An Experimental Investigation of the Flowfield over a Low Aspect Ratio Wing

M. R. Soltani and A. R. Davari
Department of Aerospace Engineering, Sharif University of Technology

Abstract: A wind tunnel investigation was performed to study the flow field over a 70° swept sharpened edge delta wing model at high angles of attack. The experiments were conducted in the subsonic wind tunnel at the Department of Mechanical Engineering, Sharif University of Technology. Velocity profiles have been measured using a special pitot tube and hot wire anemometer at angles of attacks of 10 to 35 degrees and Reynolds numbers between 1.5 to 5 x 10^6 over half and a full model. From these studies the shape of the leading edge vortices as well as the turbulence intensity inside the vortices were obtained and analyzed. This study revealed a region of increased velocity highly turbulent flow at the vortex core. As a result, the lift will increase nonlinearly with angle of attack.

Keywords: Leading edge vortex, Turbulence Intensity, Delta Wing, Vortex Bursting, Vortex core
به همه مثلث شامل توسعت روش‌های نیمه تجربی برای پیش بینی

1. مقدمه
به پیشرفت دانتس آیرودینامیک و توابنی بحر در دستیابی به
سرعت‌های مافوق صوت، بالهایی با زاویه پس‌گرایی بالا و ضرب

2. بررسی میدان جریان روی بال مثلثی
به همه مثلثی که معمولاً به صورت یک صفحه تحت همستند

182

3 مشخصات مدل و تجربه‌ای آزمایش

این آزمایشات در تونل باد زبرصورت دانشکده مهندسی مکانیک دانشگاه صنعتی اصفهان انجام گرفته است. این تونل از نوع دمده و دارای سطح مقطع 43 غیرمساح ساخته شده است. به منظور افزایش پکتختی جریان در مقطع کاری جنده دیفرون باین تونل طراحی و ساخته شده که با نصب آنها حداکثر سرعت قابل دسترسی از 30 به 50 متر بر ثانیه افزایش یافته است. شکل 1 نشان می‌دهد که اضافه کردن دیفرون عالی‌های بر افزایش حداکثر سرعت قابل دسترسی در تونل، سطح اغتشاش

بلند شده و یک ناحیه کم فشار را تزیفک سطح به وجدود می‌آورد. در این شرایط مطالب شکل 2 یک جفت گردابه کوچک تزیفک بال و زیر گردابه‌ای اصلی به وجود می‌آید که به آن گردابه ناشی از گردابه‌های اولیه و مانگرات را در توزیع فشار روي بال نشان می‌دهد. اگر زاویه حمله از حد خاصی بیشتر شود، یک تغییر ناگهانی در ساختار گردابه‌ها به وجود می‌آید که اصطلاحاً به آن انفجار گردابه گفته می‌شود. بخش عمده‌ای از نوری برا می‌شود، ولی باید توجه داشت که با افزایش زاویه حمله، نسروری برا نه تنها کاهش نیمی ساییده بلکه زیادتر می‌شود و فقط نرخ تغییرات آن با زاویه حمله کم می‌شود. برای باله‌ای مطلوب باید زاویه بیشتر یا 70 درجه نقطه انفجار گردابه‌ها حدوداً در زاویه حمله 30 درجه به نیا فراز می‌رسد و اندکی بالا در حدود 35 درجه افتده [4].

آزمایشات نشان می‌دهند که برای باله‌ای به زاویه بیشتر از 75 درجه انفجار گردابه‌ها به صورت متقارن افتده در تیتیج توزیع فشار روي بال در دو طرف متفاوت بوده و بهترین پیگذاری روي بال مرتبای تغییر می‌کند. این باید به سبب ایجاد نوسان نوازیده حول محور طولی می‌شود. هرچند ناکون تحقیقات انفجار در خط صدر گردابه‌ها و مکانیزم تشکیل آنها انجام شده ولی هنوز دلیل دقیق کننده‌ای برای توجه رفتار این نوع بال به ارائه نشده است. مهمترین بخش تحقیقات استصلال، سال 1380، شماره 2، اسفند 1380

