</td>
<td>ارتفاع جریان از سطح جاده</td>
</tr>
<tr>
<td>(p_m)</td>
<td>تعداد محوفه‌ها بر روی محور قسمت خودرو</td>
</tr>
<tr>
<td>(q_n)</td>
<td>تعداد محوفه‌ها بر روی محور قسمت خودرو</td>
</tr>
<tr>
<td>(\rho_n)</td>
<td>سرعت تابی داخلی</td>
</tr>
<tr>
<td>(\sigma_n)</td>
<td>زاویه بین دو واحد مقداری خودرو</td>
</tr>
<tr>
<td>(\omega_n)</td>
<td>سرعت پیشروی داخلی</td>
</tr>
<tr>
<td>(\eta_n)</td>
<td>فاصله مرکز جرم از محور داخلی</td>
</tr>
<tr>
<td>(\xi_n)</td>
<td>فاصله مرکز جرم از محور داخلی</td>
</tr>
<tr>
<td>(\phi_n)</td>
<td>وزن جرم اعمالی بر روی خودرو</td>
</tr>
<tr>
<td>(\chi_n)</td>
<td>وزن جرم اعمالی بر روی خودرو</td>
</tr>
<tr>
<td>(\tau_n)</td>
<td>وزن جرم موجود در محفظه سیال</td>
</tr>
</tbody>
</table>

knifing of the articulated tanker trucks. In order to overcome the instabilities of these tanker vehicles, installation of lateral baffles in the form of separating walls in the tanker were considered. The static roll and yaw plane models of these vehicles including lateral translation of the liquid inside the tank were developed. Using the static roll model, the rollover threshold of the vehicle is analyzed and the effect of these separating walls on the stability of the vehicle is studied. The yaw plane model is then used to predict the transient response and stability of the tanker vehicle under various road maneuvers. The governing differential equations were solved numerically to obtain the simulation results and optimum values of the parameters.

Keywords: Tanker, Vehicle, Stability, vehicle dynamic, rollover, lateral baffles
1- مقدمه

تلاطم سیال در داخل مخازن خودروهای حامل سیال، کشه‌ها و سایر وسایل تخلیه که بخشی زیادی از ون آنها را سیال تشکیل می‌دهد. می‌توان اثر قابل توجهی بر روی پایداری این گونه سیستم‌ها یک‌گذارد. در خودروهای حامل سیال تلاطم، جابجایی سیال می‌تواند عا或多或少 قبلاً به کاهش پایداری و حرکت خودرو نیز مؤثر باشد.

2- مخازن حمل سیال

مخازن حمل سیال به شکلی و فضاهایی گوناگون طراحی و ساخته می‌شوند. شکل و سطح‌های مخزن به نوع و مقادیر مواد قابل حمل، ظرفیت حمل خودرو و مسائل و استنداردهای ایمنی دارد. مقادیر نیروها و موانع حرارتی مخزن، تلاطم سیال در مخزن مستقیماً به شکلی درصد نسبتی مخزن، خواص و نوع سیال دارد. مخازن قابل نصب بر روی خودروهای سطحی جاده‌ای معمولاً به چنین شکلی متشکل با سلطه مقطعه‌های دارایی، یافته، به‌طور مختصر به‌طور مستقل و مستقل تبلیغ یافته، ساخته می‌شوند و ساخته شوند [11] را بیان می‌کند.

استقلال: سال ۷۰، شماره ۱، شهریور ۱۳۸۰
211
شکل 1- مخازن متناوب در حمل سیال

به نوسان و تلاطم درآید. استفاده از صفحات عرضی می تواند فرکانس طبیعی ارتعاش را به مقدار قابل ملاحظه تغییر دهد.

ب- اثر مقاومت صفحات عرضی

استفاده از صفحات عرضی چنین به صورت یکپارچه و چنین با مجاوری عبور سیال می تواند به عنوان یک عامل مؤثر در جهت کاهش نوسانات سیال مورد استفاده قرار گیرد. کاهش نوسانات سیال می تواند منعکس بنویسی ایجاد شده توسط نوسان سیال را به طور مؤثری کاهش دهد.

ج- استفاده از صفحات عرضی برای مجزا سازی مخزن:

با نصب صفحات عرضی یکپارچه در عمل دارای جدید مخزن با طرفتهای کمترا و خواهیم بود که می تواند به طور جدکات متناسب با یک بارگیری شوند و از حمل سیال به طور نیمه پر در مخزن جلوگیری کرده و تا حدی قابل ملاحظه ای از تلاطم و حرکت سیال در مخزن بکارگیری است.

