تحلیل عددهای میدان جریان سه بعدی حول یک کره در رینولدزهای پایین به روش مختصات منطبق بر مرز

محمدرضا مدیری، حمید نیازمند و سید علی میرزگری
گروه مهندسی مکانیک، دانشکده مهندسی دانشگاه فردوسی مشهد

چکیده: در این پژوهش به بررسی عددهای میدان جریان تراکم تابع در اطراف یک کره جامد در رینولدزهای پایین (تا حدود 270) پرداخته شده است. برای انتخاب قابلیت‌های روش حجم محدود، از روش مختصات منطبق بر مرز استفاده شده است. برای کردن شرایط مرزی از روش ول-ای برای حل TDMA مرتبط کردن میدان‌های فشار و سرعت، از الگوریتم سیملیس استفاده شده است. سیستم معادلات جبری حاصل آن توسط روش شنیده شده و با تفاوت تجربی و عددهای موجود مطابقت شده است. سپس از آن به بررسی میدان جریان حول یک کره جامد در رینولدزهای (270-20) پرداخته شده است. نتایج به دست آمده از جریان خارجی حول یک کره در رینولدزهای پایین (270-210) نشان داده است که اگرچه جریان پایدار است اما عدم تقارن پیدا آمده در صفحات معادله به خوبی قابل مشاهده است و مرحله از بین رفتن تقارن هندسی خطوط جریان در رینولدز 211 شروع می‌شود.

واژگان کلیدی: کره جامد، برخاستگی، تحلیل سه بعدی، معادلات منطبق بر مرز

Three Dimensional Analysis of Flow Past a Solid-Sphere at Low Reynolds Numbers with the Aid of Body Fitted Coordinates

M. R. Modarres-Razavi, H. Niazmard and S. A. Mirbozorgi
Department of Mechanical Engineering, Mashhad Ferdowsi University

Abstract: In this paper, the flow-field of an incompressible viscous flow past a solid-sphere at low Reynolds numbers (up to 270) is investigated numerically. In order to extend the capabilities of the finite volume method, the boundary (body) fitted coordinates (BFC) method is used. Transformation of the partial differential equations to algebraic relations is based on the finite-volume method with collocated variables arrangement. For solving the obtained algebraic relations, the TDMA in periodic state is used. To approximate the convective fluxes, the differencing scheme of Van leer is used and SIMPLEx handles the linkage between velocities and pressures. The verification of the code is checked by the analysis of flow past a solid sphere at low Reynolds numbers of 20 to 210. A good agreement is obtained between the present results and the available experimental and numerical data. The flow-field past a sphere at low Reynolds numbers of 210 to 270 shows that the steady non-axisymmetric regime is going to build up at the Reynolds number of 211.

Keywords: Solid-Sphere, Wake, Three Dimensional Analysis, Boundary Fitted Coordinates
 أهمیت علامت‌شناسی

<table>
<thead>
<tr>
<th>علامتی</th>
<th>معنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>شکل اندیس معرفی محورهای مختصات عمومی</td>
</tr>
<tr>
<td>X_{wake}</td>
<td>طول گرداب پشت کره</td>
</tr>
<tr>
<td>X_0, Y_v</td>
<td>مختصات کارتریجین مراكز گردابها</td>
</tr>
<tr>
<td>α</td>
<td>ضریب زیر تخفیف</td>
</tr>
<tr>
<td>δ</td>
<td>ضخامت لایه مزری</td>
</tr>
<tr>
<td>δ_v</td>
<td>حجم جزیی یک حجم کنترل</td>
</tr>
<tr>
<td>ϕ</td>
<td>متغیر عمومی</td>
</tr>
<tr>
<td>g_f</td>
<td>ضریب نفوذ متغیر عمومی</td>
</tr>
<tr>
<td>μ</td>
<td>لزجت</td>
</tr>
<tr>
<td>ν</td>
<td>لزجت دینامیکی</td>
</tr>
<tr>
<td>ρ</td>
<td>چگالی محورهای دستگاه مختصات محاسباتی</td>
</tr>
<tr>
<td>w, e, s, n, l, h</td>
<td>زیرنویسی به ترتیب: جهود غربی، شرقی، جنوبی، شمالی، پایینی و بالایی</td>
</tr>
<tr>
<td>x, y, z</td>
<td>مشتق‌های نسبت به محورهای مختصات کارتریجین</td>
</tr>
<tr>
<td>$\frac{\partial}{\partial}$</td>
<td>مشتق‌های نسبت به محورهای مختصات محاسباتی بالاترین</td>
</tr>
</tbody>
</table>

