کاربرد روش گرم و سرد کردن شیبه سازی شده در حل مسئله مکانیابی پایانه‌های شبکه اتوبوسرسانی

هدایت ذکای آشتیانی و بهرگ حجازی

دانشکده مهندسی عمران، دانشگاه صنعتی شریف

(دریافت مقاله: ۱۳۹۷/۴/۲۷ - دریافت نسخه نهایی: ۱۳۹۷/۱۱/۸)

چکیده: طراحی شبکه‌های اتوبوسرسانی یکی از مسائل مهم در برنامه‌ریزی حمل و نقل همگانی است. یکی از عوامل تكریز که در طراحی ساختار شبکه اتوبوسرسانی، تعیین تعداد و محل پایانه‌های اتوبوسرسانی است. این مسئله حالت خاصی از مسئله مکانیابی تسهیلات در حالت کلی است. مدل مکانیابی یک مسئله برنامه‌ریزی ترکیبی در مقیاس بزرگ است که معمولاً حل دقیق آن برای شبکه‌های بزرگ پیش‌بینی و پیشگیر است. در کوشش‌های پیشین برای شبکه‌های مشهد و تهران، این مسئله با استفاده از روش غیرضمنی شاخه و کرانه به کارگیری نرم‌افزار GAMS حل شده است.

هدف این تحقیق بررسی سایر روش‌های حل و انتخاب روش کارآتر است. از جمله تکنیک‌های مورد نظر، روش گرم و سرد کردن شیبه سازی شده (SA) است. چکیده کارایی حل مسئله بی‌پرتابی برنامه‌ریزی رایانه‌ای است. در این تحقیق با توجه به مشخصات مسئله مکانیابی پایانه‌های شبکه اتوبوسرسانی، پارامترهای مورد نیاز روش SA تعیین شده و به ترتیب به پایانه‌های برنامه‌ریزی کردن مکانیابی این روش، مسئله مذکور حل شده است.

در این مقاله نتایج حاصل از به کارگیری شده سایر روش‌ها با توجه به شبکه اتوبوسرسانی شهر مشهد، به یکدیگر مقایسه شده است. می‌توان یکی از این روش‌ها، روش SA در تکمیل‌های جوایز برای یک بستر از روش‌های شاخه و کرانه، و SA در پیمان‌های غیرضمنی فهرست‌های برای شبکه‌های بزرگ مورد نظر GAMS عملیاتی گردیده و هر مدل راهنمایی برای استفاده از SA کارایی شبکه اتوبوسرسانی تهران و کرایی SA برای شبکه‌های پایانه‌های مشهد، طی روش‌های استفاده از SA در حل مسئله دنبال بزرگ‌ترین زمان می‌دهد.

واژگان کلیدی: شبکه اتوبوسرسانی، مکانیابی پایانه‌ها، شبکه شاخه سازی ه، شبکه گرم و سرد و شبکه شاخه سازی

Solving Bus Terminal Location Problem Using Simulated Annealing

Method

H. Z. Aashtiani and B. Hejazi
Department of Civil Engineering, Sharif University of Technology

Abstract: Bus network design is an important problem in public transportation. A main step to this design is determining the number of required terminals and their locations. This is a special type of facility location problem, which is a time-consuming, large scale, combinatorial problem. In a previous attempt by the authors, this problem had been solved by GAMS, based on a branch and bound algorithm.

** - دانشیار
** - کارشناس ارشد

استقلا، سال ۱۳۸۰, شماره ۲, فصل ۳
1- مقدمه

از جمله اهدافی که در برنامه‌ریزی حمل و نقل دنیال می‌شود، بهبود سزایی سیستمهای حمل و نقل است. رشد روزافزون جمعیت و به سبب آن توسعه شهرویه موجب برروی مشکلاتی در جابجایی مسافر می‌شود. ضعیف‌سازی سفر ازبینی‌ها می‌باشد آن‌ها حمل و نقل موجود کفایتی این تفاضل را نمی‌کند. لذا کارایی سیستمهای حمل و نقل می‌باشد افزایش یابد و بهبود سیستم حمل و نقل همگانی کامی مؤثر در رسیدن به این هدف است. بهبود سیستم حمل و نقل همگانی نیازمند طراحی این سیستم است. هدف از طراحی سیستم حمل و نقل همگانی در درجه‌ی اول بهبود سیستم برای استفاده کنندگان موجود این سیستم و در درجه‌ی دوم جذب مسافران حمل و نقل شخصی است.

مدیرین جزء سیستم حمل و نقل همگانی را شبکه اتوبوسرسانی ترکیبی‌کنند. وجود مشکلات در یک سیستم اتوبوسرسانی سبب پایین آمدن سطح خدمات و در نتیجه‌ی پایین آمدن تیپ‌های آن می‌شود. این مشکلات را می‌توان ناشی از کمبود امکانات و منابع، برنامه‌ریزی نامناسب سیستم برای تخصیص منابع، مدیریت نادرست دانست. به عبارت دیگر اضافه کردن امکانات و منابع نشان دهنده بی‌توجهی به سیستم‌های اتوبوسرسانی و افزایش تفاضل آن نیست. بنابراین به سیستم‌های اصلاح و بهبود سازی سیستم نیاز مؤثرتری خواهد داشت.

