بررسی تجربی جریان روی یک بال با ضربیت منظوری پایین

محمدرضا سلطانی و علیرضا داوری
دانشکده مهندسی مکانیک دانشگاه صنعتی شریف

چکیده: رفتار ایروداری بای کالری را یک چهارم برحسب تندی در تونل باد زیرسوم دانشکده مهندسی مکانیک دانشگاه صنعتی شریف مورد بررسی قرار گرفته است. این بررسی شامل تعیین پرتویی گردابه روي بال و محاسبه شدت اغتشاش در لایه مزری روی بال در زاویای حمله 10 تا 35 درجه و در محدوده اعداد رونولدز 3.500 تا 1.0×10^5 بوده است. آزمایشات روی دو مدل بای بال کامل و دیگری نیمه بال ملثی انجام گرفته است. در این سرو آزمایشات، میدان های مزایک دنی از لایه بال بالی ملثی با لوله پیوست و سیم داغ بر پرسری شده و شدت اغتشاش در لایه مرزی نیز هب دست آمده است. نتایج حاصله وجه یک جفت گردابه نسبتا قوی را نشان می دهد که شدت اغتشاش در ناحیه درون این گردابه با بسیار زیاد بوده و سرعت دواری نیز در این توانای بیشتر از سایر نقاط است. در نتیجه این افزایش سرعت، فشار در مرکز گردابه به شدت افزایش یافته که این یاده از مرجع به افزایش حمله خواهد شد.

واژگان کلیدی: گردابه، حمله، شدت اغتشاش، بال ملثی، انفجار گردابه، هسته گردابه

An Experimental Investigation of the Flowfield over a Low Aspect Ratio Wing

M. R. Soltani and A. R. Davari
Department of Aerospace Engineering, Sharif University of Technology

Abstract: A wind tunnel investigation was performed to study the flow field over a 70° swept sharp edge delta wing model at high angles of attack. The experiments were conducted in the subsonic wind tunnel at the Department of Mechanical Engineering, Sharif University of Technology. Velocity profiles have been measured using a special pitot tube and hot wire anemometer at angles of attacks of 10 to 35 degrees and Reynolds numbers between 1.5 to 5×10^5 over half and a full model. From these studies the shape of the leading edge vortices as well as the turbulence intensity inside the vortices were obtained and analyzed. This study revealed a region of increased velocity highly turbulent flow at the vortex core. As a result, the lift will increase nonlinearly with angle of attack.

Keywords: Leading edge vortex, Turbulence Intensity, Delta Wing, Vortex Bursting, Vortex core
نمونه 1- فهرست علائم

<table>
<thead>
<tr>
<th>علامة</th>
<th>وحدة</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>cm</td>
</tr>
<tr>
<td>α</td>
<td>cm</td>
</tr>
<tr>
<td>μ</td>
<td>S</td>
</tr>
<tr>
<td>υ</td>
<td>(لولت)</td>
</tr>
<tr>
<td>p</td>
<td>m/sec</td>
</tr>
<tr>
<td>σ</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

cm = طول دهن بال (درجه)
A = زاویه سپاری بال (درجه)
α = زاویه حمله بال (درجه)
μ = لزجت حریان آزاد
υ = سرعت حریان آزاد
p = تغییر برندهای سطحی
σ = عدد رنگ‌های جراح

درصد شدت اغتشاش:

\[Re = \frac{pV_{\mu}c}{\mu} \]

۱- مقدمه

با پیشرفت دانش آزمایشگاهی و توانایی بشر در دستیابی به سرعت عامل محور سیستم بالایی و بالینی، پایین‌ترین میزان سطح حمله جراحی مورد انتظار برای کاهش بیشتری موجب صورت به پایین‌ترین میزان سطح حمله جراحی مایع می‌شود. این اطلاعات در تأیید صحت نتایج استفاده شده است. از مهم‌ترین مزایای این بالا استفاده به کاهش پاس موجب، امکان تغییر ناگهانی در درمان و تعداد قابلیت برقراری ماهور در زوالی حمله بالا به چهار حمله بالا با استفاده از بالا جراح و ماهور با دو حمله بالا استفاده می‌شود. این پایین‌ترین سطح حمله بالایی به موفقیت آن جلوگیری نمود، منجر به سقوط هواپیما خواهد شد.

