تحلیل عدیدی میدان جریان سبع‌بعدی حول یک کره در رینولدزهای پایین به روش مختصات منطقی بر مرز

محمدضا مدرس رضوی، حمید نیازمند و سید علی میرزهرگی
گروه مهندسی مکانیک، دانشکده مهندسی دانشگاه فردوسی مشهد

چکیده: در این پژوهش به بررسی عدیدی میدان جریان تراکم ناپذیر در اطراف یک کره جامد در رینولدزهای پایین (نا حدا ک 270) پرداخته شده است. برای توصیف فاصلتهای روش حجم محدود، از روش مختصات منطقی بر مرز استفاده شده است. برای کسینوسیه کردن معادلات دیفرانسیل جریان به روابط جبری از روش حجم محدود با آرایش مربی شده منفی‌ها. برای مدل کردن شارهای جابجایی از روی وقایع رابطه حل CFD استفاده می‌شود. شرایط مرزی شامل توده رشته‌ای شده است. برای حل معادلات جبری حاصل از توده رشته‌ای شده استفاده شده است. تابع ترکیبی و عدیدی موجود مقایسه شده است. سپس از آن به بررسی میدان جریان حول کره جامد در رینولدزهای پایین (270-211) پرداخته شده است. نتایج به دست آمده از جریان خارجی حول یک کره در رینولدزهای پایین (200-210) نشان داده است که اگرچه جریان پایدار است اما عدم تقارن پیدا آمده در صفحات معامله به خوبی قابل مشاهده است و مرحله‌ای از این رفتار هندسی خطوط جریان در رینولدز 211 شروع می‌شود.

واژگان کلیدی: کره جامد، برخاستگی، تحلیل سبع‌بعدی، مختصات منطقی بر مرز

Three Dimensional Analysis of Flow Past a Solid-Sphere at Low Reynolds Numbers with the Aid of Body Fitted Coordinates

M. R. Modarres-Razavi, H. Niazmand and S. A. Mirbozorgi
Department of Mechanical Engineering, Mashhad Ferdowsi University

Abstract: In this paper, the flow-field of an incompressible viscous flow past a solid-sphere at low Reynolds numbers (up to 270) is investigated numerically. In order to extend the capabilities of the finite volume method, the boundary (body) fitted coordinates (BFC) method is used. Transformation of the partial differential equations to algebraic relations is based on the finite-volume method with collocated variables arrangement. For solving the obtained algebraic relations, the TDMA in periodic state is used. To approximate the convective fluxes, the differencing scheme of Van leer is used and SIMPLEC handles the linkage between velocities and pressures. The verification of the code is checked by the analysis of flow past a solid sphere at low Reynolds numbers of 20 to 210. A good agreement is obtained between the present results and the available experimental and numerical data. The flow-field past a sphere at low Reynolds numbers of 210 to 270 shows that the steady non-axisymmetric regime is going to build up at the Reynolds number of 211.

Keywords: Solid-Sphere, Wake, Three Dimensional Analysis, Boundary Fitted Coordinates

*** - دانشجوی کارشناسی ارشد
** - استادیار
* - دانشیار

استقلال سال 1380 شماره 2 اسفند 191
فهرست علائم

حجم

\[V \]

شکل اندیسی معنی محوطهای مختصر علومی

\[X_i \]

طول گردایه یک کره

\[X_{\text{wake}} \]

مختصات کارتریژن مراکز گردایه‌ها

\[X_0, Y_0 \]

علاقه بونیاتی

\[\alpha \]

ضریب زیر تحقیف

\[\beta \]

ضخامت لایه مزی

\[\delta \]

حجم جزیی یک حجم کنترل

\[\delta_i \]

متری علومی

\[\phi \]

ضریب نفوذ متری علومی

\[\phi_i \]

لزجت

\[\mu \]

لزجت دینامیکی

\[\nu \]

زاویه جدایش

\[\theta \]

چگالی

\[\rho \]

محوطهای دستگاه مختصات محاسباتی

\[\rho_i \]

تعداد جاکتر گردایه یک امتداد در شبکه بندی

\[\zeta \]

زیرنویس

\[w, e, s, n, l, h \]

به ترتیب: وجوه غربی، شرقی، جنوبی، شمالی، پایینی و بالایی

\[\varphi \]

مشاهده نسبت به محوطهای مختصات کارتریژن

\[x, y, z \]

مشاهده نسبت به محوطهای مختصات محاسباتی

\[\text{بالا} \]

