تحلل عددي انتقال گرمای در کوره‌های پیشگرمی پوشر

احمد ساپورچی و علی حاجیان نژاد
دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان

چکیده: در این مقاله، هدف تعبیه توزیع دماي شمش در کوره پیشگرم از نوع پوشر است. به بررسی این تاکید شده که شما می‌توانید روش صحیح‌هایی مجازی به عنوان یک روش ساده و کارآمد در بررسی انتقال گرمایی تشعشعی در کوره‌های صنعتی مورد استفاده قرار می‌گیرد و معادله‌های حاکم بر آن روش در حالت دو بعدی برای شبیه‌سازی‌های محفل غالب دانش‌بافی می‌شود. با استفاده از روش مذکور، معادله هدایت در شمش به صورت اختلاف محدود به روش عددی و با استفاده از شرایط مرزی مناسب به منظور تعبیه توزیع دما در شمش در شرایط دام حیاتی می‌شود. در نهایت از مدل تهیه شده برای تعبیه توزیع دما استفاده خواهد شد.

از دیدگاه کلیدی، کوره پیشگرم پوشر، اختلاف محدود، روش صحیح‌هایی مجازی

Numerical Analysis of Heat Transfer of Slab in the Pusher-Type Preheat Furnaces

A. Sabouachi and A. Hajian-nejad
Department of Mechanical Engineering, Isfahan University of Technology

Abstract: The objective of this study is to find the temperature distribution of a slab as it moves through the pusher-type preheat furnaces. First, the imaginary planes method (IPM) as a new and applicable method for calculation of radiation heat transfer in industrial furnaces is studied, and the two-dimensional form of this method is used to calculate heat flux and temperature distribution in the furnace enclosure. Next, the equation for the conduction heat transfer in a finite-difference form is developed for slabs and, finally, using IPM to calculate heat flux distribution on slabs surface, temperature distribution is obtained in the steady state condition.

Keywords: Pusher-type preheat furnace, Finite difference, imaginary planes method
به منظور پیش بینی عملکرد، به‌دست آمده کیفیت محصول نهایی، کاهش مصرف و یا سرعت و آفتابی را را در تولید کوره‌های پیشگرفته نود تحقیقات گسترده‌ای انجام می‌کرد که به در کلی این تحقیقات را می‌توان بر حسب هدف نهایی به دسته‌های گوناگون تقسیم‌بندی کرد. از این این روش عملکرد رفع از این این و از این مدل‌های ریاضی تلاقی‌های گسترده‌ای را به خود جابه‌کرد است.

به منظور پیش‌بینی عملکرد، به‌دست آمده کیفیت محصول نهایی، کاهش مصرف و یا سرعت و آفتابی را را در تولید کوره‌های پیشگرفته نود تحقیقات گسترده‌ای انجام می‌کرد که به در کلی این تحقیقات را می‌توان بر حسب هدف نهایی به دسته‌های گوناگون تقسیم‌بندی کرد. از این این روش عملکرد رفع از این این و از این مدل‌های ریاضی تلاقی‌های گسترده‌ای را به خود جابه‌کرد است.

به منظور پیش‌بینی عملکرد، به‌دست آمده کیفیت محصول نهایی، کاهش مصرف و یا سرعت و آفتابی را را در تولید کوره‌های پیشگرفته نود تحقیقات گسترده‌ای انجام می‌کرد که به در کلی این تحقیقات را می‌توان بر حسب هدف نهایی به دسته‌های گوناگون تقسیم‌بندی کرد. از این این روش عملکرد رفع از این این و از این مدل‌های ریاضی تلاقی‌های گسترده‌ای را به خود جابه‌کرد است.

به منظور پیش‌بینی عملکرد، به‌دست آمده کیفیت محصول نهایی، کاهش مصرف و یا سرعت و آفتابی را را در تولید کوره‌های پیشگرفته نود تحقیقات گسترده‌ای انجام می‌کرد که به در کلی این تحقیقات را می‌توان بر حسب هدف نهایی به دسته‌های گوناگون تقسیم‌بندی کرد. از این این روش عملکرد رفع از این این و از این مدل‌های ریاضی تلاقی‌های گسترده‌ای را به خود جابه‌کرد است.