سیستم‌های حمل و نقل همگانی، از جمله اتوبوسرسانی، یکی از مسئلات پیدا در برنامه‌ریزی حمل و نقل است که شامل زیرسیستمهای مختلفی می‌شود. این سیستم از یک
2- مسئله مکانیابی یاپانه‌های شهری اتوپورسانی

یکی از مسائل عمده در طراحی سیستم‌های اتوپورسانی مشخص کردن مکان‌های مناسب برای ایجاد یاپانه‌های اتوپورسانی درون شهر است. در حالت کلی، مسئله مکان‌یابی تسهیلات نوع مسئله برنامه‌ریزی است که هدف آن انتخاب زیرمجموعه‌ای از یک مجموعه محفظه‌های کاندید برای تسهیلات است که بهترین خدمت‌دهنده به‌روش سازمانی است. در یک سیستم اتوپورسانی هم، این‌گونه‌های آن، که در هر یک تعدادی مسافر سوار پیاده می‌شوند، می‌توانند به عنوان نقاط کنترل‌کننده در نظر گرفته شوند. هدف این انتخاب تعدادی از این‌گونه‌هاست به گونه‌ای که میزان خدمات پیشین شود.

برای بیان مسئله مکانیابی یاپانه‌های سیستم اتوپورسانی، یک شبکه خیابانی مانند قرار می‌گیرد. فرض می‌شود که یک یاپانه‌های اتوپورسایی از کشور به عنوان نیازهای سیستم اتوپورسایی در نظر گرفته شود. همچنین فرض می‌شود، مسیران سوار و پیاده در مسافرین در هر یک (پانسل گیر) در دست است، همان‌گونه که در مرجع (1) آمده است، برای تعیین این پارامتر ابتدا یک سیستم فرضی اتوپورسایی تعیین می‌شود. این سیستم به همراه تعیین می‌شود که از تعداد خیابان‌های اصلی شبکه حداکثر یک خط اتوپورسایی کنن و تعیین این مسئله می‌تواند مصرفی شود. سپس تعدادی از سفر به این سیستم تخصیص داده می‌شود. در اینست که از تعداد مسافران سوار و پیاده شده در آن پانسل باشد و فاصله کمتری ناگهانی کنن و داشته باشد. پانسل خدماتی که جایی برای بیشتر شود برای این مسئله تعیین می‌شود

\[
\text{max} \sum_{i \in J} \sum_{j \in J^*} d_{ij} F(e_{ij}) x_{ij} \\
\text{s.t.} \sum_{j \in J} x_{ij} \leq y_j \quad \forall j \in J \\
\sum_{i \in I} x_{ij} \leq k y_i \quad \forall i \in I \\
\sum_{j \in J^*} y_{j} = k \\
x_{ij} \geq 0 \quad \forall j \in J^*, i \in I \\
y_i = 0 \quad \forall i \in I
\]

تابع هدف، میزان خدمات دهی یاپانه‌های یاپانه‌های کاندید به تمام یاپانه‌ها را مشخص می‌کند. مسئله هر چه پانسل گیر بیشتر باشد، به‌طور کلی موارد سوار و پیاده شده در آن بیشتر باشد و فاصله کمتری ناگهانی کنن و داشته باشد. مسیران خدماتی که جایی برای بیشتر شود برای این مسئله تعیین می‌شود

\[
f(e_{ij}) = e^{-c_{ij}}
\]

محدودیت (2) نشان می‌دهد مجموعه هم‌سنجی‌ها که هر مسیر خالی یاپانه‌های کاندید می‌گیرد حداکثر باید برای 1 باید. محدودیت (3) نشان می‌دهد. نهایی در صورتی که گرده به عنوان یاپانه‌ای انتخاب شود (یا \(y_i = 0\)) به گرده اطراف خود خدمت می‌دهد و در غیر این صورت (0) به یاپانه‌ای انتخاب \(y_i = 0\) به یاپانه‌ای انتخاب
\[\text{توضیحاتی در اینجا به‌وجود می‌آید.} \]
برنامه‌ی ریزی مختلف، پس از مشخص شدن مقادیر تعدادی از متغیرهای صحیح، در هر شاخص یک برنامه خطی برای تعیین مقادیر بقیه متغیرها می‌شود. روش شمارش ضمیمی حالت خاصی از روش شاخص و کارایی است که در هر شاخص مقدار تمام متغیرهای صحیح مشخص آن است. روش وقیع کارایی دارد که از مشخص شدن مقادیر متغیرهای صحیح، حاکی از قابلیت استفاده مسئولی برای تعیین متغیرهای پوسته ساده باشد و نیاز به حل یک برنامه خطی نباشد. در مسئولیت مکانیکی مورد بحث این مقاله نیز از تعیین متغیرهای صحیح (\(y_i\)) حاکی از قابلیت یکدیگر است و تعیین متغیرهای پوسته (\(x_i\)) حاکی از قابلیت به حل یک برنامه خطی نیست. زیرا هر نقطه‌ای از تعدادی یکنواختی‌ها از نظر رشته‌ای‌ها انتخاب شده (\(y_i = \sum x_{ij}\)) خود می‌گیرد.