(برای) مقادیر اصلاحی

\[\text{نیرو} \]

(ستاره) مقادیر قدامی

جبرانهای سعدهدی، پیچیدگی مسیر حرکت ذرات سیال بسیار بیشتر است و از دید آنها به آسانی می‌توانند تاکنون بررسی‌های تجربی و عدالتی متنوعی برای بررسی جبران حول کرده‌اند. این نتایج از ارائه مدل‌های مختلف انجام پذیرفته است از جمله [1] روش بررسی آشکارسازی جبران را برای مطالعه برخاستگی‌های پشت کره در ریون‌های ۳۰۰-۵ موره

سطح

\[A \]

ضریب معادله انتقال

\[a \]

ضریب پسایش فشاری

\[C_r \]

ضریب پر (نریوی) جانی

\[C_L \]

ضریب انتساب شبه گمان

\[f \]

ضریب پسایش جریان

\[F_s \]

ضریب نریوی پسایش جریان

\[F_y \]

ضریب جانی عمود بر جهت جریان

\[g \]

ضریب اندیسی بردارهای پایه کوارتینت در مختصات علومی

\[g_i \]

ضریب اندیسی بردارهای پایه کوارتینت در مختصات علومی

\[g_{ii} \]

تاسور متغیر اقلیدسی

\[g \]

تاریخ جرم عبوری

\[m \]

تعداد جاکتر گردایه یک امتداد در شبکه بندی

\[n \]

عدد روند

\[n_i \]

شکع کره

\[\text{برای} \]

عبارت چشمی برای یک متری علومی در معادله

\[S \]

دفرانسیبی ممتن

\[S_0 \]

عبارت چشمی در معادله انتقال

\[S_{\text{می}} \]

سرعت جریان آزاد

\[U]

گام

\[U_{\text{می}} \]

کوارتینت

\[U_{\text{می}} \]

۱- مقدمه

بررسی سعدهدی جریان غیردری از روی کره، حالات ساده‌ای از جریان سیالات بر روی اجسام است و لی در عین حال بیشتر پیچیده‌ها چنین جریانهایی را در مورد است، نایاب‌یابی می‌تواند اجرا شود. مانند جریان رود تا در حضور

تقارن هندسی در جسمان، برخلاف جریان‌های دو بعدی توانیت

استقلال، سال ۱۳۸۰، شماره ۲، هر ۱۹۲
استفاده قرار داده است. این رابطه به یک پاتدازی متفاوتی نشان می‌دهد:

\[R = \text{دقت مورد نیاز خاصیت با دامنه} \]

تنویع خیال‌ی زیاد در پشت حلقه گرادیان شروع می‌شود.

1. ماکروی و پیش‌شمار [2] روش تحریری می‌تواند، توسط رگی به کار بردند و مشاهده کردن در محدوده

\[2 R = 210 \text{ جریان تقارن موحوری خود را از دست می‌دهد در حالت که هنوز پیاداری خود را حفظ می‌کند.} \]

نیم بولیس [3] جریان روی کرک را به روش عدیده می‌دانیم طبق با محدوده 4000<Re<25 بررسی کرده است و اعلام داشت که Re=212 در بخاراگی یک سطح از جریان تقارن پایدار به نام تقارن‌پایدار تغییر شکل می‌دهد و ناتاناجوان و ایرانی‌وز [4] جریان روی عدیده می‌دانیم را به کار بسته و

\[210 \text{ را برای جریان گذار از متفاوت به نام تقارن پایدار معرفی می‌کند و در آن جریان متعادل، جنس سون و پات [5] با بررسی گردیان سبیل‌سوز توسط روش معرفی گام زمانی کاذب 3، وجود صفحات سطحی و نامتقاضایی جریان برنمی گذر از متفاوت به نام تقارن پایدار معرفی می‌کند. قبل ذکر است که آنان

2. معادلات حاکم را برای یک شبکه کاملاً کروی با حذف چهارمحد و بیست و هشتم هزار گرفت (1014×1011) حیل گردنه.