شکل 2- گردابه‌های اصلی و ثانویه روي بال

شکل 3- اثر گردابه‌های اصلی و ثانویه بر توزیع فشار روي بال

پایه‌ای در جهان روي این بالها به توسعة روسته‌ای نیمه تحریسی برای پیش نیروهای در حال تابای و کشیده خودکت نوسانی بال متمرکز شده است.
را نیز در مقیاس کاری کاهش داده است. آزمایشات به کمک یک لوله پیوند به قطر 0/9 میلیمتر و نیز دستگاه سیم داغ با پرپوک یک مولفه ای انجام گرفته و اطلاعات حاوی از طریق برد اخذ و بردارش اطلاعات A/D وارد رایانه شدند. به مظهر سرعت و سهولت در اخذ و بردارش اطلاعات

خروجی، یک برنامه رایانه‌ای [V] به جای شده که قادیر است با فرکانس‌های مختلف تا حدود 100 کیلوهertz، هم به صورت پیوسته و هم به صورت میانگین زمانی عملیات داده برداری از برد را انجام دهد. برنامه مکانیکی می‌تواند عاده بر داده در برداری اطلاعات حاصله را فیلتر کرده و نیز شدت اغتشاش را با استفاده از تغییرات سرعت با زمان محاسبه کند. شکل (5) توانایی ثابت شیر را در کاهش اغتشاشات جریان در تولید نشان بال در شکل لبه حمله آنهاست.

شکل 4- اثر دیفرانس بر تغییر اغتشاش تولید

شکل 5- اصطاد از فیلتر برای کاهش اغتشاشات جریان

۴- کالیبراسیون تجهیزات

دستگاه سیم داغ مورد استفاده در این آزمایشات از نوع بوده و براساس میزان حمایت شدن سیم بر اثر عبور جریان CTA از روی آن عمل می‌کند. بر اثر حمایت شدن سیم مقاومت در مدار الکتریکی آن تغییر کرده و در نتیجه ولتاژ خروجی از دستگاه نیز تغییر می‌کند. بنابراین برای استفاده از سیم داغ باید در استفاده از سیم داغ برای تعیین دقیق موقعیت پرور بر روی بال، پرپوک به یک پنائسیمتر مفصل شده و ولتاژ
ارتباط بین ولتاژ و سرعت برابر هر پروب تغییر شود.

بررسی‌ها نشان می‌دهد که در دستگاه‌های نوع CTA سرعت به صورت یک چند جمله‌ای درجه‌چهار برحسب ولتاژ قابل پیمان است. شکل (7) تغییرات ولتاژ خروجی از سیم را با سرعت تولید نشان می‌دهد. به منظور افزایش دقت، آزمایشات در دو حالت افزایش و کاهش سرعت انجام گرفته و نتایج حاصله با استفاده از یک منحنی درجه چهارم برای روش داده شده است. شکل (5) نشان می‌دهد که منحنی مذکور به خوبی تغییرات ولتاژ را با سرعت بیشتری کرده است. با استفاده از این منحنی می‌توان ارتباط بین سرعت ولتاژ را به صورت زیر توصیف کرد:

نکته

$V = -3.08 + 1.294t^3 + 1.90t^2 + 2.87t + 1$که در آن V سرعت جریان برحسب متر بر ثانیه و t ولتاژ خروجی برحسب ولت است. پتاسیومتر نیز مانند یک روتومتر بر پایه تغییر مقاومت به دلیل تغییر طول در مدار عمل می‌کند. برای تعیین دقیق موقعیت مورد بررسی در تولید با استفاده از پتاسیومتر لازم است میزان ولتاژ خروجی براساس جدول پیدا نماید. از پتاسیومتر معمول باشد. عمليات کالیبراسیون این دستگاه شامل حرکت پروب به میزان معین و ثبت ولتاژ

شکل 7- کالیبراسیون سیم داغ

شکل‌های (8-الف) و (8-ب) خطوط هم سرعت را در

پزشی تایپ

5- بررسی نتایج

شکل‌های (8-الف) و (8-ب) خطوط هم سرعت را در
انفجار، ذرات دود در هسته کرداپه به دلیل سرعت زیاد جریان به طرف منحرف شده و در نتیجه ناحیه درون هسته به صورت یک نفظ سیاه در شکل (8-9) مشخص است.