4- روش‌های جستجوی ابتدایی

در قسمت قبلناها پیامدهای بررسی‌های دقیق حل مسائل بهینه‌سازی از اعتقادات بود. این تحقیقی که روش‌های مکانیکی برای مسائلی باید به‌بزرگ، کارای خود را از دست دهد و عملکردی بهتر از شمارش کامل نمایاند داشته باشد. در این گزارش مدل‌سازی در دسترس نیست و به علاوه برای مسئول‌های ساده با استفاده از روش‌های ابتدایی مورد گرفتن است. برای روش‌های ابتدایی نیازی به توان تعریفی جامع مسئولیت کردنی است. با وجود این در اینجا کوشش می‌شود تعریف نا حداً در مسئولیت مسئولیت روش‌های ابتدایی که در مسائل بهینه‌سازی از این زمینه در بین جواب‌های مکانیکی، جواب‌های خوب (تغییر بر بهینه) در زمانی محدود را برای یک مسئولیت ارائه نمی‌کند. مسئولیت بهینه پیدا جواب وجود ندارد و حتی نیاز به مسئولیت تبدیلی در حساب کرسی جواب به دست آمده به جواب بهینه را نیز تعیین کرده.

الگوریتم جستجوی حساسیتی، (NS) یک چندین مشکل روش‌های ابتدایی جستجوی است. برای اجتناب از مشکلات موجود در روش جستجوی حساسیت‌های، الگوریتمی توسط تبلیغاتی \(A\) کرک پاتریک [6] و سایر [2] ایجاد شده که به پدیده‌های سری کردن (SA) جایگردی‌های به‌صورت گرم و سرد کردن شبیه‌سازی شده شده‌است. برای پیش بینی جواب حاصل از این روش، به جواب اولیه واپسی نیست و به طور معمول می‌توان توسط آن جوابی گزینی که برای مسئولیت مشایستی به وجود می‌آورد که می‌توان از آن مسئولیت در تاریخچه‌ای که برای جواب‌های بر پایه جواب‌های فاسد است.
به چشمه به به دست آورده حکایت در مورد این اجرا اگر گرفته نیز قابل تعمیم است. با بررسی SA آزمایشگاهی است که اشکالات روش‌های عمومی مبتنی بر تکرار را ندارد. در ادامه جزئی پیش‌ریزی از الگوریتم SA از مرجع [V] ارائه می‌شود.

الگوریتم SA در شکل عمومی آن براساس شبه‌های میان سرد شدن جامدات مذاب حالت مکانیسی ترکیبی به وجود آمده است. به این دلیل الگوریتم مذکور گرم و سرد کردن شیب‌هایی شده نامیده شده است. در فیزیک مواد فلزیه گرم و سرد کردن فرآینده فیزیکی است که طی آن یک ماده جامد در ذریه مورد نظر می‌باشد می‌تواند. فرآینده سرد کردن را به این شرح بدان. در هر دمای T به جامد اجزاء می‌شود که به یک تعادل گرمایی نیز می‌باشد. این الگوریتم به آن سرد کردن از جمله روش‌های است که برای تغییر میانگین (B استفاده از تکنیک نمونه‌گیری تصادفی) به کار می‌رود. الگوریتم متروپلیس برای تولید نواحی جواب مسئله بهینه سازی ترکیبی نیز مورد استفاده قرار می‌گیرد. در این حالت جواب نقطه سطح انرژی را به‌زیادی می‌کند و ناب غیرنوس و C پارامتر کنترل نشانده. T به تریب معرف انرژی و میدان می‌شود. در تعداد مشتمل بر SA مجموعه‌ای از الگوریتم‌های متروپلیس است. این الگوریتم را می‌توان به ترتیب شرح داد. ابتدا، با پارامتر کنترل کننده مقدار بزرگی داده می‌شود. سپس به سری جواب برای سطح C(j) و C(i) C(0) قرار داده می‌شود. در سال اول الگوریتم متروپلیس به C(j) به C(i) ضریب می‌شود. حالا بر اساس میانگین سازی ترکیبی تولید شده می‌باشد. به‌طور جزئی جواب‌های جواب‌های باشند. اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T اگر باشند (با احتمال 1 به عنوان جواب جدید انتخاب می‌شود و جواب جدید به‌طور جزئی T
5- توضیحات مربوط به نفوذ سرده کردن
(T\text{fin})\text{ و }T\text{ (تایم اولیه و نهایی)}

فرض کنید \(T\) تفاوت نسبی مقدار ن癀ه جواب-جوابی
و جواب همایشی و جواب همایشی بدرد از جواب جاری به‌دست.
شره رشد جواب بی‌دست این است که
\[\exp(-\Delta/T) < U = 0.1 \]
(12)
در نتیجه می‌توان گفت، احتمال رشد جواب بی‌دست برای

\[\Pr \{\text{جواب } i\} = q_i(T) = \frac{1}{Q(T)} \exp\left(-\frac{C(i)}{T}\right) \]
(11)

که تابعی از پارامتر کنترل تایم \(T\) است.