د- کارگیری صفحات عرضی برای افزایش استحکام مخزن:

نصب صفحات عرضی در مخزن می تواند موجب افزایش استحکام شود. شناخت قربانی بدنی مخزن توسط صفحات عرضی در مخزان تحت فشار منجر به تبدیل صفحات حائز اهمیت است.

۴- مدل صفحه عرضی خودرو ۱

در مدل صفحه عرضی خودروی لولایی از دو واحد کشته و تریل ۱ تشکیل یافته که توسط چرخ پنجم به یکدیگر متصلاند. محورهای یک خودروی لولایی طولی پنج محوره

الف- تغییر فرکانس طبیعی ارتعاشی مخازن حمل سیال:

تلاطم و نوسان سیال حول فرکانس طبیعی خود سیال می تواند موجب ایجاد نیرو و اسباب ملاحظه‌ای بر روی مخزن و در نتیجه بر روی خودرو شود. [۱۲] حرکت خودروی بر روی جاده می تواند منجر به تحرک سیال شده و سپس شک سیال استقلال، سال ۳۰، شماره ۱، شهروز ۱۳۸۰ ۲۲۲
الف - ممکنه‌ای وارد بر جرمهای فنریندی شده

برای جرم (1)

\[
(F_{S1} + FS_{12})Z_{R_1}[\sin(\theta_{a1} + \theta_{a1}) - \sin(\theta_{a1} - \theta_{a1})] + \\
(F_{S1} - FS_{12})S_1 + F_{R1}Z_{R_1} + K_n(\theta_{a2} - \theta_{a1}) + \\
(W_5 + W_{a1} - W_{a0})[\cos \theta_{a1} - \sin \theta_{a1}] Z_{FRI} = 0
\]

(1)

برای جرم (2)

\[
(F_{S1} + FS_{22})Z_{R_2}[\sin(\theta_{a2} + \theta_{a2}) - \sin(\theta_{a2} - \theta_{a2})] + \\
(F_{S1} + FS_{22})S_2 + F_{R2}Z_{R_2} - K_n(\theta_{a2} - \theta_{a2}) + \\
W_5Z_{S2}[\cos \theta_{a2} - \sin \theta_{a2} + K_d(\theta_{a3} - \theta_{a2}) - \\
(W_5 + W_{a2} - W_{a1})[\cos \theta_{a2} - \sin \theta_{a2}] Z_{FRI} = 0
\]

(2)

برای جرم (3)

\[
(F_{S1} + FS_{32})Z_{R_3}[\sin(\theta_{a3} + \theta_{a3}) - \sin(\theta_{a3} - \theta_{a3})] + \\
(F_{S1} - FS_{32})S_3 + F_{R3}Z_{R_3} - K_n(\theta_{a3} - \theta_{a3}) + \\
W_5Z_{S3}[\cos \theta_{a3} - \sin \theta_{a3}] + ML = 0
\]

در معادله با لاتا M عناصر کلی ناشی از سیال داخل مخزن بوده که برای مجموع ممکنه‌ای وارد بر خوردوما زیر

\[
ML = \sum_{k=1}^{n}WL_k(\cos \theta_{a3} + \sin \theta_{a3})YL_k + \\
\sum_{k=1}^{n}WL_k(\cos \theta_{a3} - \sin \theta_{a3})ZL_k
\]

(4)

ب) جابه‌جایی عرضی و عمودی مرکز جرم سیال در ZL_k و YL_k مخزن است که بر اساس هندسه مخزن، در صورتی که پرتوهای مخزن و ارتفاع اولی سیال در مخزن تعریف شده‌باشد، با به صورت زیر

\[
ZL_k = 0.5H_2 - (0.5H_2 - ZO_k)\cos \psi
\]

\[
YL_k = \left[0.5H_1 - \frac{H_1 - ZO_k}{H_2}\right] \sin \psi
\]

\[
\text{گرددان سطح آزاد سیال در مخزن بوده و با ضریب کوچک}
\]

\[
\text{بودن}
\]

\[
\text{می‌توان نوشت}
\]

\[
\check{t} = \frac{a_y + \theta_{a3}}{1 - a_y \theta_{a3}}
\]

یک نیز به ترتیب تئوری تبادل شده در مرکز فنریش FS_{ij} و F_{R1} ویژه‌ی فنریش سیستم تعلیق‌کننده که برایند با

\[
\text{توسط سه محور مربک مدل‌سازی می‌شود که در نتیجه یک محور مربک بار در محور تریلی و دو محور مربک براز
\]

کشنه‌ی در نظر گرفته می‌شود، شکل (2-الف).

