مطالعه تجربی رفتار آرودینامیکی دو راکت بالک ناشو

محمدرضا سلطانی، حمید فاضلی، پژن فرمانی و علیرضا داوری
دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف
دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف

چگی‌ده - به منظور مطالعه رفتار آرودینامیکی راکت‌های بالک خمیده، برای نخستین بار در پژوهش‌های موجود متعادل نداریم. در این پژوهش، برای بررسی جسمانی شال بالک آزمایش‌ها متعادل تکرار دیده شده است. در مرحله اولیه مدل استاندارد در تونل با مانور صوت بالا داشت ولکه اکتشاف محقق برای ایجاد $0.4 < M_a < 2.2$ و زاویه حمله $10 \leq \alpha \leq 4^\circ$ - مورد آزمایش قرار گرفته است. تناوب این آزمایشات کی شاخصی در پرواب طولی راکت است به دست آمده، که در رابطه بالا یا در نتایج به هیچ آزمایش مشابه در مرکز ناسا مقایسه شده است. این مقایسه نشان می‌دهد که آزمایشات انجام شده از دقت نسبتاً بسیار بیشتر است. پس از حصول اطلاعاتی از این توانیدن نابودی راکت بالک خمیده ای انجام مورد آزمایش قرار گرفته است. تحلیل نتایج ب به دست آمده در زواياه حمله و عددی محاسبه‌ای بسیار پاک و بهترین عملکرد راکت در حین پرواب مورد استفاده قرار گرفته است.

واژه گان کلیدی: تونل بالک، موتور بالک خمیده، بالاس، WAF، TTCP

An Experimental Study of the Aerodynamic Behavior of Two Wrap Around Fin Missiles

M. R. Soltani, H. Fazeli, B. Farahanieh and A. R. Davari
Department of Aerospace and Department of Mechanical Engineering, Sharif University of Technology

Abstract: An extensive experimental investigation to understand the aerodynamic behavior of wrap around fin (WAF) missile configuration has been conducted. Various tests using at first a standard model (TTCP) in the trisonic wind tunnel of Imam Hossein University has been performed. The tunnel has a test section of 60x60 cm and can operate at Mach numbers of $0.4 < M_a < 2.2$ and at attack angles of $-4^\circ \leq \alpha \leq 10^\circ$. Experimental longitudinal results are compared with those of NASA and an engineering code. The results for TTCP model are in good agreement. After gaining confidence on the TTCP results, a new model of WAF rocket was designed, built and tested. This paper compares the results of two models tested under the same conditions.

Keywords: Wind tunnel, Warp around fin, Missile, Balance WAF-TTCP

استقلال، سال 21، شماره 1، شهریور 1381

141
<table>
<thead>
<tr>
<th>فهرست علائم</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدد مخ</td>
</tr>
<tr>
<td>فشار استاتیک</td>
</tr>
<tr>
<td>فشار دینامیکی</td>
</tr>
<tr>
<td>عدد رینولدز بر واحد طول</td>
</tr>
<tr>
<td>مساحت</td>
</tr>
<tr>
<td>ضریب نیروی برد</td>
</tr>
</tbody>
</table>

| $\alpha (\text{Deg})$ |
| A (N) |

ضریب نیروی محوری	$C_A = \frac{A}{q_\infty S}$
ضریب نیروی پسای	$C_D = \frac{D}{q_\infty S}$
ضریب برش	$C_N = \frac{N}{q_\infty S}$
قطر مدل	$D (m)$
نیروی پسای	$D (N)$

1- مقدمه

اصطلاح بالک خمیده یا معمولا به سطوح خمیده‌ای اطلاق می‌شود که آنها در انتهای پایه به عنوان سطوح پایدار کننده و یا سطح کنترل کننده استفاده می‌شود و دارای شرایط انحنای برابر با بدن موشک بوده و نا هگمگی باز شدن به دنبال موشک پیچیده می‌شود. در صورتی که به دلیل قابلیت بندی یا حجم‌بندی و حمل و نقل آسانی از این بالکها به طور گسترده‌ای در موشک‌هایی که در داخل لوله پرتاب می‌شود استفاده می‌شود. این نوع بالکها طراحی شده تا بهبود کارایی اهداف و روند کنده موشک‌ها را در زیر بندی هواپیما و هواپیماهای جنگی آسان کرده است و این بالک‌های مربوط به تخمین بالک - بدن به شدت می‌کاهد. پس از شکل موشک و جدا شدن از سکوی پرتاب، بالک خمیده بار می‌شود. میزان پیچیدگی موشک‌های بالک خمیده به تدریج از راهکارهای دیگر موشک‌های هدایت و بهبود افزوده می‌شود.