به منظور پیش‌بینی عملکرد، به‌دست آمده کیفیت محصول نهایی، کاهش مصرف و یا سرعت و آفتابی را را در تولید کوره‌های پیشگرفته نود تحقیقات گسترده‌ای انجام می‌کرد که به در کلی این تحقیقات را می‌توان بر حسب هدف نهایی به دسته‌های گوناگون تقسیم‌بندی کرد. از این این روش عملکرد رفع از این این و از این مدل‌های ریاضی تلاقی‌های گسترده‌ای را به خود جابه‌کرد است.

به منظور پیش‌بینی عملکرد، به‌دست آمده کیفیت محصول نهایی، کاهش مصرف و یا سرعت و آفتابی را را در تولید کوره‌های پیشگرفته نود تحقیقات گسترده‌ای انجام می‌کرد که به در کلی این تحقیقات را می‌توان بر حسب هدف نهایی به دسته‌های گوناگون تقسیم‌بندی کرد. از این این روش عملکرد رفع از این این و از این مدل‌های ریاضی تلاقی‌های گسترده‌ای را به خود جابه‌کرد است.

به منظور پیش‌بینی عملکرد، به‌دست آمده کیفیت محصول نهایی، کاهش مصرف و یا سرعت و آفتابی را را در تولید کوره‌های پیشگرفته نود تحقیقات گسترده‌ای انجام می‌کرد که به در کلی این تحقیقات را می‌توان بر حسب هدف نهایی به دسته‌های گوناگون تقسیم‌بندی کرد. از این این روش عملکرد رفع از این این و از این مدل‌های ریاضی تلاقی‌های گسترده‌ای را به خود جابه‌کرد است.
به معنی اجتناب از روش زمان زیاد برای انجام محاسبات پیچیده ریاضی در سیستم هندسی که تابع زمانی و ماهیت تکراری دارد، می‌توان از روش صحنه‌های مجازی [90] بهره‌مندی کرد. این روش به منظور تحلیل انتقال حرارتی استفاده می‌شود. این روش تقریبی از روش ناحیه‌ای است با دقت خوب، زمان بسیار کمتری نیز برای محاسبات نیاز دارد. در این زمینه مرجع [۱۱] با به کارگیری شکل ساده‌ای از این روش بررسی انتقال حرارت در حالت گذرا در یک کوره پیشگرم نورد چند ناحیه‌ای پرداخته است.

در این مقاله به منظور تحلیل تشعشع در یک کوره پیشگرم یک‌روش صفحه‌های مجازی در حالت دو بعدی استفاده شده است. این روش توضیح داده شده است [۱۰۱] در حالت ساده که فقط کوره دامای ثابت داشته باشد (مثل کوره‌هایی که کف آنها مذاب باشد) مسئله بررسی شده است ویلی در کار حایر طرز استفاده از این روش در یک کوره پیشگرم نورد با دامای متغیر سطح شعاعی و کف متغیر

2- روش صحنه‌های مجازی [9]

در این قسمت روش صحنه‌های مجازی به صورت دو بعده در مورد یک کوره مستقل شکل ارائه شده‌است. در این روش مانند روش ناحیه‌ای کوره به سطحها و حجم‌ها همانی است که مورد نظر بوده که مورد نظر یک کوره سطح تشعشعی مجازی از جهت‌ها مجازی بررسی می‌شود (سطح‌های قسمتی از جریان محفظه‌های کوره را تشکیل می‌دهند). ولی روش مجازی در ناحیه محاسبه‌ای از هم جدا می‌شود. در این قسمت (الف) و (ب) از شکل ۱ استفاده شده است.

برای سطح حقيقی و مجازی در مطالعه جدایگانه می‌توان توکش، بکی مطابله‌ای که نرخ خالص شار گرمای سطح
شکل 1- (الف) تصحیب‌ندازی کوره به ناحیه‌ها. (ب) معرفی سطوح داخل هر ناحیه حجمی. (ج) و (د) شار گرمایی تشعشعی بر روی سطوح حمجی کوره