3. از آنجا که هم اکنون بررسی موضوعی نظیر جریان حول یک کره، نیازمند به کارگیری گره‌های زیاد است، در تینجه

\[\text{حمض محاسبات گرفت از توانایی رایانه‌ای موجود است. بنابراین هدف ما در انجام غلبه بر جنس مشکلی با اتخاذ یک شبکه حل عدیده است که محاسبات لازم به ازای هر گره را کاهش دهد. در پژوهش حاضر با استفاده از روش حجم محدود

\[\text{با آرایش یکی در مدلینگ و همچنین به کارگیری مؤلفه یک

\[\text{کاربرد کاربردی مؤلفه یک و کاربردی مؤلفه یک}

\[\text{آنها، حجم محاسباتی به کار کاهش یافته و در تینجه}

\[\text{بررسی گره‌ی حول یک کره و مقایسه نتایج آن با نتایج ارائه شده توسط دیگران فراهم شده است. در ادامه دینامیک جریان

\[\text{193} \]

استلال سال 12، شماره 2، اسفند 1380
شکل ۱- تصویر دو بعدی حجم کنترل در فضای محاسباتی

شکل ۲- موقعیت گره‌ها و سطح حجم کنترل در یک شبکه

شکل ۳- انفعال معادلات حاکم

شکل نهایی معادله‌های، اکنون آماده است تا در شبکه ایجاد شده در حوزه محاسباتی، روي حجم‌هایی کنترل شکل (1) منفصل شود. حاصل انفعال چنین است

\[
\begin{align*}
\int_A \mathbf{t} \mathbf{d}A &= \int_V S_\phi \mathbf{d}V \\
\end{align*}
\]

پس از محاسبه مقادیر شارهای جایی بخش و محیط‌ها عبارت چنین به صورت در مکان گرایشی P شکل استاندارد زیر خلاصه کرد

\[
\begin{align*}
\mathbf{a}_p \phi &= \sum a_{NB} \phi_{NB} + S_u \\
\mathbf{a}_p &= \sum a_{NB} - S_p \\
\end{align*}
\]

طقی شکل (11) زیر نمایندگان NB دلائل بر گره‌های مجاور گرده می‌باشد.

شکل ۴- محاسبه کنترل جایی جرم و منگیر وابسته

طقی شکل (۲۲) در محاسبه سرعت بر روی خروجی حجم کنترل از میان‌بینی خطی برحسب مقادیر آن در مرکز حجم کنترل استفاده شود. بعث ایجاد نوسانات غیرمترپیکی در جواب‌ها.
اصلاح فشار تبدیل کردن آگر از معادله پیوستگی روي حجم
کنترل شکل (1) انگشتالگری شود و همچنین برای اختصار
برای یک انتخاب در نظر گرفته شود می توان نوشت

\[m_c - m_w = 0 \] (16)

با جاگذاری معادله (15) و (12) در معادله (16) آن گاک

\[\left(\frac{\rho}{1 - \alpha} \frac{\delta V}{\delta x_p} \right)_c - \left(\frac{\rho}{1 - \alpha} \frac{\delta V}{\delta x_p} \right)_w + m_c - m_w = 0 \]

(17)

این معادله انتقال شده پیوستگی در یک بعد است که مجهول
آن فشار اصلاح (P) در روش سیمیل سی جهاد به.

7- روش حل عدده
برای اعمال روش حل عدده، حوزه فیزیکی پیچیده با در
دستگاه مختصات منحنی خلاطی بر مزر، شیبی‌بندی
می‌شود. این شیب‌بندی با افزایش حوزه فیزیکی توسط 5 نیت
وجه‌های کوچک و عوامه‌ای معادن صورت می‌گیرد و در مرکز
هر سلول این شیب یک گره قرار می‌گیرد. از آنجا که مختصات
کارترین هر کدام از این سلولها به راحتی قابل محاسبه است در
گوشه‌های یک از آنجا یک دستگاه مختصات محلی متعادل
تعریف می‌شود که بردارهای پایه آن، اصلاح آن گوشه‌های
در این صورت دیگر نیاز به داشتن رابطه ریاضی صریح بین
محوایی‌ها و مختصات خلاطی بر مزر توسط. در عفونت‌های جا که به مشکل نسبت به محورهای
کارترین نیاز باشد اعمال روش مشتق زنجیره‌ای و به
کارگیری بردارهای پایه دستگاه مختصات محلی محاسبه
می‌شود.

\[m_c = n + m_c' \]

(12)

\[m_c' = \rho A (U_j)_c' \]

(13)

که در آن \((U_j)_c' \) مقادیر مؤلفه‌های سرعت کورواریانت هستند.
این مؤلفه‌ها در روش سیمیل سی به صورت زیب با میزان فشار
مربوط می‌شوند.

\[V_j' = -\alpha \frac{\delta V}{1 - \alpha} \frac{\delta P'}{\delta x_j} \]

