بررسی کارایی یک شبکه عصبی جدید برای مسیریابی در یک شبکه اتصالات توری

شادخ سماوری، ولي الله طهرانی، و پژمان خدیوی
دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان

دریافت مقاله: ۱۴/۷/۱۴۹۰ - دریافت نسخه نهایی: ۲۰/۱۵/۱۴۹۰

چکیده: مسیریابی یکی از اساسی‌ترین فرآیندهایی بود که سیستم‌های شبکه‌های رایانه‌ای نماید. استفاده بهینه از شبکه‌های رایانه‌ای در حالت کم‌ارزش از نظر توانایی رایانه‌ها و سیستم‌های عصبی پیشنهادی برای مسیریابی در یک شبکه اتصالات توری مورد بررسی قرار می‌گیرد.

واژگان کلیدی: مسیریابی، سیستم‌های رایانه‌ای، شبکه عصبی برگشتی، شبکه توری

Performance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks

S. Samavi, V. Tahani and P. Khadivi
Department of Electrical & Computer Engineering, Isfahan University of Technology

Abstract: Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural network and new energy function is introduced. This network requires a significantly smaller number of neurons compared to its counterparts. Also presented is the performance of this neural network.

Keywords: Routing, Recurrent neural networks, Mesh interconnection networks.

1 - مقدمه

مسیریابی یکی از اساسی‌ترین فرآیندهایی بود که برای سیستم‌های رایانه‌ای نماید. استفاده بهینه از شبکه‌های رایانه‌ای در حالت کم‌ارزش از نظر توانایی رایانه‌ها و سیستم‌های عصبی پیشنهادی برای مسیریابی در یک شبکه اتصالات توری مورد بررسی قرار می‌گیرد.

2 - کارایی یک شبکه عصبی

آن است که برای مسیریابی در شبکه توری قابل استفاده است.

3 - استاد

ایدید مسیریابی با استفاده از شبکه عصبی

4 - استاد

توسط راش و بارانسک [۲] مطرح شده. در روش مطرح شده

*** دانشجوی دکترا

** استاد

استقلال، سال ۲۰، شماره ۲، اسفند ۱۳۸۰
نحویت انواع نفریت، پیش از انتقال شیب یک تعداد گره‌های بین مبدا و مقصد را باید انجام داد. در این تعداد گره‌های با یک مبدا و مقصد متعلق به یک شیب یا هیدرایل انتقال 3 تعداد گره‌های بین مبدا و مقصد xBY به صورت یک شیکه مسیریابی‌سازی می‌شود.

1. شیب شکل‌هایی

در این بخش، یک شکل شیبی مخصوص به شکل‌های هیدرایلی معرفی می‌شود. که به صورت یک شیکه مسیریابی‌سازی‌سازی می‌شود.

2. شرایط شیوه انتقال

در این بخش، سیستم‌های انتقال مراحل انتقال شیبی هیدرایلی معرفی می‌شود. که به صورت یک شیکه مسیریابی‌سازی می‌شود.
ترتب، برای شبکه یک تابع انرژی با توجه به محدوده‌ها و نیازهای مسئله تعريف می‌شود و سپس از روی آن تابع، وزنهای شبکه‌های تمایل مشخص می‌شود. پس از آنکه شبکه به حالت پایدار رسید، تابع انرژی اولیه به یک حداقل همگرا شده و خروجی نرخ‌ها جواب مسئله خواهد بود.

یک شبکه عصبی دیگر که بر اساس شبکه هاینریچ‌هايفلد تعريف می‌شود، ارتباطات ۱۷ است که یک شبکه عصبی هاینریک‌هايفلد تعیین یافته‌ای هم هم‌نامه، برای تعريف یک ابرگراف همینه، ابتدا $G = (V, E)$، را در نظر می‌گیریم که $V \subseteq 2^W$ مجموعه محدود و منظور G روم‌گراف و مجموعه W که به دو عضو W^i W^j با هم ارتباط دارند. یک ارتباطه دوپایانه‌ای است، یک ارتباطه با بیش از دو عضو، یک ارتباطه چندپایانه‌ای نامیده می‌شود. بر این اساس، تابع انرژی E, یک شبکه HNN به صورت زیر تعريف می‌شود.