صفحه‌های مجازی در جهت \(l, m \). (ه) شار گرمایی تشعشعی بر روی سطوح حقیقی کوره

در معادله‌های (8) و (9)، عبارت‌های بالایی برای سطوح حقیقی و عبارت‌های پایینی برای سطوح مجازی صادقند. اگر توزیع دما و نرخ خالص تشعشعیهای عورتی از صفحه‌های مجازی (حمله \(D_k \) در عبارت \(q_k^{lm} \) معلوم باشد، با استفاده از روشهای مجازی ماتریس‌ها، می‌توان معادله (7) را برای مجسمه‌های شار از قرار خروجی از هر سطح حل کرد. بنابراین

\[
q_{O,k}^{lm} = \sum_{j=1}^{6} b_{k,j}^{lm} D_{j}^{lm} \quad k = 1, \ldots, 6
\]

در معادله (16) \(B_{k,j} \) معکوس ماتریس \(B_{k,j} \) است.

در روش صفحه‌های مجازی، هر ناحیه حجمی فقط با مزه‌های خود در ارتباط دارد. بنابراین، فقط مزه‌های خود را می‌پذیرد. ولی ناحیه حجمی توسط شار گرمایی که مزه‌های مشترک را فاقد می‌کند با هم در ارتباط است. بنابراین، یک تبادل غیر مستقیم بین همه ناحیه‌ها فراهم می‌شود. در قسمت (ج) و

\[
q_{i}^{lm} = \frac{e_k^{lm} E_{b,i}^{lm} + (1 - e_k^{lm}) q_i^{lm}}{1 - e_k^{lm}}
\]

با حذف \(q_{i}^{lm} \) و (5) معادله زیر برای شار از ناحیه‌های خالص بر روی یک سطح حقیقی به دست می‌آید

\[
q_{i}^{lm} = \frac{e_k^{lm}}{1 - e_k^{lm}} (E_{b,i}^{lm} - q_i^{lm})
\]

همچنین با حذف \(q_{i}^{lm} \) و (5) برای یک سطح حقیقی و معادله‌های (1) و (2) برای یک سطح مجازی، دسته معادله‌های زیر حاصل می‌شود

\[
\sum_{j=1}^{m} b_{k,j}^{lm} q_{O,j}^{lm} = D_{k}^{lm} \quad k = 1, \ldots, 6
\]

\[
b_{k,j}^{lm} = \begin{cases}
\delta_{kj} - \frac{(1 - e_k^{lm}) E_{b,j}^{lm}}{A_k^{lm}} & j = k \\
\frac{1}{A_k^{lm}} \left(\delta_{kj} - \frac{(1 - e_k^{lm}) E_{b,j}^{lm}}{A_k^{lm}} \right) & j \neq k
\end{cases}
\]

\[
D_{k}^{lm} = \left[e_k^{lm} E_{b,k}^{lm} + (1 - e_k^{lm}) E_{b,i}^{lm} \phi_k^{lm} \right] / A_k^{lm}
\]

\[
q_{i}^{lm} = \frac{e_k^{lm} E_{b,i}^{lm} + (1 - e_k^{lm}) E_{b,j}^{lm} \phi_k^{lm}}{A_k^{lm}}
\]
2-1- معادله بقای انرژی برای یک ناحیه حجمی

معادله بقای انرژی برای یک ناحیه حجمی به صورت زیر نوشته می‌شود:

\[Q_{comb}^{lm} - \sum_j \sum_k A_j^{lm} B_j^{lm} (T_g^j - T_{s,j}^{lm}) + \sum_k A_k^{lm} q_k^{lm} + \sum_{i=1}^{n} m_i C_i^{lm} \left(T_g^i - T_{ref}^i \right) - \dot{m}_{c,i} C_{p,i}^{lm} \left(T_{g,i}^{lm} - T_{ref,1} \right) = 0 \]

در معادله بالا، \(Q_{comb}^{lm} \) مقدار انرژی آزاد شده در اثر احراق سوخت داخل ناحیه حجمی است. جمله‌های دوم و سوم به چند مقدار انتقال‌های انرژی در اثر انقلال گرمای جابه‌جایی و تست شده‌اند. در جمله آخر نیز بیانگر انرژی محسوس در ناحیه حجمی مورد نظرنمندند.