در ادامه الگوریتم، پارامتر کنترل کننده در گام‌های مختلف
کاهش می‌یابد و در هر کام به سیستم اجازه دستیابی به حالت
تعداد داده می‌شود. الگوریتم در مقایسه کره‌کره پایان می‌یابد
و این هنگام است که هیچ کوشن از میزان مورد قبول
و این نمی‌شود. یکنواخت در مقایسه براساس مقاچه بک
عدد تصادفی در باره (0.1) با تهای

\[\text{عدد تصادفی در باره (0.1)} \]
(10)

در شکل‌های (1) و (2) دو نوع الگوریتم تحت عنوان
الگوریتم همگن و ناهمگن، که در واقع دو روش تفاوت برای
تغییر پارامتر کنترل کننده (T) هستند. ارائه شده است. [9]

5- به کارگیری روش SA در حل مسئله مکانیابی

پایان‌ها

در این قسمت نحوه به کارگیری روش SA بررسی می‌شود.
الگوریتم همکن در حل مسئله مکانیابی پایان‌ها تشکیل می‌شود.
مشابه روش شمارشی فضایی، در روش SA نیز پس از تغییر
مقدارهای صحیح، مقایسه احتمالی پیوسته به‌طور با توجه به اینکه هر
نقطه از نمونه‌برداری پایان‌ها انتخاب شده خدمت می‌گیرد، تغییر

\[n = n \ln \frac{T_{\text{fin}}}{T_{\text{int}}} = 0.001 - \ln 0.05 = -3.91 \]
(15)

\[\ln g = \ln n \text{ لگاریتم } n \]
(14)

\[g = \frac{T_{\text{fin}}}{T_{\text{int}}} \text{ لگاریتم } g \]
(13)

\[\text{تعداد مراحل تغییر } g \]
(12)

\[\text{برخی از مقایسات مختلف } g \]
(11)

\[\text{برخی از مقایسات مختلف } g \]
(10)

\[\text{برخی از مقایسات مختلف } g \]
(9)

\[\text{برخی از مقایسات مختلف } g \]
(8)

\[\text{برخی از مقایسات مختلف } g \]
(7)

\[\text{برخی از مقایسات مختلف } g \]
(6)

\[\text{برخی از مقایسات مختلف } g \]
(5)

\[\text{برخی از مقایسات مختلف } g \]
(4)

\[\text{برخی از مقایسات مختلف } g \]
(3)

\[\text{برخی از مقایسات مختلف } g \]
(2)

\[\text{برخی از مقایسات مختلف } g \]
(1)

\[\text{برخی از مقایسات مختلف } g \]
جدول 1- احتمال رد شدن جواب به پرسیده مقدار مختلف T و ΔT

<table>
<thead>
<tr>
<th>T</th>
<th>1</th>
<th>$0/75$</th>
<th>$0/5$</th>
<th>$0/2$</th>
<th>$0/05$</th>
<th>$0/01$</th>
<th>ΔT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$0/95$</td>
<td>$0/75$</td>
<td>$0/49$</td>
<td>$0/2$</td>
<td>$0/05$</td>
<td>$0/01$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$0/181$</td>
<td>$0/139$</td>
<td>$0/95$</td>
<td>$0/2$</td>
<td>$0/05$</td>
<td>$0/01$</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>$0/393$</td>
<td>$0/313$</td>
<td>$0/221$</td>
<td>$0/95$</td>
<td>$0/2$</td>
<td>$0/05$</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>$0/722$</td>
<td>$0/528$</td>
<td>$0/343$</td>
<td>$0/181$</td>
<td>$0/49$</td>
<td>$0/01$</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>$0/865$</td>
<td>$0/877$</td>
<td>$0/622$</td>
<td>$0/324$</td>
<td>$0/482$</td>
<td>$0/01$</td>
<td>5</td>
</tr>
</tbody>
</table>

گام‌های جواب‌گیری

1. اگر $C(i) - C(j) < 0$، جواب i را پس از هر تکرار کاهش می‌یابد.
2. اگر $C(i) - C(j) > 0$، جواب j را پس از هر تکرار کاهش می‌یابد.
3. اگر $C(i) - C(j) = 0$، جواب i را پس از هر تکرار کاهش می‌یابد.