$$E = K - \sum_{i=1}^{N} T_i V_i - \frac{1}{2!} \sum_{i,j,k,l} W_{ij} V_i V_j V_k - \frac{1}{3!} \sum_{i,j,k} W_{ijk} V_i V_j V_k - \ldots$$

که در معادله (۱) K, T_i, W_{ij}, W_{ijk}، W_{ijkl} مقداری ثابت و V_i خروجی نرخ آم، W سطح آستانه نرخ آم، T_i به همین ترتیب و W_{ij} به همین ترتیب و W_{ijkl} به همین ترتیب است. $G = (V, E)$ استادرای مجموعه V ابرگراف، E مجموعه استادرا، N استادرا، W_{ij} و W_{ijkl} به دو عدد که i, j, k, l را به همین ترتیب تعريف می‌شود.

$$W_{ii,i} = 0 \ , \ W_{ij,j} = W_{ji,j} = \ldots = W_{ij,j}$$

قابل توجه است که هر شبکه ای یک شبکه هاینریک‌هايفلد، نه سه عنوان اول معادله (۱) تشکیل شده است. هر شبکه هاینریک‌هايفلد، حالی از شکل HNN است که در آن، توابع خطوط ارتباطی با دو یا چند پایان وجود دارد.

شکل (۱)، یک شبکه هاینریک‌هايفلد با W روند یا شکل (۲)، یک شبکه عصبی با W روند یا نوع N روند نمایان می‌شود، مستطیل ترمینی در شکل (۱)، W روند مربوط به N روند می‌شود.

شکل ۱- شبکه هاینریک‌هايفلد با W روند

شکل ۲- شبکه عصبی با W روند
اهداف - می‌توانیم مشتق انتگرال نسبت به زمان را به صورت زیر بیان نماییم

\[
\frac{dE}{dt} = \sum_i \frac{\partial E}{\partial V_i} \frac{dV_i}{dt}
\]

با توجه به فرض \(\frac{dE}{dt} \) خواص داشت

\[
\frac{dE}{dt} = -\sum_i \left(\frac{dU_i}{dt} \right)^2 \frac{dV_i}{dt}
\]

از آنجا که تابع \(f() \) غیر نیروی است، هم‌واره غیرمنفی است و در نتیجه \(0 \leq \frac{dE}{dt} \)

در تابع و وزنه‌های شبکه \(AWNN \) و برای-

- 3- تابع انتگرال برای مسیرپیوی در شبکه اتصالات

- 4- ساختار نرون شماره 1 در شکل (3)

\[
\frac{dU_i}{dt} = T_i + \sum_{j=1}^{N} W_{ij} V_j + \sum_{j=1}^{N} \sum_{k=1}^{N} W_{ik} V_j V_k + \ldots
\]

- 3- تابع انتگرال برای مسیرپیوی در یک شبکه توری

- 4- در این بخش کاربرد شبکه

- 3- تابع انتگرال برای مسیرپیوی در یک شبکه توری

- 4- فرض کنید \(V_i = f(U_i) \) ، ورودی نرون \(i \) و \(E \) تابع غیرنیروی است و \(f() \) غیرمنفی باشد. در این صورت اگر \(\frac{dE}{dt} \) به عنوان مقدار خواهد نمی‌شد در این شکل، \(\frac{dE}{dt} \) به‌طور کلی مقدار خواهد بود و \(f() \) غیرمنفی باشد.
معادله (100)، تابع انرژی یک شبکه عصبی از نوع AWHNN است که در رشته‌ای نیاز دارد و این در مقایسه با روش‌های قبلی که به دست آمده است نیاز دارد. در نتیجه رییسی محسوب می‌شود. آدرس گره بعدی (N, NH) باید تا زیرگرید آدرس گره جاری و یا آدرس گره مقدس باشد. و در نتیجه استفاده در تابع انرژی اجتناب نامایید است. قابل توجه است که در تابع انرژی معادله (100)، مربع فاصله بین دو منطقی می‌شود. این ترتیب محاسبه مشتق تابع انرژی از منطق محاسبه وزن‌ها سیاسه از بر این ترتیب محاسبه هم‌سایه کد شود.

است.