با دادن \(T_g \), \(T_s \) و \(T_{ref} \) ناحیه حجمی با دادن \(C_p \) و \(m \) در داخل ناحیه، انرژی مورد بهره‌برداری توسط دمای \(T_g \), \(T_s \) و \(T_{ref} \) رسیده است.

\[\dot{Q}_{c,i}^{lm} = q_{c,i}^{lm} - q_{i,1}^{lm} + q_{i,6}^{lm} \]

به طور خلاصه روش تکاری مورد استفاده برای محاسبه توزیع دما و شار گرمای از داخل محافظه‌کننده‌ها را می‌توان با به صورت زیر بیان کرد:

1- توزیع دما اولیه ای در داخل محافظه‌کننده‌ها در نظر گرفته می‌شود.

2- از معادله (12) مقدار شار انرژی گرمایی بر روی صفحه‌های مجازی محاسبه می‌شود.

3- شار انرژی خروجی از هر سطح محاسبه می‌شود.

4- تنش محاسبه می‌شود.

5- از حالت محاسبه می‌شود.

به طور جهتی توزیع دما در داخل محافظه‌کننده‌ها با کار مورد نظر رفتگر می‌شود.

2-1- معادله بقای انرژی برای یک سطح حفیظی

برای یک سطح داخل دیواره‌کردن ناحیه محاسبه می‌شود.

\[h_k^{lm} (T_g^k - T_{s,k}^{lm}) - U_k^{lm} (T_{g,k}^{lm} - T_a) = 0 \]

در این معادله \(U_k^{lm} \) ضریب انتقال گرمایی کلی دیواره و \(T_a \) به ترتیب دمای هوا به محتویات دمای سطح مرود بررسید.

استقلال سال 200 شماره 2 اسبند 1380
۳- شبیه‌سازی کوره و فرایند مورد استفاده

همان طور که در دایم، مکانیزم‌های مختلف گرمایه داخل کوره شامل تشعشع، جابجایی و هدایت به همراه واکنش‌های شیمیایی ناشی از احتراق سوخت است که بررسی درجه جابجایی این عموماً کار پیوستگی و شاید ناممکن باشد. بنابراین، بر حسب اهداف اصلی تحقیق، استفاده از فرضیات ساده‌تر و اجتناب نابی‌خواه بود چرا که در عین صادقیت مسئله می‌توان به نتایج مفیدی نزد دست یافته‌ایم. بنابراین ساده‌ترین شکل (۲) که یک کورهٔ پیشگیر از نوع یوشر به نام‌های گرمایی را نشان می‌دهد و با توجه به نحوه هرکت شمش و اصول کلی حاکم بر این نوع کوره‌ها می‌توان از فرضیات زیر برای شبیه‌سازی ریاضی مسئله استفاده کرد.

۴- فرضیات

در این برسی بر اساس مشخصات تحقیق، نتایج کاربرد روش

صححه‌ای مجزای تحلیل انتقال گرمایه در کوره‌های پیشگیر، محاسبات فقط برای یک محیط مستقل، شکل (۲) که مدلی از قسمت فوتنیسی‌ایکا از نواحی گرمایشی یک کوره شکل (۲) است، انجام می‌شود.

۴- مطالعه شبیه‌سازی

اندازه‌ای اولیه شمش در ورود به کوره است و مجموع شار گرمایی مربوط‌نشده در جابجایی روی سطح شمش است. به دلیل اینکه گرمایه عموماً در دماهای بالا کار می‌کند، بنابراین تغییرات دما شمش در طول کوره و زیاد است در نتیجه ضریب انتقال گرمایه‌های بیشتر به صورت بازگشت دمایی شمش در نظر گرفته شده است [۱۸]. بنابراین مطالعات دیفرانسیال از نوع

۶- دماهایی به دست آمده با مقدارهای قابل مقایسه ملایم‌ترین، اگر

اختلاف آنها از مقدار مجاز (در اینجا از دقت ۱/۰۰۰)

کلیه استفاده شده است) کمتر بوده حماماً شده است

در غیر این صورت مراحل قبلی از مرحله دوم به بعد

تکرار می‌شود.