1 - مقدمه

بررسی سه‌بعدی جریان عبوری از روی کره، حالت ساده‌ای از جریان سیال‌های بر روی اجسام است و در عین حال، اجرای بررسی نیاز به بررسی تاکون بررسی‌های تجربی و عدیدی متنوعی برای بررسی جریان حول کره در اعداد ریلندز مختلف انجام داده شده است.

اگرچه نتایج در [1] نشان داد که تجربی اشکارسازی جریان را برای مطالعه برخاستگی پشت کره در ریلندزهای 300-500 مورد تقارن هندسی در سایه‌نشینی پر یافته، عدم ایجاد جریانی ناپایدار در حضور تقارن هندسی در سایه‌نشینی پر یافته، در

استقلال، سال 20، شماره 2، اسماعیل 1380
احالیک که در ریونیوژیاژی بین ۲۱۰ تا ۲۷۰ مورد بررسی قرار گرفته است.

۲- معادلات حاکم

معادلات حاکم بر جنرال سیال، معادلات اصل برای جرم و ممتنت محسود. این معادلات برای سیالات نابینای نیوتنی در شکل ناسازی به صورت زیر باید محسود [7]

\[a \frac{U_j}{\varepsilon_k} = 0 \]

\[a \frac{U_i}{\varepsilon_k} + \frac{\partial (U_j U_i)}{\partial x_j} = - \frac{1}{\rho} \frac{\partial P}{\partial x_i} + \nu \frac{\partial^2 U_j}{\partial x_j \partial x_i} \quad i, j = 1, 2, 3 \]

که در آن \(\mu = \frac{\mu}{\rho} \) است. معادلات بالا از نوع معادلات با شرایط مزی و اولیه بوده ولذا جواب آنها کاملاً وابسته به شرایط مزی است. حل معادلات فوق به جز برای حالات بسیار ساده، از طریق تحلیل ریاضی سیار مشکل است.

سپس به سایر مشکلات مشابه این تحلیلی تقریبی و یا تحلیل عددی به حل آنها پرداخت [7].

در موجب معادلات اجباراً معادلات کشورنیوند و برا در تبدیل معادلات با مشابهتری باید به روابط جبری بین متغیرهای وابسته از روش حجم محدود کشورنیوند گرفته شود و برای پرداخت از محاسبات مربوط به مشابهت کشورنیوند با کانتونرورینت، معادلات ممتن برای سرعت در مختصات کارترین عینی ۷ و به عنوان یک اسکالر حیل محسود. نکته‌ی کلی ذکر این است که مختصات به کار رفته در حل، مختصات منحنی خطوط مشخص بر مزرعه و فقط با جای مؤلفه‌های سرعت کاتونرورینت یا کانتونرورینت، مؤلفه‌های سرعت کاتونرورینت به کار گرفته شده‌اند. علاوه بر شکل ناسازی ارائه شده می‌توان یک مدل عمومی واحد به صورت زیر ارائه کرد [7]

\[\hat{\alpha} \text{ اندکی نگینی کوکویی} \hat{\alpha} \text{ شهرت دارد و در مقاله حاضر می‌باشد.} \]

سفاته قرار داده است. او در رابطه با پایداری منطقه برخاسته مشاهده کرد که در ۱۳۰ حسیب مبارزه خنثی زیادی در پشت حلقه گرده شروع می‌شود. مگاکور و بی‌شمار [2] روش تحریک مرن‌سایی توسط رگ با کار بردن و مشاهده کردن در ۲۷۰ رساله تقارن محوری خود را از دست می‌دهد در حالی که هنوز پایداری خود را حفظ می‌کند.