این را تعیین می‌کنیم که مربع فاصله را به این معادلات (3) و (10) می‌توان وزنهای شبکه عصبی دیگر یا برای حل مسئله‌ای (DV, DH) محاسبه کرد. اگر آدرس گره (CV, CH) D در شبکه توری باشد، وزنهای مربوطه را می‌توان محاسبه کرد. نتایج این محاسبات در جدول (1) نشان داده شده است. همانطور که در جدول (1) نشان داده شده، آدرس گره مقصد تا در سطح آستانه‌ی نرخه می‌شود. این توجه به این مطلب، پدیده سازی شبکه عصبی در هر گره می‌شود. خواهد بود چرا که، وزنهای شبکه عصبی، نشانگر آدرس گره فعلي تعیین می‌شوند و هر گزینه نمی‌کنم. آنچه در هر سیار استفاده از شبکه تغییر می‌کند، آدرس گره مقصد است و آن نستر نشانگر این نشانگر است که در سطح آستانه‌ی نرخه می‌شود. این توجه به عنوان یک ورودی برای شبکه نیز در نظر گرفته شود.

2-3 بررسی عملکرد شبکه عصبی

در این بخش به بررسی کارایی روش عصبی ارائه شده.
جدول ۱ - وزن‌های شبکه عصبی AWHNN

<table>
<thead>
<tr>
<th>$W_{i}^{(h)} N_{j}^{(l)} = -[2^{j+l} (K_{1} - 2 K_{2}) + 2^{j+l+2} K_{2} \times (2^{2j} \times 2^{j+l} C^{H}) + 3 C^{H} + C^{V} + 2 C^{V} - 2 C^{H})]</th>
<th>W_{i}^{(h)} N_{j}^{(l)} = -[2^{j+l} (K_{1} - 2 K_{2}) + 2^{j+l+2} K_{2} \times (2^{2j} - 2^{j+l} C^{V} + 3 C^{V} + C^{H} + 2 C^{V})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_{i}^{(h)} N_{j}^{(l)} = K_{2} \times C^{H} + 2^{j+l+2} (2^{2j} - 2 C^{V})</td>
<td>W_{i}^{(h)} N_{j}^{(l)} = K_{2} \times C^{V} + 2^{j+l+2} (2^{2j} - 2 C^{H})</td>
</tr>
<tr>
<td>$W_{i}^{(h)} N_{j}^{(l)} = -2^{j+l+2} K_{2} (2^{k} + 2^{j+l} - 3 C^{H})</td>
<td>W_{i}^{(h)} N_{j}^{(l)} = -2^{j+l+2} K_{2} (2^{k} + 2^{j+l} - 3 C^{V})</td>
</tr>
<tr>
<td>$W_{i}^{(h)} N_{j}^{(l)} \times N_{k}^{(l)} \times N_{k}^{(l)} = -2^{j+l+k+h+2} K_{2}</td>
<td>W_{i}^{(h)} N_{j}^{(l)} \times N_{k}^{(l)} \times N_{k}^{(l)} = -2^{j+l+k+h+2} K_{2}</td>
</tr>
<tr>
<td>$W_{i}^{(h)} N_{j}^{(l)} \times N_{k}^{(l)} \times N_{k}^{(l)} \times N_{k}^{(l)} = -2^{j+l+k+h+2} K_{2}</td>
<td>W_{i}^{(h)} N_{j}^{(l)} \times N_{k}^{(l)} \times N_{k}^{(l)} \times N_{k}^{(l)} = -2^{j+l+k+h+2} K_{2}</td>
</tr>
</tbody>
</table>

متغیف می‌کنیم که

$$\sum_{i} \Delta U_{i}(t) < \text{Err} \quad (14)$$

و نیز یکی از پارامترهای شبکه عصبی خواهد بود که در این بخش نمی‌توانی از داده‌های صحیح استفاده کنیم. از آن‌ها که در تابع ارائه‌شده در مجموع فعاله بین گره بعدی و مقصد وجود دارد، در مشتاق تابع ایزومر و در نتیجه داده و مقصد وجود خواهد داشت. تابع اولیه شبیه‌سازی نشان داد است که اطلاعات از معادله (14) مناسب تبییع و رابطه زیر برای توغب محاسبات نتایج بهتری از خود نشان می‌دهد