(14)

با جاگذاری (14) در

\[m_c' = \rho A \left(-\alpha \frac{\delta V}{1 - \alpha} \frac{\delta P'}{\delta x_j} \right)_c = -\rho \frac{\alpha}{1 - \alpha} \frac{\delta V}{A_c} \partial V_{Pe} \]

(15)

که در آن \(\alpha \) ضریب زیر تخفیف است.
حال می‌توان معادله پیوستگی را به شکل معادله‌ای برای

5- محاسبه شار بخش
عبرات دوم سمت راست در معادله (5) شار بخش است که
به صورت زیر محاسبه شده است

\[(\text{diff})_e = -\left(\frac{\delta V}{\delta x_p} \right)_e - \left(\frac{\delta V}{\delta x_p} \right)_w \]

(10)

مقدار \(\tilde{V}_{Pe} \) برای وی شرکت در مختصات نامتعادل عمومی
چنین است

\[\left(\tilde{V}_{Pe} \right)_e = -\left(\frac{\partial g_j}{\partial x_j} \right)_e = -\left(\frac{\partial g_j}{\partial x_j} \right)_e \]

(11)

که در آن \(g_j \) بردار پایه کورواریانت و \(g_j'' \) بردار پایه کانترلاورینت و

6- معادله اصلاح فشار
برای تبدیل معادله پیوستگی به معادله‌ای برای فشار
الگوریتم سیمیل سی (11) روی شکله‌جایی نشته اعمال شده است.
استفاده از شکله‌جایی جای خاطر برخوردار
همانند معادلات اضافی در پارامترهای هندسی و همچنین سهولت
احتمال فشار موز بوده است. برای شروع، شار جرم و جه

\[m_c = m_c + m_c' \]

(12)

\[m_c' = \rho \tilde{A} (U_j)_c' \]

(13)

که در آن \((U_j)_c' \) مقادیر مؤلفه‌های سرعت کورواریانت هستند.
این مؤلفه‌ها در روش سیمیل سی به صورت زیب با میزان فشار
مربوط می‌شوند.

\[V_j' = -\alpha \frac{\delta V}{1 - \alpha} \frac{\delta P'}{\delta x_j} \]

(14)

با جاگذاری (14) در

\[m_c' = \rho \tilde{A} \left(-\alpha \frac{\delta V}{1 - \alpha} \frac{\delta P'}{\delta x_j} \right)_c = -\rho \frac{\alpha}{1 - \alpha} \frac{\delta V}{A_c} \partial V_{Pe} \]

(15)

که در آن \(\alpha \) ضریب زیر تخفیف است.
حال می‌توان معادله پیوستگی را به شکل معادله‌ای برای

5- محاسبه شار بخش
عبرات دوم سمت راست در معادله (5) شار بخش است که
به صورت زیر محاسبه شده است

\[(\text{diff})_e = -\left(\frac{\delta V}{\delta x_p} \right)_e - \left(\frac{\delta V}{\delta x_p} \right)_w \]

(10)

مقدار \(\tilde{V}_{Pe} \) برای وی شرکت در مختصات نامتعادل عمومی
چنین است

\[\left(\tilde{V}_{Pe} \right)_e = -\left(\frac{\partial g_j}{\partial x_j} \right)_e = -\left(\frac{\partial g_j}{\partial x_j} \right)_e \]

(11)

که در آن \(g_j \) بردار پایه کورواریانت و \(g_j'' \) بردار پایه کانترلاورینت و

6- معادله اصلاح فشار
برای تبدیل معادله پیوستگی به معادله‌ای برای فشار
الگوریتم سیمیل سی (11) روی شکله‌جایی نشته اعمال شده است.
استفاده از شکله‌جایی جای خاطر برخوردار
همانند معادلات اضافی در پارامترهای هندسی و همچنین سهولت
احتمال فشار موز بوده است. برای شروع، شار جرم و جه

\[m_c = m_c + m_c' \]

(12)

\[m_c' = \rho \tilde{A} (U_j)_c' \]

(13)

که در آن \((U_j)_c' \) مقادیر مؤلفه‌های سرعت کورواریانت هستند.
این مؤلفه‌ها در روش سیمیل سی به صورت زیب با میزان فشار
مربوط می‌شوند.

\[V_j' = -\alpha \frac{\delta V}{1 - \alpha} \frac{\delta P'}{\delta x_j} \]

(14)