شکل 1- الگوریتم SA (دما پس از هر تکرار کاهش می‌یابد).

شکل 2- الگوریتم همگن SA (دما پس از هر تکرار کاهش می‌یابد).
ج - تعداد تکرارها در هر دما
با افزایش تعداد تکرارها در هر دما، تعداد کل تکرارها
افزایش می‌یابد. هر چند تعداد تکرارها افزایش یافته است، جستجو
پیشرفت برای جواب بهبود صوتی‌گر در تیپ جواب بهبودی هستند. جواب
بهتری به دست می‌آید.
به نظر می‌رسد، دست‌آوردهای معیارهای برای تعداد تکرارها
در هر دما (L) از روش ساختار و خط استفاده می‌شود. در مورد
هر سطح، برای تعیین پارامتر تفاوت نسبی معیارهای هزینه مقدار
می‌شود. سپس مقدارهای مختلف برای تعداد تکرارها هر دما
مورد آزمایش قرار می‌گیرد، و مقدار منجر به جواب مناسب
انتخاب می‌شود.

6- حلقه مثال واقعی
در این بخش از مقاله، عملیاتی روش‌های گرم و سرد کردن
شبیه سازی شده (SA) و شماره گیری (IE) و تری افزار
می‌باشد. مدل مکان‌بندی پایان‌های مقدارهای می‌شود. برای
ان انتخاب، دو شبکه اتوتستراسیونال واقعی و در ابعاد بزرگ
مربوط به شهرهای مشهد و تهران می‌شود. مورد بررسی قرار
می‌گیرد. منابع مقدارهای پایان‌های روشنگری، مقدار تابع هدف و
همچنین زمان اجرای برنامه‌های است.

5- تیمارهای مشترک برای مشخصات سطله
الف - جواب اولیه
به منظور انتخاب جواب اولیه، گره‌های کلیدی به ترتیب
کاهش حداکثر خدمت‌های طرفدار نشده و سپس به تعداد
پایان‌های مورد نظر گره‌های ایندای فهرست مدل‌کردن انتخاب
پایان‌های می‌شود.

ب - تولید فرآیند مسئله
نقشه صوتی به صورت تصادفی انتخاب می‌شود. به‌دنبال
ترتیب که، یک گره به طور تصادفی از میان گره‌های جواب

جدول 2- تعداد مراحل تغییر دما (n) بر حسب مقدار مختلف

<table>
<thead>
<tr>
<th>n</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>390</td>
<td>0/99</td>
</tr>
<tr>
<td>78</td>
<td>0/95</td>
</tr>
<tr>
<td>38</td>
<td>0/99</td>
</tr>
<tr>
<td>24</td>
<td>0/85</td>
</tr>
<tr>
<td>18</td>
<td>0/8</td>
</tr>
<tr>
<td>11</td>
<td>0/75</td>
</tr>
<tr>
<td>8</td>
<td>0/6</td>
</tr>
<tr>
<td>6</td>
<td>0/5</td>
</tr>
</tbody>
</table>

123

پاداری می‌شود که زمان اجرای GAMS

под ۲ ساعت

انتقال شده است و به همین دلیل در اغلب موارد مقدار تابع HGF هدف از مقدار تابع HGF کمتر است. لذا از نظر SA بهترین می‌کند.

دقت جواب هر برنامه می‌تواند تابع به‌طوری‌ای در این SA ۴۸۶ دیجیتال است.

(هر دو برنامه توسط ۱۴۸ جواب شده است)

با توجه به نتایج ارائه شده در جدول (۳)، مجموع زمان

۱۵۶۸۰ ثانیه است. کل زمان اجرای SA (برای ۲۱ حالت) برابر ۱۴۶۲۶ ثانیه است.

برای یکی از مداخله‌های SA، مقدار هدف به‌طور متوسط زمان اجرای SA می‌باشد.

مقابله قابل‌توجهی از SA به هدف کمتر است. نتیجه مشابهی را به دست می‌دهد.

این در شرایطی هست که نتایج SA تابع هدف به‌طور متوسط ۵۲ دستاک تابع SA کمتر است. بنابراین

حمله به این مقدمات در آزمایش GAMS

در محدوده ۶۸ تا ۲۱ پارامتر اختلالی بین مقدار تابع

هفته و جواب دارد و اخلاق تابع هدف و GAMS هفته برحس افزایش

۱۶ دستاک تابع هدف حاصل از

جواب بهینه بسیار نزدیک است.

نتایج حاصل از حمل مقدار GAMS

با ۲۰ گره کاندید توسط روش‌های IE و SA گرفته و سپس کاهش بیشتری به دست می‌آید. لازم به ذکر است که برای

کنترل، برنامه را SA می‌کنند و ۱۰۰۰ گره نکرح در هر دو نیز اجرا

شده. در این دو حالت، زمان اجرا به‌طوری‌ای در ۲/۵ و ۲/۴ ترافیک

وی طرفی بهترین می‌باشد.