$$\sum_{i} \Delta U_{i}(t) < \text{Err} \times \text{dist} \quad (15)$$

خروجی فاصله (و هم برای عملکرد فاصله که در تابع ایزومر به کار رفته بود) بین مبدا و مقصد D است. و البته به هر مقدار کاهش از نتایج بدتر تاثیر دارد. ضریب این فقط از dist کمتر است. ضریب Δt رابطه (15) و نتایج در نتیجه در می‌آید. با تعداد نرخهای مناسب خواهده بود، زیرا در طرف ها ضریب dist Δt می‌باشد. در عمل به دلیل این سبب می‌باشد که به بررسی این اطلاعات، با توجه به این انتظار زمانهای شبیه‌سازی برنامه‌ریزی شده‌است. مهم است به این وضعیت توجه نمی‌شود. پس، عملیات را راهکاری

$$U_{i}(t + \Delta t) = U_{i}(t) + \Delta U_{i}(t) \cdot \Delta t \quad (16)$$

نسبت با استفاده از معادله زیر وضعیت نرخهای تغییر می‌دهیم

$$U_{i} > 0 \text{ Then } V_{i} = 1 \text{ Else } V_{i} = 0 \quad (17)$$

توجه کنید که این وضعیت به تغییر وضعیت نرخهای بودن زمان $\Delta U_{i}(t)$ ها محدود شده‌است. در عمل به دلیل این سبب می‌باشد که به بررسی این اطلاعات، با توجه به این انتظار زمانهای شبیه‌سازی برنامه‌ریزی شده‌است. مهم است به این وضعیت توجه نمی‌شود. پس، عملیات را راهکاری
بهره‌مندی درصد جواب‌های درست نسبت به تغییر در مقدار k_1 برای یک شبکه توری در دو بعد k_2 به تغییر در مقدار k_1 نسبت داده شده است. (۱) نمودار درصد جواب‌های درست K_1 به تغییر در k_1 دارد تئاترات نامناسب روز کارایی شبکه عصبی یکپارچه می‌کند. مقدار این عبارت در مقایسه با عبارتی که ضریب K_2 دارد و همین‌طور بودن گره بعدی یا گره جایی را تضمین می‌کند، بسیار بزرگ است. عبارت به ضریب K_2 دارای مقدار دلخواه صفر است و در صورتی که مربع فاصله دو گره در شبکه توری دو بعدی با چهار گره در هر بعد می‌تواند تا هجدیده هم برود، لازم است که برای رفع این مشیک نسبت k_2 به k_1 برگز انتخاب شود. با بزرگ شدن ابعاد شیبک، این نسبت نباید افزایش یابد زیرا مانگیک مربع فاصله دو گره در شبکه اتصالات افزایش می‌یابد. (۸) نمودار سه بعدی است که درصد جواب‌های درست را بر حسب تغییرات k_1 و K_2 نشان می‌دهد. این نمودار برای یک شبکه توری دو بعدی با چهار گره در هر بعد رسم شده است.

بهره‌مندی مقداری که برای این دو ضریب از روی نمودار Err می‌توان انتخاب کرد $k_1=16$ و $K_2=0.25$. مقدار Err استفاده شده در این نمودار 6.25 است. برگز بودن k_2 نسبت اتصالات و به تعنیف آن افزایش تعداد نرونهایی، مقدار مناسب برای نیز زیاد شود که در این صورت، طرف چپ نامسانی رابطه (۵) افزایش یافته است. نتایج نشان‌دهنده این مطلب را نشان می‌دهد. در شکل (۷) و (۸) نموداری از این نتایج دیده می‌شود. در شکل (۷)، تغییرات درصد جواب‌های درست نسبت به تغییر در مقدار Err برای یک شبکه اتصالات توری در دو بعدی با چهار گره در هر بعد ترسیم شده است. همانطور که دیده می‌شود، بهترین جواب در نتیجه مقدار $Err=3$ به دست می‌آید. شکل (۸) نمودار را برای یک شبکه توری در دو بعدی با پنج گره در هر بعد نشان می‌دهد و می‌بینیم که اینبار بهترین جواب را می‌دهد. در هر دو نمودار مقدار $Err=7$ نسبت داده شده است. (۲) نموداری درصد جواب‌های درست K_1 به تغییر در k_1 دارد تئاترات نامناسبی روز کارایی شبکه عصبی یکپارچه می‌کند. مقدار این عبارت در مقایسه با عبارتی که ضریب K_2 دارد و همین‌طور بودن گره بعدی یا گره جایی را تضمین می‌کند، بسیار بزرگ است. عبارت به ضریب K_2 دارای مقدار حداقل صفر است و در صورتی که مربع فاصله دو گره در شبکه توری دو بعدی با چهار گره در هر بعد می‌تواند تا هجدیده هم برود، لازم است که برای رفع این مشیک نسبت k_2 به k_1 برگز انتخاب شود. با بزرگ شدن ابعاد شیبک، این نسبت نباید افزایش یابد زیرا مانگیک مربع فاصله دو گره در شبکه اتصالات افزایش می‌یابد. (۸) نمودار سه بعدی است که درصد جواب‌های درست را بر حسب تغییرات k_1 و K_2 نشان می‌دهد. این نمودار برای یک شبکه توری دو بعدی با چهار گره در هر بعد رسم شده است.