با جاگذاری (14) در

\[m_c' = \rho \tilde{A} \left(-\alpha \frac{\delta V}{1 - \alpha} \frac{\delta P'}{\delta x_j} \right)_c = -\rho \frac{\alpha}{1 - \alpha} \frac{\delta V}{A_c} \partial V_{Pe} \]

(15)

که در آن \(\alpha \) ضریب زیر تخفیف است.
حال می‌توان معادله پیوستگی را به شکل معادله‌ای برای
8- شرایط مرزی و اولیه

پس از بررسی‌های آزمایشی حوزه‌های جهت از حضور کره در جریان سیال و سطح منطقه‌ای نزدیک به آنها کافی در اطراف کره، برای حل معادلات حاکم مطلوب شکل (3) انتخاب شد. تعداد گره‌های انتحاب شده (126) بوده و ضریب انقباض شبکه در نزدیکی کره 0.07 است که در این صورت حداکثر 10 گره در لایه‌های نزدیک منطقه‌سکن وجود دارد. پیش‌بینی ذکر است که حوزه تداخلی‌اشتدت انتخاب باعث شده است که بیان تعداد گره کمتری (حدود یک چهارم مقدار در نظر گرفته شده توسط جانسون و بایت) از آن‌ها به واقعیت شبکه اصلاح کرده و آزمون صحت برآورده که تعداد مشخصه مشخصات جریان در این رژیم است که به شرح ذیل ارائه می‌شود.

در گذشته یک جریان کره (1) شرط عدم لغزش اعمال شده است.

ب - بر روی مرز خارجی

ج - بر روی مرز شرایط اولیه

گرایش‌های سرعت در انتخاب نقطه مرزی صفر است.

د - برای مرزهای عدید (2) مشتق مرتبه اول و بدون صفر است و از پیوندهای کمی استفاده می‌شود.

ه - برای مرزهای عدید (2) معادله پرتویک

بودن از پیوندهای و منابع گیری استفاده می‌شود.

و - برای مرزهای فشار همه یا پیوندهای انگل می‌شود.

شرایط اولیه برای اندازه‌گیری سرعت در انتخاب جریان، مقدار شروعی در انتخاب جریان، مقدار شروعی است و برای دو انتخاب دیگر در نظر گرفته شده است.

معیار‌هگرایی ارزیابی موشود و معیار همگراپسی نیز مجموع قد در مطلق تمام بایان‌مانده بخش بر جرم ورودی است که بیاید

تا 2000/0، نوزول کند.

- 9- ارائه نتایج و بحث بر روی آنها

الف - جریان حول کره در رینولدز 20 (زرمی یادهای)

تحلیل میدان جریان بر روی کره در این رژیم جریانی به عنوان آزمون صحت رونده و گونه‌ها ی در انتخاب بشته است. رایاندیز زمانی که زمین به تایید است. عدم وابستگی نتایج به ابعاد شبکه با چهار مشخصه بررسی شده است. نتایج این بررسی به رایاندیز 100 در جدول (1) نشان داده شده است. همانطور که مشاهده می‌شود با تغییر ابعاد شبکه، مشخصات میدان جریان فقط تغییرات ناحیه‌ای را نشان می‌دهد و رونده تغییرات میان این است که این برای افزایش کره‌ها (در حفرات حاصله را) تغییرات مشخصات جریان رفتار نمایش می‌دهد. همچنین عدم وابستگی نتایج به هندسه و توسعه گره‌ها از نظر قابلیت اطمینان به برآورده، مورد بررسی قرار گرفته است. از آنجا که مشخصات جریان قبل از توسعه دیگر به دست آمده و وجود است. لذا بهترین راه آموزن صحت برآورده، مقبلا مشخصات جریان در این رژیم است. که به شرح ذیل ارائه می‌شود.

جدایی جریان از روع کره در رینولدز 20 شروع می‌شود و یک گردهای چندگانه کوچک در پشت کره تشکیل می‌شود. در اعداد رینولدز بین 20 تا 210 جریان پایدار و متقارن است و گرده‌ای در این شکل اند تابع هندسه‌هایی مشخصاتی انجام شده برای رینولدز سوخت به‌ین 50، 100، 150 و 200 به شکل بی‌اکتشاف، می‌توانند [2] و با نتایج و تأثیرات (1) اند مطلب دارد.