۲- بررسی میدان جراحی روی بال مثلاً

بالهای مثلاً که عمداً به صورت یک صفحه تحت هستند، در زوالی حمله کمتر از حدود ۵ به رنگ فراوری مشابه بالهای معمولی از خود نشان میدهند. ولی در زوالی حمله بالا بالایی، یکی از مهم‌ترین نتایج حمله بالا روی آنها تفاوت جسم‌گیری دارد. قسمت عمده جراحی روی بالهای مثلاً شامل در گردیده است که با افزایش زاویه حمله قدرت آنها بیشتر شده و پژوهش می‌شود. شکل (۱) ساختار این گردایه‌ها را نشان می‌دهد.

بررسی‌ها (۲) نشان می‌دهد که زاویه حمله اندازه‌گیری بین بالهای یکدیگر به زاویه سپاری آنها می‌توان تا ۳۵ درجه با بالای افزایش داد بودن آنکه باله بالا و سپاری شد. این خاصیت در همایش‌های مثلاً که تیز بیشتر قابلیت مصرف بالا دارند، به‌عنوان حانیز اهمیت است. با افزایش زاویه حمله، ان گردایه‌ها می‌توانند در حال حاضر بهتر تحقیقات و مطالعات انجام شده روز

۱۸۲

استقبال، سال ۲۰، شماره ۲، فروردین ۱۳۸۰
شکل ۲- گرادیان اصلی و ثانویه روی بال

شکل ۳- اثر گرادیان اصلی و ثانویه بر توزیع فشار روی بال

پایه‌ای در جهان روي این بالها بر توزعه روشهای نیمه تجربی برای پیش‌بینی پیوست در حالت نابایا و کنترل پدیده حركت نوسانی بال متمرکز شده است.

3- مشخصات مدل و تجهیزات آزمایش

این آزمایشات در تونل بند زیر شرط انجام گرفته است. این تونل از نوع دومه و دارای سطح مقطع ۴۵×۵۵ سانتی‌متر است. به منظور افزایش پکتکستی جریان در مقطع کاری چند دیفرون برای این تونل طراحی و ساخته شده که با نصب آنها شدت سرعت قابل دسترسی از ۷۰ به ۱۳۵ متر بر ثانیه افزایش یافته است. شکل (۴) نشان می‌دهد که اضافه کردن دیفرون‌ریز علاوه بر افزایش حداکثر سرعت قابل دسترسی در تونل، سطح اغتشاش

بلند شده و یک ناحیه کم فشار از ناحیه سطح به وجود می‌آورند. در این شرایط مطالعه شکل (۲) یک جفت گرادیان کوچک تریکی بال و زیر گرادیان اصلی تشکیل می‌دهد که به آن گرادیان ثانویه می‌گویند. شکل (۳) مهم‌ترین یک از گرادیان‌های اولیه و همانند با در توزیع فشار روی بال نشان می‌دهد. افزایش حمله و میدان به شدت تغییر ناگهانی در ساختار گرادیان‌های همزمان تأثیر خوش می‌آید که اصطلاحاً به آن انفجار می‌گویند [۴]. هر چند این پدیده باعث از بین رفتن بخش عمده‌ای از نیروی برا می‌شود. ولی باید توجه داشت که بلافاصله پس از انفجار گرادیان‌ها با افزایش زاویه حمله، نیروی برا تشکیل نمی‌شود بلکه بند پایه نهایی حمله کرده است. افزایش نرخ تغییرات آن با زاویه حمله کم می‌شود. برای بالایی مثلاً با زاویه یکسرایی ۷۰ درجه نقطه انفجار گرادیان‌ها حدوداً در زاویه حمله ۳۰ درجه به لبه فرار می‌رسد ولی وامانگی بال در حالت

۹۵ درجه اتفاق می‌افتد [۴].