در شکل (8-9) کرداپهای حاصل از آزمایشات کننده در زاویه حمله ۳۰ درجه که به کمک لوله پیشتو معمولی و روی مدل شماره یک به دست آمده نشان داده شده است. شکل (9-9) نیز نتایج همین آزمایش روز یک بال مشابه را که به کمک لوله پیشتو سه راهی و سرعت سنج لیزری به دست آمده (5) نشان می‌دهد. هر دو شکل نشان می‌دهند که

مانند چرخان روز مدل اول در زاویه حمله ۳۰ و ۳۵ درجه نشان می‌دهد. این خظ‌وطبیک شکل و موقعیت‌گذاری خود کاملاً مشخص می‌کند. در شکل‌های (8-9) کرداپه روز یک بال با یک درج نشان داده شده است. در این روش انفجار کرداپه را در زاویه حمله ۳۰ درجه تایید می‌کند. در این زاویه حمله، ناحیه درون گردابه باز شده و فشار درون هسته که در زاویه حمله پایینتر کم بوده در این حالت تقریباً به فشار خارج هسته‌زدایی شده و گردابه عملاً روز بال بهبود می‌شود. لازم به ذکر که قبل از

این سال، به پیش می‌شود.
شکل 9-الف- توزیع گرادیان بر روی بال در آزمایشات کتیوی

با نزدیک شدن به لبه حمله، قطر گرادیان کم می‌شود و لی افجار فقط در نزدیکی ای فرار رخ می‌دهد.

شکل‌های (10-الف) و (10-ب) پروفیلهای سرعت ناحیه زمان‌ها در دو موقعیت مختلف بر روی بال یکی در 7/85 وتر و دیگری در لبه فرار که با استفاده از سیستم داغ به دست آمده نشان می‌دهند. در این شکل پروفیل سرعت در هسته گرادیان با پروفیل سرعت در وسط بال که گرادیان روی آن افزایش ندارد، مقایسه شده است. رفتار نوسانی پروفیل در هسته به دلیل تأثیراتی گرادیان است. این رفتار نوسانی در لبه فرار بسیار شدیدتر است و به نظر می‌رسد که گرادیان در این نقطه منفی شده است. همان طور که قبل اشاره شد، این بالا با لایه‌ای پس از افجار گرادیان دچار واندشگی می‌شود. این رفتار گرداها به طور قابل توجه قابلیت مانور هواپیما را در زوایای حمله بالا افزایش می‌دهد.
شکل (11) پرولف سرعت متوسط در لایه مرزی را نشان می‌دهد که توسط سیم داغ اندازه‌گیری شده است. در این شکل پرولف سرعت در داخل گرداپر و خارج آن با هم مقایسه شده‌اند. در هر دو شکل (10) و (11) دو ناحیه با سرعت بالا قابل تشخیص هستند. یکی در ترکیکی سطح بال و حداکثر در ارتفاع 20 میلی‌متری سطح به وجود آمده که همان گرداپر ثانویه است. ناحیه دوم که افزایش سرعت ثانویه یا در آن مشاهده می‌شود، گرداپر اصلی روزی باید توجه داشت که اختلاف در موقعیت ناحیه افزایش سرعت در پرولف‌ها به دلیل تاپایدایر گردایه و نوسانات آن بر روی بال است.

شکل (12) نشان دهنده افزایش را در هر دو ناحیه داخل و خارج گرداپر نشان می‌دهد. مقایسه توزیع سرعت در دو ارتفاع مختلف از سطح نیز مانند پرولف‌های سرعت، ورود گرداپر های اصلی و ناشی از نتایج می‌کند. این مقایسه نشان می‌دهد که در ناحیه درون گرداپر افزایش سطح ارتفاعات در گرداپر اصلی نیز به مراتب بیشتر از گرداپر ثانویه است. بررسی نتایج نشان می‌دهد که در اکثر شدت افزایش در داخل گرداپر 1/5 و در خارج آن حدود 10 درصد اینکه پیش بینی می‌شود که با افزایش زاویه حمله شدت این افتغالات در درون گرداپر بیشتر شود.