در صفحه (2) برای رینولدزهای تنها نمایش داده شده است. در این اشکال جهت جریان از چپ به راست است. در این شکل‌ها شکل‌ها دیده می‌شود که خطوط جریان از سطح کره در زاویه 0 تا 3 گدا شده است. (0) زاویه جدایی، سنجیده شده از نقطه سکوی جلو است و مجدداً در نقطه xw سعی در انتخاب محور جریان به هم رسیده و در نتیجه یک حیوان کامل را تشکیل داده‌اند مرکز.
جدول ۱

<table>
<thead>
<tr>
<th>ابعاد</th>
<th>ضریب دراک (CD)</th>
<th>نسبت طول گرداب به قطر گرداب</th>
<th>زاویه جدایش بر حسب درجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۱۸۴۳</td>
<td>۱/۹۴۰۶۸</td>
<td>۱/۹۴۴۴۴</td>
<td>۱/۹۴۴۴۴</td>
</tr>
<tr>
<td>۳۱۸۴۳</td>
<td>۱/۹۶۲۸۱</td>
<td>۰/۸۸۷۲۶</td>
<td>۰/۸۸۷۲۶</td>
</tr>
<tr>
<td>۳۱۸۴۳</td>
<td>۱/۹۶۲۸۱</td>
<td>۱۲۷/۰۰</td>
<td>۱۲۷/۰۰</td>
</tr>
<tr>
<td>۳۱۸۴۳</td>
<td>۱۲۷/۰۰</td>
<td>۱۲۷/۰۰</td>
<td>۱۲۷/۰۰</td>
</tr>
</tbody>
</table>

شکل ۳ - حوزه شبکه بندی شده حول کره (الف) تصویر در صفحه (X-Z)، (ب) تصویر در صفحه (Y-Z).

شکل ۴ - پردازش سرعت و خطوط جریان مقارن عبوری از دوری کره (الف) Re=۱۵۰، (ب) Re=۱۰۰، (ج) Re=۵۰، (د) Re=۲۰۰.
ب) چرخهای کره در ریلولزهای ۲۰۰ تا ۲۷۰ در ریلولز ۱۱۱ تحلیل عدیدی میدان چرخه، دیگر تقارن محوری را نمایش نمی‌دهد. اما چرخه‌های پایدار باقی مانند. پایداری زمانی است که در آن خیزات کمتر و ناپایداری زمانی است که در آن خیزات ناپایداری هستند. شاهد است و تحلیل عدیدی حاضر پایداری این رژیم را تایید می‌کند. با وجود عدم تقارن محوری در تناول دیده که چرخه‌های هنوز در سرکه‌ی یک صفحه تقارن است. محل و موقعیت صفحه تقارن به طور بی‌ربط و آزادانه شکل می‌گیرد و تغییر محل این صفحه، می‌تواند با سبب ایجاد شایعه‌ای و نیز ایجاد دیگر رفع و ضریب سوداگری (Solver) در صورت می‌باید و اساساً به نیمه حضور غرفه‌ای. محل‌های عدیدی در جهت دوران یا تقارن هندسی، صفحه چرخه مشابه مقرر بر صفحه (x,y) با همان صفحه (x,y) می‌گیرد مثلاً در مقایسه حاضر در زاویه ۴۸ درجه واقع شده است. به همین علت، اطلاعات میدان چرخه محاسبه شده در صفحه (x,y) درجه با اندازه ۱۲ درجه چرخیده و در صفحه (x,y) درجه (۹) مشابه دارد. شاهدان.

۱۸ آغاز از بین رفن تقارن محوری در شکل (۷) نشان داده شده است که در آن ضریب Y از بررسی جانی (C_{y}) در برای اعداد ریلولز رسم شده است. در صفحه (x,y) که میدان چرخه نسبت نشان میدان است نژاد یکی با اندازه می‌باید به اگر با (ضریب چربی) ب به صورت Zیر محاسبه می‌شود

\[C_L = \frac{F_y}{\frac{1}{2} \rho U^2 \frac{\pi D^2}{4}} \] (18)
شکل 5- مشخصات هندسه جریان: (الف) زاویه جداش، (ب) طول گردابه، (گ) موقطتی گردابه، (د) موقطتی Xv، Yv, X_{w,b}, ج) موقطتی Xv، Yv, X_{w,b}.