2- الگوریتم کوکه یا سرعت بادی (4.7-4.5) M_∞.

3- نامتانوران بدنی نیروهای آرودینامیکی نسبت به محورها.

4- ادمام گشتخانه‌ای جابه‌ و جرحی.

5- ناباید یادی دینامیکی بر اثر نیروی جابجایی و ادمام گشتخانه‌ای جابه‌ و جرحی.

باکالوریای خمیده دارای مشخصات آرودینامیکی محکمر به فردی به ویژه در صفحات عرض عضوی هستند. به منظور توجه به بندر، رفتارهای غیر عادی و پیش به نیت شده که در بالاتر اشاره شده است تلاش‌های گسترده به عمل آمده است [2-5]. مکانیزم

ایجاد گشتخانه‌ای جابه‌ و جرحی در زوایای حمله بسیار کم

به دلیل کمکی بودن آنها به خویش قابل نسمت نیست و نتایج به دست آمده در تولیده یا بخشنده یا یکدیگر متفاوت است. به همین دلیل نا متفاوت و تنظیم می‌شود که روشنایی عضوی

برکلی خمیده برخلاف بالکهای تخت نسبت
 قادر به پیش بینی رفتارهای غیر عادی بالکهای خمیده نیست و
خفیف‌تر این لانه بود که تنها اثرات قابل اعتماد در طراحی بالکهای
خمیده در ریزهای مورد نظر آزمون‌های تولید باد است. بر این
اساس یک برنامه تحقیقاتی در بینالی موسمی به برنامه
یا شرکت کشورهای آمریکا، انگلیس،
کانادا و استرالیا در سال 1979 آغاز شد. این برنامه جامع شامل
آزمون‌هایی مثل این است که مهم‌ترین فاکتور استاندارد بر
آزمون‌های بالکهای خمیده مختلف در
تون‌های باد متعدد و در ارتفاع بین
رینولدز و زاویه‌های حمله
گوناگون است که از نمودار آن در مرجع [1] آورده شده
است. واقعیت آن است که در دهه 70 و
نیمه اول دهه هشتاد
میلادی، روش‌های عادی استاندارد برای
تحلیل بالکهای خمیده، نمونه‌برنامه استفاده از
ریزهای پتانسیل بود و
این روشهای قبلاً به پیشگویی پیشنهادی برای غیر عادی در بالکهای
خمیده نیستند. لذا برای تولید مسئولیت
شده است و استفاده از روش پتانسیلی
و مدل کردن دنباله بر برای نتایج تجربی نشان
در محاسبه مجدد صوت نتایج موقوع را در مقایسه با نتایج
تجربی نشان داد. به تدریج در سال‌های اخیر با استفاده از
پیش‌تریب که در دنیامک سیل‌سی‌های محاسباتی
CFD) به سمت این روش‌ها برینگری
شد و استفاده از راه‌های سریع، بسیاری از رفتارهای
غیر عادی بالکهای خمیده مورد تحقیق و تحلیل قرار گرفته
است [7-14] لحیملی این در تولید مورد روش‌های عادی استفاده
آزمون‌های تولید برای استفاده قرار گرفته است. به عنوان
مثال تغییر جهت کشتگاه جنریش و جنابی در محاسبه اعداد
ماک ماه مدل باد در آزمون مدل Bاد جنینه شده
است [8] و با کن توزیع هیچ روش عادی بیشین نشده
است و همچنین، روش‌های تجربی و آزمون‌های تولید برای
کشف و آشکار سازی پیشنهادی استفاده در بالکهای خمیده
پیشگویی بوده و هستند.