۳- ۲- معادله هدایت در شمش

برای بررسی بهتر، شکل عمومی کوره را به صورت شکل (۲) در نظر بگیریم. در این شکل تمامی جایی که یک مکانیستیلی نشان داده شده است. شکل شمش‌ها در اثر باراد شروع به دیگر سطح محفظه و گاز حاصل از احتراق و انتقال گرمایی جابجایی، به طوری که می‌توان انتقال گرمایه خی (۱) است. معادله انتقال گرمایه

\[\rho c_v T \frac{\partial T}{\partial x} = k \frac{\partial^2 T}{\partial y^2}, \quad T = T(x, y) \]

در معادله (۱۶) از یک شعاع محوری گرمایه در جهت حرکت شمش

صارف نظر شده است. از طرفی شرایط مرزی حاکم بر این شکل را می‌توان به صورت زیر بیان کرد:

\[T(0, y) = T_0, \quad \frac{\partial T(0, x)}{\partial y} = 0, \quad k \frac{\partial T(x, L)}{\partial y} = q(x) \]

در معادله بالا، \(T_0 \) دمای اولیه شمش در ورود به کوره است و \(q(x) \) مجموع شار گرمایی مربوط‌نشده در جابجایی روی سطح شمش است. به دلیل اینکه گرمایه عموماً در دماهای بالا کار می‌کند، بنابراین تغییرات دما شمش در طول کوره و زیاد است در نتیجه ضریب انتقال گرمایه‌های بیشتر به صورت بازگشت دمایی شمش در نظر گرفته شده است [۱۸]. بنابراین مطالعات دیفرانسیال از نوع

۰- منظور بررسی رفتار حالت دامی کوره، میدان احتمال و جریان گاز تابی در نظر گرفته می‌شود.

۱- از اثر تنش‌هایی که با آب‌ها منشا و شمش روی آنها

حرکت می‌کند صرف نظر می‌شود.

۲- مطالعه شبیه‌سازی

۳- این عموماً کار پیوستگی و شاید ناممکن باشد. بنابراین، بر حسب اهداف اصلی تحقیق، استفاده از فرضیات ساده‌تر و اجتناب نابی‌خواه بود چرا که در عین صادقیت مسئله می‌توان به نتایج مفیدی نزد دست یافته‌ایم. بنابراین ساده‌ترین شکل (۲) که یک کورهٔ پیشگیر از نوع یوشر به نام‌های گرمایی را نشان می‌دهد و با توجه به نحوه هرکت شمش و اصول کلی حاکم بر این نوع کوره‌ها می‌توان از فرضیات زیر برای شبیه‌سازی ریاضی مسئله استفاده کرد.

۴- فرضیات

در این برسی بر اساس مشخصات تحقیق، نتایج کاربرد روش

صححه‌ای مجزای تحلیل انتقال گرمایه در کوره‌های پیشگیر، محاسبات فقط برای یک محیط مستقل، شکل (۲) که مدلی از قسمت فوتنیسی‌ایکا از نواحی گرمایشی یک کوره شکل (۲) است، انجام می‌شود.

۴- مطالعه شبیه‌سازی

اندازه‌ای اولیه شمش در ورود به کوره است و مجموع شار گرمایی مربوط‌نشده در جابجایی روی سطح شمش است. به دلیل اینکه گرمایه عموماً در دماهای بالا کار می‌کند، بنابراین تغییرات دما شمش در طول کوره و زیاد است در نتیجه ضریب انتقال گرمایه‌های بیشتر به صورت بازگشت دمایی شمش در نظر گرفته شده است [۱۸]. بنابراین مطالعات دیفرانسیال از نوع

۰- منظور بررسی رفتار حالت دامی کوره، میدان احتمال و جریان گاز تابی در نظر گرفته می‌شود.

۱- از اثر تنش‌هایی که با آب‌ها منشا و شمش روی آنها

حرکت می‌کند صرف نظر می‌شود.

۲- مطالعه شبیه‌سازی

۳- این عموماً کار پیوستگی و شاید ناممکن باشد. بنابراین، بر حسب اهداف اصلی تحقیق، استفاده از فرضیات ساده‌تر و اجتناب نابی‌خواه بود چرا که در عین صادقیت مسئله می‌توان به نتایج مفیدی نزد دست یافته‌ایم. بنابراین ساده‌ترین شکل (۲) که یک کورهٔ پیشگیر از نوع یوشر به نام‌های گرمایی را نشان می‌دهد و با توجه به نحوه هرکت شمش و اصول کلی حاکم بر این نوع کوره‌ها می‌توان از فرضیات زیر برای شبیه‌سازی ریاضی مسئله استفاده کرد.