شکل 6- مقاومت ضریب Qa

کلمات کلیدی: ترکیبی، مقاومت، پردازش قطعات، حجمی، جریانی، گردابه، X_{w,b}, ج) موقطتی Xv، Yv, X_{w,b}, (د) موقطتی Xv، Yv, X_{w,b}.
شکل 7- کانتورهای متشابه در صفحه (x-y) برای ریبولودزی (Re=100) کانتور W (الف) کانتور v (ب) کانتور u (پ) کانتور p

شکل 8- کانتورهای فشار در رژیم متفاوت: (الف) Re=50 (ب) Re=100 (پ) Re=150 (پ) Re=200

استقبال سال 1387 شماره 2 نسخه
گزارش می‌شود چرا که انحراف از حالت تقارن کامل مشهود است. وقتی ریوندلز از ۲۷۰ به بالا می‌شود مشاهده شده است که جریان نیاپایدار است.

در شکل (۱۱) حضور یک صفحه مسبب تقارن در جریان دیده می‌شود. در این شکل خطوط جریان مشابه از پدیداری سرعت تصویر شده در یک صفحه به ترتیب در صفحات (۸,۲) و (۸,۳) نمایش داده شده‌اند. در شکل (۱۱-الف) واضح است که میدان جریان توسط صفحه به دو قسمت منگر تقسم و هر از این دو قسمت تقارن است. لازم به ذکر است که در شکل (۱۱-الف) مولفه‌های سرعت خارج از صفحه نیز وجود دارند. بنابراین خطوط جریان در این صفحه خطوط سبب دیگری نیستند واقعی‌ترین صفحه نیز از شکل (۱۱-ب) که صفحه (۸,۳) را نشان می‌دهد و میدان جریان نسبت به آن متقابل است، به جز در دو نقطه، هیچ مولفه سرعت خارج از صفحه‌ای وجود ندارد و سیستم حرکت ذرات در این حالت خطوط جریان واقعی نیستند.

در شکل (۱۱-ب) دیده می‌شود که گرداگرد را یک طرف کشیده شده‌اند. همچنین اختلاف اندام گرداگرد را بالا و پایین بیننگر ناپیش نمونه‌ای از جهت دوران (جهت سوم)

شکل ۹- انتخاب رموز در روش انتخاب: (الف) Re=۱۵۰ (ب) Re=۵۰ (ج) Re=۱۰۰ و (د) Re=۲۰۰

شکل ۱۰- ضریب نیروی جانبی C_l

مقدار C_l برای جریان متقابل طبیعیا صفر است اما برای روزین حاضر سرور نخواهد بود به طور مثال در ریوندلز ۲۱۱ مقدار آن تقیبیا ۲۳۷/۷۷۰/۰ به طور تجربه نیازهایی بین ریوندلز ۲۵۰۰۰۱ تا ۲۷۱۰۰ کوارش شده است و نتایج مکاریوی و بیش [۲] و ناکامورا [۱۵] و تومولیدز [۳] مورد این موضوع است. نتایج مربوط به تمام اعداد ریوندلز در این روزین ذاتا مشابه هندسه‌های دارد و لذا در اینجا نشان می‌دهیم ریوندلز ۲۵۰۰۰۱ انتخاب

استقلال سال ۲۰۰۰ شماره ۲ اسفند ۱۳۸۰
این اختلاف فشار بین دو کانون، باعث ایجاد گردابان فشار روی مراکز گردابه‌ها امتداد ρ می‌شود و لذا یک جریان در امتداد محور می‌خیاسد مراکز گردابه‌ها ایجاد می‌شود. حضور جریان باعث تغییرات در فشار و در نتیجه به تغییرات در دقت متریکس می‌شود. این عمل در رینولدز تقریباً 211 شرخ می‌شود و یک افت فشار کلی در مکان گردابه‌ها آFAQ می‌یابد.

نارایان واضح است که نابنیادی جریان متقابل محوری موجب به تولید یک رنگ فشار ضعیف در مراکز گردابه‌ها به علت حضور شمات شعاعی است. این رنگ فشار ضعیف بستر بسیار مناسب است تا در صورت حضور اغتشاشات در جریان آصلی، موجب درآوردن یک گردابان فشار در امتداد دوران ϕ داخل همی فشار شود و به عبارت دیگر رنگ فشار ضعیف زمینه این اثر اصلاحات جریان فراهم می‌آورد و در نهایت موجب به هم خوردن مقدار هندسی جریان می‌شود. ممکن است یک درکی گردابه‌ها ایجاد شود. می‌تواند موفقیت خروج و سمت کم فشار گردابه‌ها یک ماریج خارج رونده در هنگامی که سیال از داخل مشاهده شده تغییر می‌شود، تغییر می‌دهد.