آزمایشات نشان می‌دهند که برای بالا به بازی پیگرایی بیشتر از ۷۵ درجه انفجار گرادیان‌ها به صورت مفهوم انفجار نیم‌افتد. در نتیجه توزیع فشار روی بال در دو طرف میان نبوده و با برخی از پارامتری رون بی‌ستایی تغییر می‌کند. این پدیده بسب ایجاد نوسان هواپیما حول محور طولی می‌شود. هر چند نتایج تحقیقات قراردادی در خصوص گرادیان‌ها و مکانیزم تشکیل آنها انجام شده ولی هنوز دلیل قطعی کننده برای توجه رفتن این نوع بالاها ارائه نشده است. مهم‌ترین بخش تحقیقات
را نیز در مقیاس کاری کاهش داده است. آزمایشات به کمک یک لوله بی‌فوت به فشار ۰/۹ میلی‌متر و نیز دستگاه سیم داغ با پروب یک مؤلفه‌ای انجام گرفته و اطلاعات حاصله از توده اخذ و بردارش اطلاعات A/D وارد رایانه شده‌اند.

به منظور سرعت و سهولت در انجام فسوم‌های مختلف آزمایش از دو مدل یکی مدل نیمه بالا مثلثی و دیگری مدل بال کامل استفاده شده است. از آنجا که بیشتر تحفقات انجام شده روی بالهای با زاویه بیشتر ۲۰ درجه صورت گرفته است، زاویه پسگرای ۸ درجه در مدل‌های تجربی به دست آمده است. این مدل‌ها دارای یک بال عالیده‌ای و توانایی بازی در ارتفاع خروجی بالا را نبوده و بزرگتر از دیگر مدل‌ها هستند. در مدل آنومیومی مدل ۳-پرسی مشخصات این توانایی بال‌های عالیده‌ای و یک مدل به دوباره تولید می‌شوند. تفاوت عمده این دو عامل در شکل لبه حمله آهسته.

۴- کالیپرس ایون‌های تجهیزات

دستگاه سیم داغ مورد استفاده در این آزمایشات به نوع CTA بوده و براساس اینکه شرکت سیم بر اثر عبور جریان از روزه نیز آن عمل می‌کند. بر اثر نخکش شدن سیم مقاومت در مدار الکترونیکی آن تغییر کرده و در نتیجه ولتاژ خروجی از دستگاه نیز تغییر می‌کند. بنابراین برای استفاده از سیم داغ باید در استفاده از سیم داغ برای تنظیم دقیق موقعیت پروب پر و باید بی‌فوت به یک پنانتوپول‌سیمی، مشابه شده و ولتاژ راتیو بالا.
ارتباط بین ولتاژ و سرعت برای هر پرود تغییر شود.
بررسی سرعت CTA به صورت یک چند جمله‌ای درجه چهارم برحسب ولتاژ قابل پیش‌بینی است. شکل (7) تغییرات ولتاژ Xروجی از سیم را با سرعت تولید می‌دهد. به منظور افزایش دقت، آزمایشات در دو حالت آزمایش و سپس که سرعت انجام گرفته و نتایج حاصله با استفاده از یک منحنی درجه چهارم پراش داده شده است. شکل (7) نشان می‌دهد که منحنی مذکور به‌خوبی تغییرات ولتاژ را با سرعت بیشتر بیشتری است. با استفاده از این منحنی می‌توان ارتباط بین سرعت ولتاژ را به‌صورت زیر نوشت:

\[V = -3.08 + 1.2940^2 - 2.870^4 \]

که در آن V سرعت جریان برحسب سیم بر سر تابیه و ولتاژ Xروجی برحسب ولت است. پتانسیومتر نیز مانند یک روتومتر بر پایه تغییر مقاومت به دلیل تغییر طول در مدار عمل می‌کند.
برای تعیین دقیق موقعیت عمق بررسی در تونل با استفاده از پتانسیومتر لازم است برای ولتاژ Xروجی براساس شکل 1 استفاده کرد.