بهره‌مندی مقداری که برای این دو ضریب از روی نمودار Err می‌توان انتخاب کرد $k_1=16$ و $K_2=0.25$. مقدار Err استفاده شده در این نمودار 6.25 است. برگز بودن k_2 نسبت
تعداد بیساب کمتری نرخ نسبت به شبکه‌های عصبی قلی نیاز دارد. به‌طوری‌که برای سیستم‌هایی که شیب‌های تغییراتی توری 2^n با استفاده از روش آرازی شده، تنها $2n$ نرخ نیاز است در حالی که روش‌های موجود به 4^n نرخ نیاز دارند. در این روش، آدرس گره مقصود که برای هر پیام متغیر است و تعداد در سطح آستانه نرخ نشاندهنده و در خروجی هیچ تغییر محسوسی نمی‌شود. این امر باعث ساده‌تر شدن پیشنهاد سازی شبکه عصبی می‌شود. همچنین، در هر پارامتر معنی‌سایر به جای نمایش کل مسیر، تنها آدرس گره بعدی که پیام‌های باید به آن برود به دست می‌آید. به‌طوری‌که برای سازگاری یک شبکه های اتصالاتی توری با ابعاد بیشتر نیاز استفاده شود به تنها تغییراتی جزیی در تغییراتی دارد. روش ارائه شده برای سیستم‌هایی که تنها آدرس‌های مسیر و مسیرها را در تعریف یک شبکه عصبی برهگشته، ثابت انرژی برای سیستم‌های اتصالاتی توری دو بعدی ارائه شده. شبکه عصبی معنوی شده در این مقاله از شبکه عصبی فایل اینترنتی شد است و محدوده این شبکه فایل اینترنتی انتخاب شده و اتصال آنها به نیاز است. به این ترتیب، شبکه عصبی ارائه شده، تنها می‌تواند برای پیاده‌سازی محاسبات را در این مقاله ارائه شده است.

نتیجه‌گیری

شبکه اتصالاتی توری، یکی از پرکاربردترین شبکه‌های اتصالات در سیستم‌های چند رابطه است. در این مقاله، پس از تعریف یک شبکه عصبی برهگشته، ثابت انرژی برای سیستم‌های اتصالاتی توری دو بعدی ارائه شده. شبکه عصبی معنی‌سایری که برای سیستم‌های پیام در این مقاله ارائه شده است.
1. routing
2. multi-computer
3. neural network
4. recurrent
5. mesh
6. Hopfield
7. neuron
8. hypercube
9. Asymmetric Weight Hyper-Neural Network (AWHNN)
10. Traveling Salesman Problem (TSP)
11. N-Queen
12. optimization
13. Hyper Neural Network (HNN)
14. generalized hopfield neural network
15. connected hypergraph
16. hyper-edge
17. iteration

Mesh

1. Samaei, Sh., and Khodirov, B., "میکروپردازنده در شبکه با استفاده از شیکه‌های عصبی"، مجموعه مقالات هشت‌مین کنفرانس مهندسی برق ایران، جلد اول (الکترونیک و کامپیوتر)، صص. 33-34، دانشگاه صنعتی اصفهان، اردیبهشت 1379.

15. Samaei, Sh., and Khodirov, B., "میکروپردازنده در شبکه با استفاده از شیکه‌های عصبی"، صص. 33-34، دانشگاه صنعتی اصفهان، اردیبهشت 1379.

16. بپردازی میکروپردازنده در شبکه با استفاده از شیکه‌های عصبی، در کنفرانس مهندسی برق ایران، جلد اول (الکترونیک و کامپیوتر)، صص. 33-34، دانشگاه صنعتی اصفهان، اردیبهشت 1379.