۴- فرضیات

در این برسی بر اساس مشخصات تحقیق، نتایج کاربرد روش

صححه‌ای مجزای تحلیل انتقال گرمایه در کوره‌های پیشگیر، محاسبات فقط برای یک محیط مستقل، شکل (۲) که مدلی از قسمت فوتنیسی‌ایکا از نواحی گرمایشی یک کوره شکل (۲) است، انجام می‌شود.

۴- مطالعه شبیه‌سازی

اندازه‌ای اولیه شمش در ورود به کوره است و مجموع شار گرمایی مربوط‌نشده در جابجایی روی سطح شمش است. به دلیل اینکه گرمایه عموماً در دماهای بالا کار می‌کند، بنابراین تغییرات دما شمش در طول کوره و زیاد است در نتیجه ضریب انتقال گرمایه‌های بیشتر به صورت بازگشت دمایی شمش در نظر گرفته شده است [۱۸]. بنابراین مطالعات دیفرانسیال از نوع

۰- منظور بررسی رفتار حالت دامی کوره، میدان احتمال و جریان گاز تابی در نظر گرفته می‌sh
شکل 2- شکل شماتیک یک کوره پبشگرم پوش امروزی

شکل 3- مدل هندسی قسمت بالایی ناحیه شارژ شمش به کوره (قطع طولی کوره)

(الف) الگوی جریان در کوره

(ب) الگوی احترار در کوره

صفحه تقارن در طول کوره

صفحه تقارن در طول کوره

شکل 4- (الف) الگوی جریان، (ب) الگوی احترار، به صورت کاری از دیب کل گاز ورودی و گرمایی حاصل از احترار سوخت

استقلال، سال ۱۳۸۰، شماره ۲، اسفند
شیبک با الگوهای محدود استفاده می‌شود و در بررسی هدایت در شبکه مورد استفاده یافته بادی دیفرانسیال باشند یا روش عددی همگن شود. بنابراین، شرایط مرزی در مزرع مشترکی در شبکه باید جهت توزیع دمای سطح شبکه که در صفحه‌های دیفرانسیال به دست آمده است، روش صفحه‌ها مجازی از دمای پیش‌بینی استفاده شود. با توجه به این مطلب روش حل را می‌توان در مراحل زیر خلاصه کرد:

1- توزیع دمای اولیه برای سطح شبکه حساس زده می‌شود
2- توزیع روش صفحه‌های مجازی، شار گرمایی روي سطح شمش مشخص می‌شود
3- با استفاده از معادله (20)، توزیع دمای در بعدی در شبکه تعیین می‌شود
4- دمای محاسبه شده در سطح شبکه برای دمای پایین سطح در مرحله اول بلافاصله می‌شود، اگر اختلاف آن‌ها از مقادیر خطای مورد نظر (در این مقاله 0.01 درجه کلوین) کمتر باشد، جواب نهایی مشخص شده است در غیر این صورت با استفاده دوم به بعد بدست آمده در دمایی جدید محاسبه شده تکرار می‌شود.

5- تاثیر به دست آمده از برنامه رایانه‌ای در این قسمت تحلیل برای کوره‌ها و ابعاد هندسی موجود در جدول (1) آراسته شده است. برای انجام محاسبات انتقال گرمای محظوظ که در 10 ناحیه در جهت طولی و 2 ناحیه در جهت عرضی تغییر شده است. در شکل (5) شبکه مورد استفاده در محاسبات و همچنین الگوی جریان گاز و الگوی گرمای حاصل از انتقال مورد استفاده در این شبکه به صورت کسری از مقادیر گرمای ناشده شده است. لازم به ذکر است که به دلیل تقارن شرایط در جهت عرض کوره، نیمی از اطراف کوره در محاسبات وارد خواهد شد.