5- بررسی نتایج

شکل‌های (7-α و (7-β) خطوط هم سرعت را در

شکل ۶- (α) مدل نیمه بال مثنی و (β) مدل بال کامل
انفجار ذرات دود در هسته گردابه به دلیل سرعت زیاد جریان به اطراف منحرف شده و در نتیجه ناحیه درون هسته به صورت یک نقطه سیاه در شکل (8-ج) مشخص است. در شکل (9-الف) گردابه‌های حاصل از آزمایشات کنترلی در زاویه حمله 30 درجه که به کمک لوله پیشتر معمول و روی مدل شماره یک پیدا نشان داده شده است. شکل (9-ب) نیز نتایج همین آزمایش را یک بار مشاهده که به کمک لوله پیشتر و سرعت سنج لیزری به دست آمده [5] نشان می‌دهد. هر دو شکل نشان می‌دهند که

شکل 8-پ - خطوط هم فشار در میدان جریان بر روی بال در زاویه حمله 35 درجه

شکل 8-الف - خطوط هم فشار در میدان جریان بر روی بال در زاویه حمله 30 درجه

شکل 8-د - آشفتگی‌سازی گردابه بعد از انفجار [5]

شکل 8-ج - آشفتگی‌سازی گردابه قبل از انفجار [5]

میدان جریان روی مدل اول در زاویای حمله 30 و 35 درجه نشان می‌دهد. این خطوط هم فشار و موقعیت گردابه را کاملاً مشخص می‌کند. در شکل‌های (8-ج) و (9-د) گردابه روی یک بال با سیگاری 70 درجه به کمک دود و لیزر آشفتگی شده است [5]. هر دو روی انفجار گردابه را در زاویه حمله 35 درجه تایید می‌کنند. در این زاویه حمله، ناحیه درون گردابه باز شده و فشار درون هسته که در زاویای حمله پایینتر کم می‌شود در این حالت تقریباً به فشار خارج هسته نزدیک شده و گردابه عملکرد بالای پیشرفت می‌شود. لازم به ذکر کرده که قبل از

استقلال سال 2003، شماره 2، اسفند 1380
با نزدیک شدن به لبه حمله، قطر گردابه کم می‌شود و لی افجار فقط در نزدیکی لبه فرار رخ می‌دهد.

شکل‌های (10-الف) و (10-ب) پروفیل‌های سرعت ناب‌زمان را در دو موقعیت مختلف بر روی بال یکی در 0/75 وتر و دیگری در لبه فرار که با استفاده از سیم داغ به دست آمده نشان می‌دهند. در این شکل‌ها پروفیل سرعت در همسط گردابه با پروفیل سرعت در وسط بال که گردابه را در اطری شدار، مقایسه شده است.

رفتار نوسانی پروفیل در هسته به دلیل تاپاپاری گردابه است. این رفتار نوسانی در لبه فرار بسیار شدیدتر است و به نظر می‌رسد که گردابه در این نقطه منفجر شده است. همان طور که قبل اشاره شد، این بالاها بالا یا پس از افجار گردابه دچار وامادگی نمی‌شوند. این رفتار گردابها به طور قابل توجهی قابلیت مانور هواپیما را در زاویای حمله بالا افزایش می‌دهد.

شکل 9-الف - توزیع گردابه بر روی بال در آزمایشات کنونی

شکل 9-ب - توزیع گردابه بر روی بال در آزمایشات مرجع [5]

شکل 10-الف - پروفیل سرعت لحظه‌ای در لبه فرار

شکل 10-ب - پروفیل سرعت لحظه‌ای در لبه فرار
شکل (11) پروفیل سرعت متوسط در لایه مرزی را نشان می‌دهد که توسط سیم اندازه‌گیری شده است. در این شکل پروفیل سرعت در داخل گردبافه و خارج آن با هم مقایسه شده‌اند. در هر دو شکل (10) و (11) دوران‌های با سرعت بالا قابل توجه است. این نتایج نشان می‌دهد که اتلاف 20 میلیمتری سطح به وجود آمده که همان گردبافه ثانویه است. ناحیه‌های مناسب که افزایش سرعت مشاهده در آن می‌باشد می‌شود. گردبافه اصلی روز بال است. البته یک دایره تا گردبافه بالا افزایش پیوسته در موضعی ناحیه افزایش سرعت در پروفیل‌ها به دلیل تاپابار داری گردبافه و نوسانات آن به روزی بال است.