برای مشاهده مسیر حسیانی در (1) رسم مورد است. اینکه یک دوک در داخل نشان داده می‌شود که به امتداد جریان می‌آید وارد کانون جرخ خشته گردابه می‌شود و در جهت پادساختگی چرخیده و به شکل یک ماریج درونی عمود بر ϕ صفحه (4.8) از آن مشاهده می‌شود درست مانند این است که به یک عضو سیستم نیروی به ϕ باید باشد. سپس از طریق یک مسیر ماریج به ϕ مختصات منحنی خط کروی که حول امتداد جریان اصلی دوران می‌کند است به علاوه گردابه‌ها یک حساب کامل را تشکیل نمی‌دهند. در بالاترین حالات، گردابه درونی گردابه باس است به روش در اینجا، کانون چرخش تحت‌الامامی کاملاً از جریان بالاست تغییر می‌کند و کانون چرخش فوقانی دراز سیال را از مرکز خود به سمت پریون تغییر می‌کند. البته این که این دو کانون را حول کانون چرخش تحت‌الامام، یک نیم‌حاید داده از یک دست جریان تغییر می‌دهد.

از لحاظ پرقاری اصل باقی جرم ایجاد می‌کند که سیال از کانون چرخش تحت‌الامام خارج شده یا دارد. همچنان باحدود می‌باشد. کانون چرخش فوقانی وارد شده باشد. لذا به علت پرقاری اصل یک‌پهلوگام باشد یک کانون از کانون تحت‌الامام به سمت کانون فوقانی سرزمین شده باشد به طوری که سیال به یکی به دیگری مستقیماً منتفی شود. مسؤل این انتقال در صفحه (4.8) می‌باشد.

بعله سیال از مرکز گردابه‌ها موجود در امتداد ϕ عبور کرده و با یک مسیر ماریج خروج با کانون فوقانی می‌رساند.

در شکل (1) کانتره‌های فشار برای صفحات (4.8) و (4.7) نشان داده شده. میزان فشار در صفحه (4.8) کاملاً مختلف و شبه کانتره فشار در رینولدز 200 است. گرچه فشار کمیاب یا شبه کانتره فشار در مقدار مرتبه به رینولدز 200 است. چون که شاب جبخن کانتره گردابه در رینولدز 240 یک انتقال ϕ برای هر 200 است. یک‌پهلوگام فشار در صفحه (4.8) مقداری نیستند و فشار کمیاب در کانون چرخش فوقانی کمتر از فشار کمیاب در کانون چرخش تحت‌الامام است. قابل توجه است که
کانون فوکانی سرانجام به یاپین دست جریان می‌پیوندد.
در شکل‌های (۱۳-ب) و (۱۳-ج) حرکت پیوست از صفحه و ساختن جریان مشاهده می‌شود. دیده می‌شود که جریان چگونه از کانون تناول بیه کانون فوکانی منتقل می‌شود و کانون چرخش فوکانی تزریق می‌شود با این تفاوت که در حیس تزریق جهت چرخش آن عوض شده و در جهت حرکت عقربه‌های ساعت چرخیده و به شکل مارپیچ بیرون می‌آید. وارد صفحه (۱۳-ب) می‌شود. آن گاه یکساز از چرخش در...
2- استفاده از مدل‌ها سرعت و حرکت جنگل‌های در صفحه X–Y به‌طور کلی بهتر از روش‌های دیگر است. برای اینکه سرعت و حرکت جنگل‌ها در صفحه X–Y به‌طور کلی بهتر باشند، بایستی جزئیات داده‌های اولیه را به‌طور کامل تحلیل کنیم.

3- نتایج درصد محدودیت اتکا در برابر حجم محسوب می‌شود مشابه است. برای اینکه سرعت و حرکت جنگل‌ها در صفحه X–Y به‌طور کلی بهتر باشند، بایستی جزئیات داده‌های اولیه را به‌طور کامل تحلیل کنیم.

۱۰- نتیجه گیری

با توجه به بررسی‌های انجام شده در این پژوهش می‌توان نتیجه گرفت که...

واژه‌نامه

1. collocated
2. instabilities
3. wake
4. spectral element
5. pseudo-time stepping
6. covariant or contravariant

مراجع

۱۶. میرزابکی، س. غ، "تحلیل عدیدی جریان‌های سبب‌دادهی داخلی و خارجی به روش مختلف و محدوده برمرز" پایان‌نامه کارشناسی ارشد گروه مهندسی مکانیک دانشگاه فردوسی مشهد، ۱۳۷۸.