ج) از دو جرم محقق نکشک و توسط فر پیچشی به‌هم متصاعد. جرم تریلی نیز توسط یک جرم فنریندی شده مدل شده که توسط فر پیچشی دیگری در جرخ پنج به کشنه‌ی مفصل بدنه که ضریب سختی آن با انگک مجموع ضریب سختی

پیچشی قاب تریلی و جرخ پنج در مجموع است. محور‌های خوردوما بوده که می‌توانند نسبت به جرم‌های

فسینیدی شده‌ای حرکت‌های رول و بازیان باشد. شکل (2-ب).

د) مخزن سیال با صفحات عرضی بر روی تریلی سوار است که ارائه جابه‌جایی سیال در مخزن مستقیماً به سبیستسیم تریلی اعمال می‌شود. فاصله بین صفحات متمرکز بوده که می‌تواند به دلخواه تعیین شود. بخش‌های مجزای مخزنی می‌توانند به طور جداگانه از سیالات مختلف تخلیه نمایند و با بارگیری شوند. با بارگیری و با تخلیه مخزن، توزیع تار سیال در مخزن تغییر کرده که در نتیجه پارامترهای خوردوما تغییر می‌کند.

۱-۴ - معادله‌های حاکم بر مدل

با توجه به مدل ارائه‌شده از خوردوما لولایی می‌توان

معادله‌های حاکم بر این مدل را اساس مکانیک ترمیمی استخراج کرد. شکل (2). معادله‌های نوشته شده، معادله‌های

نیرو و مانگ برای سه جرم محقق و همچنین جرمهای غیر معلق

است که باید توجه داشت چرا که جرم محقق سه، حامل مخزن سیال

است که در نتیجه اثرات حرکت‌های در داخل محفظه‌های

مختلف آن، در معادله‌ها اعمال شده است.
شکل ۲-الف- بخش بندی کردن مخزن‌ها

شکل ۲-ب- مقطع عرضی یک خودروی لولایی حامل سیال

استقلال، سال ۱۳۸۰، شماره ۱، شهريور
\[F_{Ri} = (W_{AXLi} - W_{ui}) \sin \theta_{ui} + (W_{AXLi} - W_{ui}) \cos \theta_{ui} \quad i = 1, 2, 3 \]
\[F_{Sij} = K_{ij} \left[Z_{ui} + (-1)^{i+1}(S_{ui} \sin \theta_{ui} - \theta_{ui}) \right] \quad i = 1, 2, 3 \]

\[\text{ب- معادله‌های وارده بر محورهای خودرو:} \]
\[F_{Ri}, Z_{ui} - (F_{S1i} - F_{S2i}) Z_{ui} + (F_{Z1i} - F_{Z2i}) y_{ui} \cos \theta_{ui} + (F_{Z3i} + F_{Z4i}) y_{ui} \cos \theta_{ui} + W_{axli} \sin \theta_{ui} \]
\[(KOV_{yi} + KOV_{yi}) y_{ui} + \sum_{j=1}^{4} FZ_{ij} R_{j, 0_{ui}} = 0 \]
\[i = 1, 2, 3 \]

\[\text{ج- معادله‌های وارده بر محورهای سیستم تعقیب و تابیرهای خودرو:} \]
\[F_{i1} + F_{i2} = (W_{axli} - W_{ui}) \cos \theta_{ui} + (W_{axli} - W_{ui}) \sin \theta_{ui} \quad i = 1, 2, 3 \]
\[\sum_{j=1}^{4} FZ_{ij} = W_{axli} \quad i = 1, 2, 3 \]

\[\text{5- مدل صفحه یک خودرو:} \]
این مدل برای تحلیل زایمانی‌های رفتار گذاری خودرو در صفحه جاده‌ای از دستورالعمل سیستم تابیرهای خودرو در صفحه جاده‌ای و تعیین مقدار زایمانی است. مدل مورد بررسی، پیش‌بینی سیستم تابیرهای مختلف یک خودرو لولایی به‌نسبت به یکدیگر، به‌منظور بررسی و بررسی‌های مختلف است. زایمانی در صفحه جاده‌ای چند قسمتی، به کار رفته و حکاکی به پیک از قسمت‌های خودرو بر روی سطح جاده به طور جداگانه تحلیل و بررسی شده، شکل (۲۸). خودرو، تست سیستم فرمان دست به مانورها و تغییر مسیرهای مختلفی مزین که معمولاً و روند سیستم فرمان به چرخهای جلویی خودرو عامل می‌باشد، راننده توسط سیستم فرمان تحت شرایط مختلف جاده، خودرو را هدایت کرده و به شرایط موجود مانورها مختلف مانند تغییر مسیر

\[[A]X = [B] \Delta \theta_{3i} \]