در جدول (۳) نتایج حاصل از حمل مقدار GAMS

با پایه مشاهده می‌شود که SA و در

GAMS گرفته شده است. اخلاق تابع هدف دو روش

در سه پایه مشاهده می‌شود که SA

۱۵۰۰ حالت یکی SA کمتر است. مقایسه Zaman

برای سرعتی از روایت SA اجرای

در GAMS نتایج مشابه می‌باشد.

برای اثبات این مقدار پارامتر مربوط به تعادل تخریب‌ها در هر دما (L)

که مقدار آن وابسته به ابعاد سلسله است تغییر نمی‌کند. بنابراین با

پارامتر از روی سنج و خطا استفاده می‌کند برنامه

مقدار مختلف، به‌طور همزمان مقدار می‌شود. به طور معمول با

سنس خاص نتایج مقداری می‌شود. به‌طور معمول به دست می‌آید، ولی در اینجا

به ظوری تشریح چگونگی تغییرات تابع هدف براساس تغییرات

تعادل تخریب در هر دما، پارامتر مذکور در دانسته و می‌باید تغییر

وی طرفی با پایه این پارامتر کم است. جواب از جواب بهینه فاصله

دارد. با افزایش تعادل تخریب‌ها در هر دم اکنون کنترل

آزادی‌زایی می‌باشد و تابع هدف بهره‌برداری می‌باشد.

در GAMS این پارامتر با ۳۰ گره کاندید ارائه شده

است. براساس نتایج سیع سخت و مقدار ۸۰ سیع پارامتر

مورد نظر اثبات شده است. پایه در دما ۲۸ گره انجام

گرفته و سپس داکاه تغییر می‌باشد. لازم به ذکر است که برای

کنترل، برنامه را SA می‌کنند و ۱۰۰۰ گره نکرح در هر دو نیز اجرا

شده. در این دو حالت، زمان اجرا به‌طوری‌ای در ۲/۵ و ۲/۴ ترافیک

وی طرفی بهترین می‌باشد.

Downloaded from jcimejut.ir at 9:41 IRST on Sunday January 12th 2020
شکل ۳- منحنی تغییرات مقدار تابع هدف بر حسب تغییرات تعداد تکرار در هر دما (تعداد گروه‌های کاندید برای ۳۰ و ضریب کاهش دما مساوی ۰/۸۵ است).
جدول 3- مقایسه نتایج برنامه‌های GAMS و SA برای شبکه مشهد با 30 گره کاندید

<table>
<thead>
<tr>
<th>درصد اختلاف مناسب مقادیر تابع هدف</th>
<th>زمان اجرای (ثانیه) SA</th>
<th>تابع هدف</th>
<th>زمان اجرای (ثانیه) GAMS</th>
<th>تعداد پایانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41888</td>
<td>42</td>
<td>41888</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3317</td>
<td>3</td>
<td>3317</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4524</td>
<td>3</td>
<td>4524</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5772</td>
<td>5</td>
<td>5772</td>
<td></td>
</tr>
<tr>
<td>2/9</td>
<td>4126</td>
<td>7</td>
<td>4126</td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>8253</td>
<td>8</td>
<td>8253</td>
<td></td>
</tr>
<tr>
<td>0/8</td>
<td>8949</td>
<td>9</td>
<td>8949</td>
<td></td>
</tr>
<tr>
<td>0/9</td>
<td>10359</td>
<td>12</td>
<td>10359</td>
<td></td>
</tr>
<tr>
<td>1/9</td>
<td>10792</td>
<td>13</td>
<td>10792</td>
<td></td>
</tr>
<tr>
<td>1/10</td>
<td>11643</td>
<td>14</td>
<td>11643</td>
<td></td>
</tr>
<tr>
<td>1/11</td>
<td>100</td>
<td>15</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1/15</td>
<td>114381</td>
<td>15</td>
<td>114381</td>
<td></td>
</tr>
<tr>
<td>1/15</td>
<td>115781</td>
<td>16</td>
<td>115781</td>
<td></td>
</tr>
<tr>
<td>1/15</td>
<td>119871</td>
<td>17</td>
<td>119871</td>
<td></td>
</tr>
<tr>
<td>1/15</td>
<td>121921</td>
<td>18</td>
<td>121921</td>
<td></td>
</tr>
<tr>
<td>1/12</td>
<td>133989</td>
<td>19</td>
<td>133989</td>
<td></td>
</tr>
<tr>
<td>1/12</td>
<td>125053</td>
<td>20</td>
<td>125053</td>
<td></td>
</tr>
<tr>
<td>0/6</td>
<td>177809</td>
<td>21</td>
<td>177809</td>
<td></td>
</tr>
<tr>
<td>0/8</td>
<td>1492</td>
<td>22</td>
<td>1492</td>
<td></td>
</tr>
<tr>
<td>0/14</td>
<td>129676</td>
<td>23</td>
<td>129676</td>
<td></td>
</tr>
<tr>
<td>0/15</td>
<td>123138</td>
<td>24</td>
<td>123138</td>
<td></td>
</tr>
<tr>
<td>0/15</td>
<td>123933</td>
<td>24</td>
<td>123933</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>134194</td>
<td>25</td>
<td>134194</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>134542</td>
<td>26</td>
<td>134542</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>132608</td>
<td>27</td>
<td>132608</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>137700</td>
<td>28</td>
<td>137700</td>
<td></td>
</tr>
<tr>
<td>0/2</td>
<td>138787</td>
<td>29</td>
<td>138787</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>139990</td>
<td>30</td>
<td>139990</td>
<td></td>
</tr>
<tr>
<td>جمع</td>
<td>3038</td>
<td>-</td>
<td>13893</td>
<td>-</td>
</tr>
<tr>
<td>متوسط زمان اجرای برای یک پایانه</td>
<td>483</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
جدول ۴- مقایسه زمان اجرای IE، GAMS و SA برای شرکت مشهد با ۲۰ گره کاندید