از انجا که هم اکنون بررسی موضوعات تجربی جریان حول یک کره ناپایدار به کارگیری گروهی زیاد است، در نتیجه حجم معادلات فرایند توانایی رایانه‌ای موجود است، بنابراین هدف ما این است که هر چنین مشکلی با اتخاذ یک شبیه حل عددی است که محاسبات لازم به ازای هر گرا کاهش دهد. در پژوهش حاضر با استفاده از روش حجم محدود با آرایش مربی شده و مهندسی به کارگیری مؤلفه‌ها کارتونرورینت سرعت به جای مؤلفه‌های کارتونرورینت یا کانتونرورینت یک آن‌ها، حجم معادلات به صورت کاملاً ساده و در نتیجه آنها بررسی جریان حول یک کره و مقایسه تناوب آن با تناوب ارائه شده توسط دیگران موثر شده است. در ادامه دینامیک جریان ۱۳۸۰/۱۴۹۳
3- انفعالات محاسباتی

شکل نهایی محاسباتی، اکنون آماده است تا را در شبکه ایجاد شده در حوزه محاصلاتی، روي حجم‌هایی کنترل شکل (1) منفصل شود. حاصل انفعالات این نتیجه است
\[
\int_A I_d A = \int_V S_d A dV
\]

پس از محاسبه مقادیر شارهای جابجایی و پخش و همچنین عبارت چشمه برای هر حجم کنترل، می‌توان محاسبه بالا را برای گروه مرکزی P به شکل استاندارد زیر خلاصه کرد
\[
a_P \phi_p = \sum a_{NB} \phi_{NB} + S_u
\]
\[
a_P = \sum a_{NB} - S_p
\]
طبق شکل (1) زیرالیس NB دلالت بر گره‌های مجاور گره P دارد.

4- محاسبه شار جابجایی جرم و متغیر وابسته

طبق شکل (2) در محاسبه سرعت بر روی روز حجم کنترل از میان‌بایی خطي بر حسب مقادیر آن در مرکز حجم کنترل استفاده شود، باعث ایجاد نوسانات غیرفیزیکی در جواب‌ها می‌شود.
اصلاح فشار تبدیل کردن. اگر از معادله پوستکنی روی حجم کنترل شکل (1) انتگرال بگیریم شدید و مهیجین برای اختصار برای یک ایجاد در هر گرفته شود می‌توان نوشته
\[m_e - m_w = 0 \]
(16)
با جاگذاری معادله (15) و (12) در معادله (16) آن گاه
\[\rho \left(\frac{\alpha}{1 - \alpha P_a} \Delta V \right) = \rho \left(\frac{\alpha}{1 - \alpha P_a} \Delta V \right)_w + \left(\frac{\alpha}{1 - \alpha P_a} \Delta V \right)_{e} \]
\[m_e^* - m_w^* = 0 \]
(17)
این معادله انفعال شده پوستکنی در پی بود است که مجهول آن فشار اصلی \((P) \) در روش سیمیل‌سی خواهید بود.

7- روی حل عدید
برای اعمال روی حل عدیدی جهتا فیزیکی پیچیده \(
\psi \) در دستگاه‌های محمل خلفی‌فیلم بر اثر محورهای دوی روزبه شده نقدی در محدودیت‌های کاری و محاسبات ناپایداری در بین محورهای دستگاه‌های محمل خلفی‌فیلم بر روی حل و روش‌های رایج برای حل مسائلی است در کاریزمنی برداری با اعمال روی حل مشکل زنجیره‌ای و به کاریزمنی برداری‌های پایه‌ای دستگاه‌های محمل خلفی‌فیلم می‌شود.