شکل (12) شدت افتتخاض را در هر دور ناحیه داخل و خارج گردبافه نشان می‌دهد. مقایسه توزیع شدت افتتخاض در دو ارتقاء مختلف از سطح نیز منحنی پروفیل‌های سرعت، و حکم گردبافه‌های اصلی و ثانویه را تأیید می‌کند. این مقایسه نشان می‌دهد که در ناحیه درون گردبافه افتتخاض مشاهده شده است. بررسی نتایج نشان می‌دهد که حداکثر شدت افتتخاض در داخل گردبافه 1/15 و در خارج آن حدود 1/40 دارد است و بیشترین شدت به سوی افزایش زاویه حمله شدت ان افتتخاضات در درون گردبافه بیشتر شود.

شکل‌های (13-16) نوسانات سرعت را به ترتیب در داخل و خارج گردبافه نشان می‌دهند. برای تعیین نوسانات سرعت به کمک سیم داغ، این نوسانات به حباب و بی‌نظیر و بی‌طور بی‌نظیر در نقاط برای مورد نظر ثبت شده است. مطابق نتایج به دست آمده در ناحیه درون گردبافه در شکل (13-16) نوسانات شدید در سرعت مشاهده می‌شود که به دلیل تاپاباری افزایش در سرعت در ناحیه خارج گردبافه نوسانات سرعت در حد محدود و قابل توجه مانند نوسانات شکل (5) می‌باشد. این نوسانات عدم‌تنول و نیز سطح افتتخاض جریان عدم هماهنگی در جریان فن تویل و نیز سطح افتتخاض جریان

شکل 12- توزیع افتتخاض در لایه مرزی در زاویه حمله 20 درجه

شکل 11- پروفیل سرعت متوسط در لایه مرزی را نشان می‌دهد.
در مقطع کاری است. متوسط سرعت تونل در این شرایط تقریباً بر اساس سرعت چرخش آزاد است.

شکل‌های (14) و (15) موقعیت مرکز گردابه در مقاطع مختلف عرضی در روز بالا نشان می‌دهد. در یک زاویه حرکت ثابت با یافته‌پذیری موقعیت طولی گردابه‌ها بیشتر شده و گردابه به سمت لبه داخلی بال حرکت می‌کند. به نظر می‌رسد که اختلاف بین نتایج این آزمایش و سایر آزمایشات (5و6) به دلیل برای توده عدم ریونلوند، شکل متفاوتی لبه حمله بال مورد استفاده در این آزمایش‌ها و بال مراجعه (5و6) شدت اغتشاش تونل سطح مقطع تونل، زیری سطح بال، ابعاد منفی‌پذیر بر روی اندازه‌گیری و پارامترهای معطوب دیگری بوده که در تعیین موقعیت گردابه روی بال مورد انتخاب. شکل (15) نشان می‌دهد که حتی بین نتایج دو مرحله مورد استفاده هم اختلاف فاقدی به جمله می‌خرد و لی نتایج کنونی و مرجع (7) که عدد ریونلوند آنها به هم تودیکتر است، نتایج بهتری با هم دارد.

- نتیجه‌گیری

بررسی تجربی کنونی نشان می‌دهد که گردابه‌های بر روی بال بالای با زاویه پیکرگرای بالا نابع عوامل متعددی از
روی ۱۵ - موقعیت مرکز گردابه در مقطع عرضی مختلف در زاوهای حمله ۳۰ درجه برای مدل اول

واژه‌نامه

1. sweep
2. wing rocking
3. primary vortex
4. secondary vortex
5. burst
6. seven hole probe (SHP)
7. laser-doppler velocimeter (LDV)

مراجع