استقرار سال ۱۳۸۰، شماره ۱ شهرویور
شکل ۳- مدل صفحه‌بندی و سیستم‌های مختلف خوردو

و با سیستم

رایانه‌ای ۵ Maple

در مدل برای محاسبه سرعتی و صورت‌گیری در جاده

\[\sum_{i=1}^{p} m_i (V_n - u_{n_i} r_i) = \sum_{i=1}^{p} \sum_{j=1}^{q} F T_{n_j} \]

معادله تیرو

\[\sum_{i=1}^{n} \left(\sum_{j=1}^{p} \sum_{i=2}^{n} I_{n_j} \right) X_{n_j} = -F Y_{n+1} X R_{n} - F Y_{n} X F_{n} + \]

معادله ممان

\[\sum_{i=1}^{n} (M_{n_i} - F T_{n_i} X T_{n_i}) \]

با توجه به اینکه واحدها توسط لولا یا جرخ پنج به هم متصلاً سرعت مطلق واحدها نیروهای مطلق شده عرضی

\[V_n = v_i + u_i \sum_{i=1}^{n} T_i + \sum_{i=2}^{n} X F_{n_i} \]

در جرخ پنج و یا لولا به صورت زیر قابل بیان هستند

\[F Y_{n} = \sum_{j=1}^{p} F T_{n_j} - m_n (V_n + u_{n_f} r_i) \]

ن‌۱،۲،..... پ

استادهای حاکم بر مدل

معادله‌های حاکم بر مدل در حالت کلی برای خوردوی

لولا یا تعداد دلخواه تریل به دست آمده است. در این مدل

سرعت و یا شتاب جانی هر واحد تریل، نرخ تغییرات زاویه‌ی هر واحد و جهت زاویه بین دو واحد متوالی تعیین می‌شود.

برای تعیین پارامترهای ذکر شده برای پک خودروی

Pقمت، شامل یک واحد کشیده و P=1 برز دارای 2 یکنون هستم

استادهای، سال ۱۳۸۰، شهره‌ای
شکل 4- نمایش مسیر حركت آزمایش گردو (گذر از پیچ و تغییر مسیر)

توجه داشته باشید که کشش و تنریز انتهایی به ترتیب دارای
\[F_{Y_{p+1}} = 0, \quad F_Y = 0 \]
نیروها و مانده‌های وارده بر تایپه در این مدل بر اساس
معادله‌های زیر محاسبه می‌شوند
\[F_{T_i} = -C_m a_m \] \hspace{1cm} (17)
\[M_i = N_m a_m - \frac{y_m^2 b_m r_n}{r_n} \] \hspace{1cm} (18)
\[n = 1, 2, 3, ..., p \quad i = 1, 2, ..., q \]
همچنین چاپ‌افشته بین جفت تایپ بر روی یک محویر و
صلبیت طولی تایپ است. \(a_m \) زاویه لغزش جانی لاستیک محویر
قامت و به صورت زیر تعیین می‌شود
\[a_m = \frac{V_n - X T_m r_n}{u_n} \] \hspace{1cm} (19)
\[a_{11} = \frac{V_1 + X T_{11} r_1}{u_1} - p F_n \] \hspace{1cm} (20)
با گاگاگاتی مقدار نیروها و مانده‌های اعمالی از سوی تایپه در
معادله‌های (13) و (14). دستگاه معادله‌های دیفرانسیل خطی
بر اساس سرعت جانی نرخ تغییرات زاویه هر واحد و
زاویه‌های ولای به دست می‌آید که به طور کلی به صورت زیر
پیدا می‌شود
\[[A]X = [B]X + [C] \delta r_n \] \hspace{1cm} (21)
\[X = [V_r, T_n] \quad n = 1, 2, ..., p \]
\[[B], [C], [A] \]
ماتریس‌های مشخصه حکل‌ریزی و خودروی بوده و
مجهول‌های است.
درصدیهای مختلفی برای بالاست. با توجه به شتاب و وزنی
بخش‌های (۲) و (۳) و مقاومت به بخش (۱) موی تیپی‌گر گرفت
که اگر بخواهیم مخزن را تخلیه کنیم بایستی اول بخش (۱) را
تخلیه کرد. شکل (۸) نشان می‌دهد که اگر از بخش مخزن پر
بشار و بخواهیم یک از سه بخش میانی را تنها ببر یا بگذرانیم
آنوقت بخش (۱) انتحاب مناسب‌تر است. از طرف دیگر اگر
بخش (۱) خالی باشد و بخواهیم یک از بخش‌های دیگر را
خالی کنیم، در آنتروپی انتحاب مناسب‌تر بخش (۳) است.
ب- در این قسمت نتایج حاصل از تحلیل یک صفحه
پیچش در طول اجسامی بررسی می‌شود. هدف از این کار
است خلاصه پاسخ گذاری خودروی لولایی برای افزایش عرضی
خودرو را نشان می‌دهد. این نمودار نشان می‌دهد که برای
وضعیت‌های نیمه پر مخزن صفحات عرضی پایداری خودروی را
افزایش داده و برای درصد بارگیری ۴۰ درصد آستانه و وزنی
از ۴۵/۰ به ۴/۷ صعود می‌کند و پایداری خودرو به‌همراه می‌پاید.
در شکل (۲) نتایج تعداد صفحات عرضی مخزن روي افزایش
پایداری خودرو نمایش داده می‌شود. همان طور که ملاحظه
می‌شود تغییرات شتاب و وزنی برای درصد‌های بارگیری زیر
۴ درصد به گونه‌ای است که صفحات عرضی بیشتر پایداری
بهتری را برای خودرو تأمین می‌کند و برای درصد بارگیری
بیشتر از آن ممکن است احتمال کم را نشان می‌دهد. این
نمونه به نوعی باید به‌نتیجه احتمال کمی را نشان می‌دهد.
تغییرات به ویژه بخش (۷) و (۸) تأثیر
تولید خودروی بک مخزن پنجره مجزا را بر روی
پایداری خودرو نشان می‌دهند. مطابق شکل (۷) چهار قسمت
مختصر پنجره پنجره برود و می‌خواهیم بیننیم که تغییر بارگیری
بخش‌های (۱) و (۳) چه تاثیری روی آستانه و وزنی
خودرو لولایی حامل سیال جدید می‌دارد. در حالتی که یک بخش به
صورت نیمه پر بخش‌های دیگر کاملاً پر‌ستیز ملاحظه می‌شود که آستانه شتاب و وزنی برای خولیه و با بارگیری نیمه
تمام بخش (۱) کاهش می‌یابد و شتاب و وزنی برای
Shape 5 - Influence of the number of pages on the fill ratio results.