5- محاسبه شار پخش
عبارت دوم سمت راست در معادله (5) شامل پخش است که
\[\mathrm{strain} = \left(\gamma \Delta V \right)_v = \left(\gamma \Delta V \right)_{e} \]
(10)
مقادیر \(\Delta V \) برای وجه شریک در مختصات نامعلوم عمومی
\[\left(\Delta V \right)_{e} = \left(\Delta \hat{V} \right)_{e} \]
(11)
که در آن \(\hat{g}_i \) بردار \(\hat{g}_i \) کوواریانس و \(\hat{g}_j \) بردار \(\hat{g}_j \) کوواریانس.

6- معادله اصلاح فشار
برای تبدیل معادله پوستکنی به معادله‌ای برای فشار، نگارنده سیمیل‌سی [11] روی شکوه چنین نانویی اعمال شده است. استفاده از شبکه چنین نانویی به اندازه واریانس از محاسبات اضافی در پارامترهای هندسی و مهیجین مسیره‌ای اعمال شرایط مرزی بوده است. برای شرایط شرودیکین پخش \(m_e \) به دو قسمت قدیم به علاوه اصلاحی می‌گویند.

\[m_e = m_e^* + m_e^* \]
(12)
\[m_e^* = \rho \left(\frac{\alpha}{1 - \alpha P_a} \Delta V \right)_w \]
(13)
که در آن \(\left(\Delta U \right)_w \) مقادیر مؤلفه‌های سرعت کواریانس مسیره‌ای. این مؤلفه‌ها در روش سیمیل‌سی به سرعت زیر با میدان فشار مربوط می‌شوند.
\[U_i = -\alpha \frac{\delta V}{\delta x_i} \]
(14)
با جاگذاری (14) در
\[m_e^* = \rho \left(\frac{\alpha}{1 - \alpha P_a} \Delta V \right)_{e} = \rho \left(\frac{\alpha}{1 - \alpha P_a} \Delta V \right)_{e} \]
(15)
که در آن \(\alpha \) ضریب زیر تکثیف است.
حال می‌توان معادله پوستکنی را به شکل معادله‌ای برای

استقلال سال 26، شماره 2، اسفند 1380
صفحه 195
۹- ارائه تناوب و به بر روی آنها
الف) جریان حول کره در رینولدز ۲۰۰ (زمین پایدار)
به تحلیل میزان جریان بر روی کره در این رژیم سه‌تایی به عنوان آزمون صحت روندهای و شکل‌های مختلف بررسی و نتایج در این ایست هم در ایرانی تابشی با چهار شکل مختلف بررسی شده است. (۲) انتخاب شیب (۳) تعداد غره‌ها
رنولدز ۱۰۰ در جدول (۱) نشان داده شده است.
همانطور که مشاهده می‌شود با تغییر ابعاد شبکه، مشخصات میزان جریان فقط تغییرات ناجی با نشان می‌دهد.
و روندهای تغییرات میان این ایست هم که ایفای نشان دهند در محدوده حاصله را آنکه تغییرات مشخصات جریان فرته را کاهش یافته ایست. همچنین عدم وابستگی نتایج به هندسه و توزیع گره‌ها از تغییرات نظر قابلیت اطمینان به بررسی مورد بررسی قرار گرفته است. از آنجا که مشخصات این رژیم جریان قابل توجه یک چراغ مدت در دیدگان به دست آمده و وجود ایست. لذا بهترین راه آزمون صحت بررسی، مقایسه مشخصات جریان در این رژیم است که به شرح ذیل ارائه می‌شود.

جذابیت جریان از روی کره در رینولدز ۲۰۰ شروع می‌شود و یک گردابی چندپر سطح کرک در نمای سه‌ بعدی تا گاه که کرک بیش از ۲۰۰ جریان پایدار و متقارن است و گردابی دارا نشانه‌های هستند. بین حداکثر این ایست به رینولدز نشان داده نشده ۵۰۰، ۱۵۰ و ۲۰۰ به
توابع با تغییرات و بیش از (۲) به نتایج ضریب و نیروی بردار
در شکل (۴) بردارهای سرعت و چند خط جریان نموده در
صحنه (۲) برای رینولدز‌های نمودن نمایش داده شده است. در این اشکال جهت جریان از چپ به راست است. در این شکل‌ها
دیده می‌شود که خطوط جریان از سطح کره در زاویه ۰ درجه چهاردنگی وجود داشت. این جریان نمودن، نمودن در نهایت یک چمن سطح سکون جلوی ایست (۳) و مجدداً در نقطه
مکان از این ایست به همراه رشته‌های در و نتایج دیده که چسب کرده چهار داده‌نامه مرکز
معیار همگرایی ارزیابی می‌شود و معیار همگراپس نیز مجمع
قدر مطلق تمام باقیمانده باعث بر جرم ورودی است که بیان
تا ۱۰۰۰/۰، نزول کند.