از آنجا که هدف اصلی این مقاله ارائه روشی برای شبیه‌سازی گرمایی کوره‌ها بوده است بنابراین مقایسه نتایج پاره‌ای و غیر خطی است که برای حل این مسئله از روش کریشنه‌کر (16) استفاده کرده و با استفاده از دمای T، می‌توان معادلات شیب به معادله (16) را خطی کرد. یعنی

\[\theta = \frac{1}{k_R} \int_{T_R}^{T} k(T) \, dT \]

در معادله بالا، \(k_R \) ترمی معادله (16) بر حسب منجر دیده که به این ترتیب 0 نیز از نظر ابعاد شیبی به معادله تواهاش شد. در نتیجه استفاده از معادله (16) در مورد زیر می‌آید

\[V \frac{\partial^2 \theta}{\partial x^2} = \frac{\alpha}{k} \left(\frac{\partial^2 \theta}{\partial y^2} \right) \]

در معادله بالا، \(\alpha \) به دست آمده از سری‌های (1) مربوط به تغییرات در دو جهت (x,y) است. جنبه دیگر مربوط به حین میانه بودن طریق عددی در مرجع [15] باید است.

4- روش کلی بررسی انتقال گرمای در کوره

قبل از بیان روش حل، توجه به این نکته ضروری به نظر می‌رسد که در بررسی کلی مسئله انتقال گرمای در کوره، به ناحیه بایستی از دو شبکه استفاده کرد. یک شبکه حل چیک که تحلیل انتقال گرمایی تجربی کوره مورد استفاده قرار می‌گیرد و دیگری شبکه حل چیک که برای بررسی انتقال گرمایی هدایتی در شبکه مورد نیاز است. در روش، صفحه‌های مجازی از پیک
جدول ۱- ابعاد هندسی و مقدار ورودی برنامه رایانه‌ای

<table>
<thead>
<tr>
<th>متغیر</th>
<th>مقدار عددي و توضيحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول × عرض × ارتفاع (کوره)</td>
<td></td>
</tr>
<tr>
<td>کوره طیبی</td>
<td></td>
</tr>
<tr>
<td>دیب جرمی گاز</td>
<td>دمای هوا و سوخت ورودی</td>
</tr>
<tr>
<td>دمای هوا محیط</td>
<td>حرارت آزاد شده از احتراق</td>
</tr>
<tr>
<td>نوع گاز</td>
<td>ضریب قالبیت ژند گاز</td>
</tr>
<tr>
<td>ضریب صدور دیواره‌های جانی و سقف کوره</td>
<td>ضریب صدور سطح شمش</td>
</tr>
<tr>
<td>ضریب صدور دیواره‌های ورودی و خروجی کوره</td>
<td>ضریب انتقال گرمای کلی دیواره‌های جانی و سقف کوره</td>
</tr>
<tr>
<td>ضریب انتقال گرمای کلی دیواره‌های ورودی و خروجی کوره</td>
<td>ضریب انتقال گرمای جابه جابی سقف، دیواره‌های جابی و کف</td>
</tr>
<tr>
<td>ضریب انتقال گرمای جابه جابی دیواره‌های ورودی و خروجی</td>
<td>گرمای ویژه گاز در فشار ثابت</td>
</tr>
<tr>
<td>ضریب پخش حرارت شمش</td>
<td>سرعت شمش در کوره</td>
</tr>
<tr>
<td>ضخامت شمش</td>
<td></td>
</tr>
</tbody>
</table>

![شکل ۵- مقایسه نتایج روش صحنه‌های مجازی با روش ناحیه‌های [9](الف) توزیع شار گرمای روی کف کوره. (ب) توزیع دما گاز] شکل]

استقلا، سال ۱۳۸۰، شماره ۲، اسفند ۱۳۸۰
شماره گمین از تولیدنی است. همچنین در این شکل تغییرات سطح و ابعاد شکل از طول کریم نشان داده شد است. در محفظه ورودی شیشه کوره، دمای سطح و ابعاد از این کنار است

1- تغییر گمین

در این مقاله به منظور بیان ضریب اجزا استفاده از روش صفحه‌های مجازی در تحلیل اندازه‌گیری در یک کوره واقعی استفاده شده است. این داده‌ها به تغییرات حاصل از این روش با نتایج ارائه‌شده در مرجع [9] برای باز

می‌باشد. البته شکل منحنی تغییرات دمای کوره تا حدود زیادی به واژه‌های اشاره می‌دارد که تغییرات این منحنی‌ها کیفیت می‌باشد. در تغییرات منحنی‌ها در موجب کاهش

کاز جمهوری خاک رژیم قابل قبول است. در شکل (7) تغییرات دمای کاز سقف و دیواره‌های جانی

کوره نشان داده شده است. این شکل نشان می‌دهد که در تغییراتی از چهارپایک بعدی، تغییرات دمای سقف و دیواره‌های کوره تاخیر است. همچنین به نظر می‌رسد که این چهارپایک در طول کوره از تغییراتی که داشت به این تغییرات دمای نشان داده شده است. مطالب این شکل از آن کشورهای حرکت شیشه باعث کاهش میزان گرمای کاز جابه‌جایی شده و تغییرات آن می‌شود.