| زمان اجرایی IE (ثانیه) | زمان اجرایی GAMS (ثانیه) | تعداد پایانه | کاندید است. در آن حالت مدل مکانیابی دارای ۹۹ متغیر صحیح، حدود ۲۵۰۰ متغیر پیوسته و در حدود ۴۳۰۰ محدودیت است. حالت این مسئله توسط GAMS به عنوان یک مسئله واحد (بدون تقسیم بندی شکه) عملکردی تام‌مکان است. به عنوان مثال زمان لازم برای حل این مسئله تا حدود ۳۵ گره کاندید بیش از چهار ثانیه روز و شد. برای اینجا داده‌های به‌هستن مسئله و به مدل کاندیدی، در اولین کامبا انتخاب گیاهی دما برای ۴۷، همه تعداد ۱۰۰ نکار در هر دمای مسئله با سطح مصنوعی در قسمت هر میلی‌سانتی‌متر ۱۰ میلی‌سانتی‌متر از این کناری برخوردار بوده‌اند. تعدادی از گره‌های کاندید که احتمال شمارش ضمیمه است. چنانچه تنها حالت ۸ پایانه که مشترک‌ترين (و تکرار) حالت است در نظر گرفته شود، روش SA حدود ۶۰۰ پایانه سریعتر از GAMS و حدود ۱۰۰ پایانه سریعتر از روش شمارش ضمیمه است. در دیده (۵) تغییرات زمان اجرای سه برنامه مذکور بر اساس افزایش تعداد پایانه‌ها اثرات شدید است.

۲-۶- شبکه اتوبوسانی تهران

دومین شبکه واقع بررسی شده مربوط به شبکه اتوبوسانی تهران با متر می‌شود. این شبکه دارای ۱۶۵۰ گره با ۹۹ گره

<table>
<thead>
<tr>
<th>SA (ثانیه)</th>
<th>IE (ثانیه)</th>
<th>GAMS (ثانیه)</th>
<th>تعداد پایانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

جمع ۶۵۲ ۳۸۱۴۴ ۹۶۸۸۶
جدول 5- نتایج حل مسئله مکانیابی شرکت تهران با ۷۵ گره کاندید با به کارگیری برنامه SA