۸- شرایط مرزی و اولیه
پس از بررسی‌های لزق بررسی حوزه متأثر از وجود کره در
جریان سیال، سرعت امکانه در اطراف کره، برای
حل معادلات حاکم مطالعه شد. (۳) تعداد غره‌ها
انتخاب شده (۱۸۰۰/۰۰۰) بوده و ضریب انسجام شبکه در
نامی‌کردن برای تغییر در
از ۱۰ غره یک چند گره در نظر گرفته شده است.
جوهر تحلیل‌های انتخابی باعث شده است که با تعداد غره
کمتری (حدود یک چهارم مقدار در نظر گرفته شده است. تغییرات
بیان می‌شوند با یک رابطه بین ۳۲ و ۳۲ MB RAM
از زمان اجرای برنامه با یک رابطه بین ۳۲ و
حدود نشست خواهید بود که با توجه به تعداد
۱۱۵۰۰۰ غره موجود خامه است. شرایط مرزی سرعت و
فشار نقطه شکوفاکو کزری عبارتند از
الف) بر روی سطح کره (۱) شرط عدم لغزش اعمال شده
ب) بر روی مرز خارجی (i=۲ام در ناحیه و رودی O=۰+ و

ج) بر روی مرز خارجی (i=۲ام در ناحیه خروجی،
کریزتیو سرعت در انتخاب خط جریان محیط صفر است.
د) برای مرزهای عضوی (۱) و (۲ام نشانه
مقدار مربیتی و

ه) برای مرزهای عضوی (۱) و (۲ام نشانه
مقدار مربیتی و

و) برای مرزهای شرایط اولیه برای مولتیک سرعت، در انتخاب جریان، مقدار
شروع اولیه برای انتقال می‌شود.

است.
<table>
<thead>
<tr>
<th>ابعاد</th>
<th>ضریب دراک (CD)</th>
<th>نسبت طول گرداب به قطر کره</th>
<th>زاویه جدايش بر حسب درجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×11×61</td>
<td>1/0.9242</td>
<td>1/0.9316</td>
<td>1/0.9316</td>
</tr>
<tr>
<td>0.9325</td>
<td>0.9316</td>
<td>0.9316</td>
<td></td>
</tr>
<tr>
<td>1260</td>
<td>1260</td>
<td>1260</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۳- حوزه شیب‌بندی شده کره (الف) تصویر در صفحه (xy) (ب) تصویر در صفحه (yz).

(ج) شکل شماتیک و دستگاه‌های مختصات

شکل ۴- بردارهای سرعت و خطوط جریان مقارن عبوری از روی کره (الف) Re=۱۵۰ (ب) Re=۱۰۰ (ج) Re=۲۰۰
çekفه‌های هم مرکز گردابه (X, Y) مشخص شده است که در آن سرعت صفر است.
نصب شده در مرکز سنجیدگی شده است.
برای نمایش اعداد ریال‌زدی بین 20 و 50 نمایش گنجایش از لحاظ هندسی مشاهده شده و فقط در مقدارهای صفر به گردابه X_wake یا پایداری متفاوت است.