Shape 6 - Influence of baffles on the fill ratio results.

Shape 7 - Influence of baffles on the fill ratio results with 1, 2, and 3 baffles.
شکل 8، با سه محفظه پروپوسال‌های بخش‌های 1 و 2.

شکل 9، پاسخ زمانی شتاب جابجایی واحد‌های کشنده و تریلی.

شکل 10، عکس عمل زمانی سرعت جابجایی واحد‌های کشنده و تریلی.
شکل 11- نمودار زمینی نرخ زاویه لولایی

شکل 12- پاسخ زمینی شتاب سیال در اجزای مختلف مخزن

نیازی باید در نهایت می توان جمع بندي کرد که به استفاده از مدل صفحه عرضی بر آن برودم که وازکنی خودروهای لولایی را با وجود صفحات عرضی پیش بینی کرده و منطق حاکم بر تحلیل و پارامتری های مختلف مخزن را بررسی کنیم. از نتایج قسمت (ب) اینکنون استنتاج می شود که اگر بخواهیم مخزن را تحلیل کنیم باید از قسمت های وسط مخزن و نزدیک به واحد کشیده شروع کرد. این نکته از آنجا حاصل می شود که بخشهای ابتدا و انتهای مخزن به خاطر تغییر مستقیم روی یک محور، هنگام تحلیل بهره نزدیک و با اگر بخواهیم برای

می کند. این زاویه هنگامی که در تحلیل پاسخ گذرا نیروهای طولی نیز لحاظ شود بیشتر نمود یافته و در سر دن خودرود را پیش بینی می کند. ملاحظه می شود که این زاویه با یک پرای (12) به وضوح سیال و نبود بیشتر نمودار خودرود تبلیغ بیشتر می کند. شکل (12) وضعیت سیال در بخش های مختلف مخزن را توصیف می کند و نشان می دهد که در هر بخش شتاب جذبی مکانی تغییر سیال تحت ورودی فرمی مربوط به چه نوعی تغییر می کند. و در آنجا قابل تأثیر است نتیجه به باسیاری سیستم در طول پاسخ گذرا است.
یک مخزن پنج فضایی منطق تخیلی را مور و کیفیت آن باید به ترتیب

پخش‌های ۱۳۵.۱ و ۴ را تخیلی کرد.

واژه نامه

مراجع