در شکل (9) نشان داده شده است. مطالعه این شکل نشان می‌دهد که

کاز جمهوری خاک رژیم قابل قبول است. در شکل (7) تغییرات دمای کاز سقف و دیواره‌های جانی

کوره نشان داده شده است. این شکل نشان می‌دهد که در تغییراتی از چهارپایک بعدی، تغییرات دمای سقف و دیواره‌های کوره تاخیر است. همچنین به نظر می‌رسد که این چهارپایک در طول کوره از تغییراتی که داشت به این تغییرات دمای نشان داده شده است. مطالب این شکل از آن کشورهای حرکت شیشه باعث کاهش میزان گرمای کاز جابه‌جایی شده و تغییرات آن می‌شود.

شکل نشان می‌دهد که در قسمتی از کوره که از تغییرات جوابگر دارد
شکل ۶- توزیع دما گاز، سقف و دیواره‌های جنبی کوره

شکل ۷-(الف) توزیع شار گرمای روی سطح شمش در کوره، (ب) توزیع دمای سطح و منفی شمش در طول کوره

استناد: سال ۱۳۸۰، شماره ۲، اسفند
شکل 8- توزیع دمای سطح شمش بر حسب سرعت نگذشته شمشها به کوره

شکل 9- نحوه تغییر دما از مرکز تا سطح شمش در موقعیت‌های مختلف کوره
با توجه به اگرچه عدد مورد استفاده برای تحلیل انقبال گرمای کلی در یک کوره می توان به توانایی‌های آن به طور خلاصه اشاره کرد. این روش عالی برای اینکه قادر است هر نوع از مکانیزم انقبال گرمایی در کوره بررسی کند قادر است اثر متفاوتی نظیر خواص تشعشعی و ترموئیزیکی محیط گرم و کاز حاصل از احترق، میزان تغذیه شمش شده به کوره، شرایط مزری گوناگون، میزان تلفات گرم و اثر عواملی نظیر توزیع میدان جریان گاز و احترق در کوره را مورد بررسی قرار دهد. در پایان می توان گفت که اگرچه در این مقاله از شکل ساده‌ای برای کوره استفاده شد ولی روش بیان توانایی بررسی یک کوره با شکل واقعی را دارد.

کار تحقیقاتی پرده است، نتایج به دست آمده به خوبی این مطلب را تایید می کند.

با توجه به نتایج به دست آمده می توان به فاصله‌های روش صحنه‌هایی مغازی اشاره کرد. اولین بار دیل ماهیت فرمول‌بندی مخصوص، این روش زمان کم برای انجام محاسبات نیاز دارد و سرعت همگرایی آن زیاد است به طوری که در مقایسه‌ی که در مرجع (3) انجام شده است، مدت زمان مورد نیاز کمتر از 0.1 زمان مورد نیاز در روش ناحیه‌ای است. نتایگ بر خلاف سادگی ذاتی که در فرمول‌بندی این روش مشارکت می شود از دقت قابل قبولی برای تحلیل مسائل مهندسی برخوردار است و از سوی دیگر این روش قادر است برای بررسی مسائلی با شکل هندسی پیچیده به کار رود.

واژه تامه

1. zone method
2. imaginary planes method
3. directed flux areas
4. exchange factors
5. weighting factors
6. Kronecher delta
7. continuous-pusher type furnaces
8. skids
9. axial conduction
10. Kirchoff’s method
11. Crank-Nichelson method
12. upwind method

مراجع

15. Hajijian Tazad, A., بررسی انتقال حرارت در شیشه هنگام عبور از کوره پیشگرم نورد، پایان نامه کارشناسی ارشد دانشگاه صنعتی اصفهان، زمستان 1376