به‌طور طبیعی و آزادان کلیه مکان و اکثر محل این صفحه، توسط شیب حل عدیدی ناشی از جهت جاور شدن در مزه‌های عدیدی در جهت دوران نقاط هندسی، صفحه جریان متقابل با صفحه (x, y) را همان صفحه قرار می‌گیرد مثالاً در مقایسه حاضر در زاویه 45 درجه واقع شده است. به همین علت، اطلاعات میدان جریان محاسبه شده در صفحه دو ۴۴۸ درجه با اندازه ۱۲ درجه چرخش غیربرنده در صفحه (x, y) ارائه شده.

به‌طور طبیعی و آزادان کلیه مکان و اکثر محل این صفحه، توسط شیب حل عدیدی ناشی از جهت جاور شدن در مزه‌های عدیدی در جهت دوران نقاط هندسی، صفحه جریان متقابل با صفحه (x, y) را همان صفحه قرار می‌گیرد مثالاً در مقایسه حاضر در زاویه 45 درجه واقع شده است. به همین علت، اطلاعات میدان جریان محاسبه شده در صفحه دو ۴۴۸ درجه با اندازه ۱۲ درجه چرخش غیربرنده در صفحه (x, y) ارائه شده.

به‌طور طبیعی و آزادان کلیه مکان و اکثر محل این صفحه، توسط شیب حل عدیدی ناشی از جهت جاور شدن در مزه‌های عدیدی در جهت دوران نقاط هندسی، صفحه جریان متقابل با صفحه (x, y) را همان صفحه قرار می‌گیرد مثالاً در مقایسه حاضر در زاویه 45 درجه واقع شده است. به همین علت، اطلاعات میدان جریان محاسبه شده در صفحه دو ۴۴۸ درجه با اندازه ۱۲ درجه چرخش غیربرنده در صفحه (x, y) ارائه شده.

به‌طور طبیعی و آزادان کلیه مکان و اکثر محل این صفحه، توسط شیب حل عدیدی ناشی از جهت جاور شدن در مزه‌های عدیدی در جهت دوران نقاط هندسی، صفحه جریان متقابل با صفحه (x, y) را همان صفحه قرار می‌گیرد مثالاً در مقایسه حاضر در زاویه 45 درجه واقع شده است. به همین علت، اطلاعات میدان جریان محاسبه شده در صفحه دو ۴۴۸ درجه با اندازه ۱۲ درجه چرخش غیربرنده در صفحه (x, y) ارائه شده.
شکل 5- مشخصات هندسه جریان: (الف) زاویه جدایی ψ,(ب) طول گردهایه, (ج) موقعیت X، (د) موقعیت Y

شکل 6- مقاومت ضرب پس

روکس و والیمارث (تجربی)، جوشنژ و پاتل (ریاضی) و ریاضی (عملی)

استقلا، سال 2، همایش، 20 اسفند 1380
شکل ۷- کانترهای متشابه در صفحه (۲-۳) برای روتوندهای ۲۰۰-۲۱۰ (الف) کانترهای (ب) کانترهای (ج) کانترهای u و (د) کانترهای p

$\text{Re}=200$ و $\text{Re}=150$ (ج).

$\text{Re}=50$ (ب).

$\text{Re}=100$ (ه).
گزارش می‌شود که انحراف از حالت تقارن کامل مشهود است. وقتی رنولدز از 270 بیشتر می‌شود مشاهده شده است که جریان نتاپایدار است.

در شکل (11) حضور یک صفحه مسبب تقارن در جریان دیده می‌شود. در این شکل خطوط جریان مشابه از بردارهای سرعت تصویر شده در یک صفحه به ترتیب در صفحات (x,y) و (y,z) نمایش داده شده‌اند. در شکل (11-الف) واضح است که میدان جریان توسط صفحه (x,y) به دو قسمت منسوب تقسیم شده است. لااقل دسته تقارن (y,z) صفحه ایجاد کننده تقارن است. لازم به ذکر است که در شکل (11-الف) مؤلفه‌های سرعت خارج از صفحه نیز وجود دارند. بنابراین خطوط جریان در این صفحه خطوط سبزی واقعی نیستند. اما در شکل (11-ب) که صفحه (x,z) را نشان می‌دهد و میدان جریان نسبت به آن تقارن است، به جز در دو نقطه، هیچ مولفه سرعت خارج از صفحه‌ای وجود ندارد و مسیر حرکت ذرات در این حالت خطوط جریان واقعی نیستند.