| زمان اجرای (دقيقة) | تعداد زمان اجرای (دقیقه) | تعداد پایانه | تعداد زمان اجرای (دقیقه) | تعداد پایانه | تعداد
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>477,751</td>
<td>51</td>
<td>53</td>
<td>428,126</td>
<td>26</td>
</tr>
<tr>
<td>96</td>
<td>650,129</td>
<td>52</td>
<td>55</td>
<td>593,76</td>
<td>27</td>
</tr>
<tr>
<td>97</td>
<td>853,891</td>
<td>53</td>
<td>57</td>
<td>674,806</td>
<td>28</td>
</tr>
<tr>
<td>99</td>
<td>1,056,707</td>
<td>54</td>
<td>58</td>
<td>802,876</td>
<td>29</td>
</tr>
<tr>
<td>101</td>
<td>1,258,762</td>
<td>55</td>
<td>60</td>
<td>1,000,057</td>
<td>30</td>
</tr>
<tr>
<td>102</td>
<td>1,451,377</td>
<td>56</td>
<td>62</td>
<td>1,150,999</td>
<td>31</td>
</tr>
<tr>
<td>104</td>
<td>1,654,963</td>
<td>57</td>
<td>63</td>
<td>1,300,991</td>
<td>32</td>
</tr>
<tr>
<td>106</td>
<td>1,857,338</td>
<td>58</td>
<td>65</td>
<td>1,457,111</td>
<td>33</td>
</tr>
<tr>
<td>107</td>
<td>2,059,397</td>
<td>59</td>
<td>67</td>
<td>1,609,961</td>
<td>34</td>
</tr>
<tr>
<td>108</td>
<td>2,253,019</td>
<td>60</td>
<td>68</td>
<td>1,750,192</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>2,457,260</td>
<td>61</td>
<td>69</td>
<td>1,900,112</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>2,657,262</td>
<td>62</td>
<td>67</td>
<td>2,050,100</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>2,857,272</td>
<td>63</td>
<td>65</td>
<td>2,150,991</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>3,057,879</td>
<td>64</td>
<td>63</td>
<td>2,256,096</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>3,257,377</td>
<td>65</td>
<td>61</td>
<td>2,350,099</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>3,457,397</td>
<td>66</td>
<td>59</td>
<td>2,450,099</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>3,659,397</td>
<td>67</td>
<td>57</td>
<td>2,550,099</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>3,857,397</td>
<td>68</td>
<td>55</td>
<td>2,650,099</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>4,057,397</td>
<td>69</td>
<td>53</td>
<td>2,750,099</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>4,257,879</td>
<td>70</td>
<td>51</td>
<td>2,850,099</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>4,457,397</td>
<td>71</td>
<td>49</td>
<td>2,950,099</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>4,659,879</td>
<td>72</td>
<td>47</td>
<td>3,050,099</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>4,857,879</td>
<td>73</td>
<td>45</td>
<td>3,150,099</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>5,059,397</td>
<td>74</td>
<td>43</td>
<td>3,250,099</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>5,259,879</td>
<td>75</td>
<td>41</td>
<td>3,350,099</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>5,459,397</td>
<td>76</td>
<td>39</td>
<td>3,450,099</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>5,659,397</td>
<td>77</td>
<td>37</td>
<td>3,550,099</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>5,857,397</td>
<td>78</td>
<td>35</td>
<td>3,650,099</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>6,057,879</td>
<td>79</td>
<td>33</td>
<td>3,750,099</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>6,257,397</td>
<td>80</td>
<td>31</td>
<td>3,850,099</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>6,459,397</td>
<td>81</td>
<td>29</td>
<td>3,950,099</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>6,659,879</td>
<td>82</td>
<td>27</td>
<td>4,050,099</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>6,857,879</td>
<td>83</td>
<td>25</td>
<td>4,150,099</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>7,059,397</td>
<td>84</td>
<td>23</td>
<td>4,250,099</td>
<td>59</td>
</tr>
<tr>
<td>3</td>
<td>7,259,879</td>
<td>85</td>
<td>21</td>
<td>4,350,099</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>7,459,397</td>
<td>86</td>
<td>19</td>
<td>4,450,099</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>7,659,879</td>
<td>87</td>
<td>17</td>
<td>4,550,099</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>7,857,879</td>
<td>88</td>
<td>15</td>
<td>4,650,099</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>8,059,397</td>
<td>89</td>
<td>13</td>
<td>4,750,099</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>8,259,879</td>
<td>90</td>
<td>11</td>
<td>4,850,099</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>8,459,397</td>
<td>91</td>
<td>9</td>
<td>4,950,099</td>
<td>66</td>
</tr>
<tr>
<td>3</td>
<td>8,659,879</td>
<td>92</td>
<td>7</td>
<td>5,050,099</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>8,857,879</td>
<td>93</td>
<td>5</td>
<td>5,150,099</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>9,059,397</td>
<td>94</td>
<td>3</td>
<td>5,250,099</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>9,259,879</td>
<td>95</td>
<td>1</td>
<td>5,350,099</td>
<td>70</td>
</tr>
</tbody>
</table>

با ملاحظه که برای حل مسئله 20 گره مورد نیاز، کامپیوتر به کار گرفته شد.

انتخاب آنها به دلیل کمبود حذف و 75 گره به عنوان گره‌های کاندید جدید انتخاب شدند. معنی می‌دهد که کاندیدات مسئول برای حل مسئله انتخاب شده برای هر یک از گره‌های کاندید جدید مجددا حل شد.
به همراه زمان اجرای هر حالت ارائه شده است.

- چمندی مطالب

از جمله مسائل مهم در برنامه‌ریزی حمل و نقل، طراحی شبکه‌های اتوبوسرایی است و طراحی ساختار این شبکه گامی مهم در این راستا است. از جمله مواردی که در طراحی ساختار شبکه مذکور قرار می‌گیرد، تغییر محل پایان‌های اتوبوسرایی است. مکان‌هایی با توجه به حجم کلی از نوع مکان‌های تسهیلات اجرا می‌گیرد. این مسئله از جمله مسائل برنامه‌ریزی ترکیبی در مسائل مربوط است و در کشورهای مختلف، این مسئله با استفاده از روش شاخه و کرانه و به کارگیری نرم‌افزار
برابر شبکه شهر مشهد است و حل مسئله مذکور توسط ترم‌افزار GAMS ممکن است. در غیر این صورت به دلیل بالا رفتن زمان اجرای حل مسئله توسط GAMS تقریباً غیرعملی است. این

واژه‌نامه

مراجع

|---|---|---|---|---|---|---|---|---|---|---|---|---|