شکل‌های (13-الف) و (13-ب) نوسانات سرعت را به ترتیب در داخل و خارج گرداپر نشان می‌دهند. برای تعیین نوسانات سرعت به کمک سیم داغ این نوسانات به مدت یک ثانیه و به طور پیوسته در نقاط مورد نظر ثبت شده است. مسیر نتایج به دست آمده در ناحیه درون گرداپر در شکل (13-الف) نوسانات شدیدی در سرعت مشاهده می‌شود که به دلیل تناپایدایر چرخانی درون هسته است. شکل (13-ب) نشان می‌دهد که نوسانات سرعت در فاصله 10 سانتی‌متری سطح در ناحیه خارج گرداپر نوسانات سرعت در حد متوسط و تقریباً مانند نوسانات شکل (5) هستند. این نوسانات عدمتیا به دلیل عدم هماهنگی در حرکت فن تولی و نيز سطح افتغالات جریان.
شکل ۱۳-الف- تغییرات سرعت با زمان در داخل هسته گردابه در مقعع کاری است. متوسط سرعت تونل در این شرایط تقریباً برابر سرعت جریان آزاد است.

شکل‌های (۱۴) و (۱۵) موقعیت مرکز گردابه در مقعع مختلف عرضی در روز بالا نشان می‌دهد. در یک زاویه حمله ثابت با افزایش موقعیت طولی قطر گردابه‌ها بیشتر شده و گردابه به سمت لبه خارجی بال حرکت می‌کند. به نظر می‌رسد که اختلاف بین نتایج این آزمایش و سایر آزمایشات (۶) به دلیل برابر بودن عدد رینولدز، شکل منفعت لبه حمله بال مورد استفاده در این آزمایش‌ها و بال مراجع (۶) شدت افتنشان تونل، سطح مقعع تونل، زیری سطح بال، ابعاد منفعت بروب اندازه‌گیری و پارامترهای معادله دیگری بوده که در تعیین موقعیت گردابه روی بال مورد استفاده هم اختلاف فاحشی به جنگ می‌خورد و لی نتایج کنونی و مرجع (۶) که عدد رینولدز آنها به هم توده‌کنار است. تطبیق بهتری با هم دارد.

- نتیجه‌گیری

بررسی تجربی کنونی نشان می‌دهد که گردابه‌های به وجود آمده بر روی باله با زاویه پسگرای بالا نابع عوامل متعددی از
وجود آمدن نیروی بر روی بال می‌شود. نتایج نشان می‌دهند که شدت اغتشاش در ناحیه درون گردابه و در موقعیت 0/75 و نر در زاویه حمله 20 درجه به حدود 0/15 درصد مرسد. در حالی که در خارج گردابه این مقدار در حدود 0/4 درصد است که تقریباً برای سطح اغتشاشات جریان آزاد در مقفع کاری توانی است. بررسی‌های توزیع سرعت و اغتشاش در لایه مزدی روی بال وجود دو گردابه که یکی فوریت از دیگری است را تایید می‌کند. این دو گردابه همان گردابه‌های اصلی و ناهنجاری‌های هستند که منشأ اصلی تولید نیروی بر روی بال هستند. در مدل دوم که مدل یک بال کامل است، یک جفت از این گردابه‌ها در دو طرف بال نشکل می‌شود.

شکل 15- موقعیت مرکز گردابه در مقاطع عرضی مختلف در زاویه حمله 30 درجه برای مدل اول

واژه نامه

1. sweep
2. wing rocking
3. primary vortex
4. secondary vortex
5. burst
6. seven hole probe (SHP)
7. laser-doppler velocimeter (LDV)

مراجع

7. سلطانی، م. و داوری، غ. بررسی نجات فرایند تشکیل گردابه‌ها و اثرات زاویه حمله روی آنها در بالهای ماهی، هفتمین کنفرانس سالانه انجمن مهندسین مکانیک ایران، دانشگاه سیستان و بلوچستان، صص. 479–483، فروردین 1378.