در شکل (11-ب) دیده می‌شود که گرداگرد بی‌پایین کشیده شده‌اند. همچنین اختلاف اندکی در بردارهای بالا و پایین بانگر تابت نیوی این اندکی در جهت دوران f (جهت سوم)

شکل 9- کانترهای چرخش در رزیم‌های اقلیمی (الف) (ب) (ج) (د) با Re=200 و Re=150 (ب) Re=100 (ج) Re=50

شکل 10- ضریب نیروی جانبی Cl

قیمت Cl برای جریان متناظر طبیعیاً صفر است اما برای رزیم حاضر صفر نخواهد بود به طور مثال در رنولدز 211 مقدار آن تقییباً 0.7267/0 و در رنولدز 250 تا 70/0 است. محدوده جریان متناظر پایدار به طور تجربی بین رنولدزهای ۲۱۰ تا ۲۷۰ کارش شده است و نتایج مکارپی و پی‌شاب [۴] و ناکامورا [۵] و تومولیدز [۶] مورد ان موضوع است.

نتایج مربوط به تمام مسایل اعداد رنولدز در این رزیم ذاتا مشابه هندسی دارد و لذا در اینجا نشان داده نشده است.

201

استقامت سال ۲۰۱۷ شماره ۲ اسفند ۱۳۹۰
این اختلاف فشار بین دو کانون بر اساس ایجاد قادریان فشار روی مراکز کرنش‌های اتماتیک می‌شود. ولذا باید جریان در اتمات احیا شد و باعث ایجاد می‌شود. ضعیف‌ترین نقطه مشترک می‌شود. تحقیقات در هنگام جریان باید باعث بر حسب تقارن محوری بودن این عمل در ریزوند ترمیم 211 شرکت می‌شود و یک افت فشار کلی در مرکز کرنش‌های اتفاق می‌افتد.

نامبراین واضح است که ناکامی جریان‌های متقابل محوری موجب بودن تولید یک رنگ فشار ضعیف در مراکز کرنش‌های زیر حضور شناوی است. این رنگ فشار ضعیف بستری بسیار مانندی است تا در صورت حضور اغتشاشات در جریان اصلی، موجب پرور یک گردایان فشار در اتماتیک دو طرف امکان می‌شود و عبارت دیگر رنگ فشار ضعیف زمینه را برای دخالت اغتشاشات جریان فراهم می‌آورد و در نتیجه موجب بر حسب تقارن مرکزی جریان می‌شود. منجر به یک رنگ توزیع بالالایی فشار و نهایتاً شکل ممکن فشار کرنش‌های کرنشی خارج رونده‌ها یا هنگامی که سیال از داخل کانون خودتر تحجه می‌شود تغییر می‌دهد.

برای مشاهده مسیر مشهودی در (21) رسم شده است. از شکل (12-13) واضح است که سیالی که از بالا برود جریان میدان وارد کانون جریان تحتانه گردیده می‌شود و در جهت پادساختگر رخیده‌ها به شکل یک مارچیخ درونی عمود بر صفحه (X,Y) از آن صفحه خارج می‌شود درست مانند این است که بعید شده باشد. سپس از طریق یک مسیر مارچیخ به

مختصات منحنی خط کروی که حول اتمات جریان اصلی دوران می‌کند است به علامت گردایه‌ها یک حساب کامل را تشکیل می‌دهد و برخلاف حالت روز متقابل، سیال در حوزه گردایه حس نموده است. بلکه در اینجا، کانون چرخش تحتانی کاملاً از جریان بالا چیده می‌شود و کانون چرخش فوقانی یا حوزه سیال را از مرکز خود به سمت پیوسته تحجه می‌کند. البته پس از اینکه این ذرات سیال را حول کانون چرخش تحتانی، یک نیمه دیگر داد گاه به پایین دست جریان تحویل می‌دهد.

از لر برقراری اصل باید که جریان این چنین کنند که سیال از کانون چرخش تحتانی خارج شده باشد. همچنان یافته سیال به کانون چرخش فوقانی وارد شده باشد. لذا به علت برقراری اصل پوستگاه باید یک گردایه از کانون تحتانی به سمت کانون فوقانی سرازی شده باشد به طوری که سیال به یک یا دو گردی مستقیماً منقل شود. سیری این اندازه در صفحه (X,Y) نبست بلکه سیال از مرکز کرنش‌های موجود در اتماتیک دو طرف کرده و

در شکل (12) کانون‌های فشار برای صفحات (X,Y) و (Y,X) نشان داده شکل در (13) رسم شده است. از شکل (12-13) واضح است که سیالی که از بالا برود جریان میدان وارد کانون چرخش تحتانه گردیده می‌شود و در جهت پادساختگر رخیده‌ها به شکل یک مارچیخ درونی عمود بر صفحه (X,Y) از آن صفحه خارج می‌شود درست مانند این است که بعید شده باشد. سپس از طریق یک مسیر مارچیخ به می‌شود تغییر می‌دهد.

اوت، صفحه 2، شماره 1380
کانون فوتوانی سرانجام به پایین دست حریان می‌پردازد.
در شکل‌های (۱۲-ب) و (۱۲-ج) حرکت بیرون از صفحه و ساخته م gerektiğini می‌شود.
دیده می‌شود که حریان چگونه از کانون تحت‌الال یا کانون فوتوانی منتقل می‌شود.

کانون چرخش فوتوانی توریک می‌شود با این تفاوت که در حیس توریک جهت چرخش آن عضو شده، در جهت حرکت عقب‌های ساعت چرخیده و به شکل مارپیچ بیرون می‌جوید.

و در صفحه (۱۲-۱) می‌شود انگاه پس از چرخش در
1 - استفاده از مدل‌های سرعت کارترین به جای مدل‌های
ساخت کورانت و یا کارترین‌ها و همچنین به کارگیری
روش حجم محدود با آرایش مرتب شده مناسب‌ترین
کاهش سطح حجم محاسبات لازم به احافظه حرکت گردش
است. به طوری که تحلیل مستقیم نظر جریان حول کره
که نیازمند گونه‌زدایی است بررسی شده است.

2 - بحوزه تکثیرشده انتخاب شده است که با تعداد گرده
کمتری (حدود یک چهارم مقدار در نظر گرفته شده توسط
جانسون و باتل) بتوان مستقل با تقریباً با همان دقت تحلیل
کرد.

3 - نتایج به دست آمده از جریان خارجی حول یک کره در
رینولدزهای بین (0-20) حاکی از این است که در
رژیم مورد بررسی، اگرچه جریان پیاده است اما عدم
تقارن پدیده امدد در صفحات متعادل به خوبی قابل
مشاهده است و مرحله از بین رفتن تقارن هندسی خطوط
جریان در رینولدز 211 شروع می‌شود.

4 - نتایج به دست آمده از جریان خارجی حول یک کره در
رینولدزهای بین (0-20) حاکی از این است که در
رژیم مورد بررسی، اگرچه جریان پیاده است اما عدم
تقارن پدیده امدد در صفحات متعادل به خوبی قابل
مشاهده است و مرحله از بین رفتن تقارن هندسی خطوط
جریان در رینولدز 211 شروع می‌شود.

7 - ثبت‌گیری

8 - افزایش نامه

1. collocated
2. instabilities
3. wake
4. spectral element
5. pseudo-time stepping
6. covariant or contravariant

شکل 14- کانتورهای چرخش در $Re = 250$ (الف) $Re = 500$ (ب) در صفحه (x-y) (الف) و (ب) در صفحه (x-z)

مراجع

16. میرزاگی, س. غ, "تحلیل عددی جریان‌های سپید داخل و خارجی به روش مختصات منطقه بر مرز," پایان نامه کارشناسی ارشد گروه مهندسی مکانیک دانشگاه فردوسی مشهد, 1378.