2- تولید باد

- که از نوع مکنده است نشان داده شده است. اجرایی تشکیل
دهنده‌ای تولید باد عبارت است از:
- ورودی: جهت هدایت هوا محیط به داخل تولید باد.
- لانه زنبوری: برای این از بین انتقالات هوا ورودی و
ایجاد جریان موارد ویکونوخت.
- محفظه آرامش: به منظور تخفیف انتقالات جریان هوا در
مقطع آزمایش.
- شبیله یک چک - وکارا: برای ایجاد جریان با عده‌های ماده
مدک نظر در داخل مقطع آزمایش. این شبیله‌ها از
صفحه فول‌ایز انتقال ابزار تشکیل شده است و به وسیله
جهشکی که در حال حاضر از نوع دستی تنظیم می‌شوند.

این مقطع‌ها به طبقه صفحه‌های مختاره‌ای تغییر دیواره‌های شبیله‌ها
نیست و عده ماده نیاز به استفاده از تغییر دور مونتاژ
حلصل می‌شود.

- مقطع آزمایش: مقطع آزمون این تولید مورد استاد.
دباینهای بالا و پایین این
مقطع برای حذف اثرات آبی حرارتی توسط جلوگیری از انکاس
مورت نشر خیزه‌های متخلخل صحتی تولید است. نسبت سطح
تخلخل به سطح کل مناسب باید جریان قابل تغییر
است. در دو دیواره جانین مقطع آزمایش، دریچه‌های
محور و مشابه برای نصب مدل در داخل تولید و
مشابههای مدل و یا جریان روی مدل با استفاده از تجهیزات
آشکار سازی جریان، تنظیم شده است. در داخل
مقطع آزمایش، سیستم تغییرات زاویه‌های حمله به توزیع را نیوی
کنترل است، قرار است مدل را در حالت حاضر در زاویه‌ای
حمله $\theta = 45^\circ \pm 0^\circ$ قرار دهد.

- دیفیوزور اول: برای کاهش سرعت جریان و بهبود کارایی.

- لوله هم فشار: برای ایجاد مکس در مقطع آزمایش در
حالات کاذب، مناسب و بهترین بهبود کارایی دیفیوزور.

- انتخبار: برای تأمین هواي مورد نیاز موتور در سرعت‌های
موفق صوت.

استلال، سال 21، شماره 1، شهريور 1381

143
الف- شماتیک تونل باد

ب- مدل استاندارد TTCP
در مقطع کاری
شکل 1- تونل باد سه منظوره دانشگاه امام حسن (ع)

فوریت روی مدل یا قسمت‌های مختلف تونل.
در حال حاضر این تجهیزات به صورت چشمگیری ارتداد
یافته‌اند که بعضی از آنها عبارتند از:

10-3 سیستم سنجش نیرو
تعدادی از لیس‌های شش مولفه استانداردی و دینامیکی برای
اندازه‌گیری نیروها و گشتاب‌ها. علی‌رغم به چندین استفاده که
السیاسی دینامیکی در دیوار بالابند اند، نیروها و
گشتاب‌ها در فرکانس‌های مختلف است. با استفاده از این
السیاسی می‌توان ضرایب دینامیکی که جسم پرده در بسیاری از
شرایط می‌تواند با آنها مواجه می‌شود با دقت بسیار خوبی
اندازه‌گیری کرد.

9- دیفیوزر دوم: برای کاهش سرعت و ایجاد فاصله مناسب
برای تخلیه شدن هوای ورودی از انزکتور و دیفیوزر
اول.

10- موتور جت: از نوع موتور هوایی.

11- هادی کاز خروجی: به منظور انتقال گازهای خروجی
به محیط.

3- تجهیزات
تجهیزات تونل در موقعیت‌های مختلف عبارت‌هدید از:
- تعدادی از لیس‌های سه مولفه برای اندازه‌گیری نیروها و
‌برا، پلاستیکی و گشتاب‌های پیچشی و چرخشی.
 مانور تقویت چند شاخه‌ای برای اندازه‌گیری توزیع

استقلال، سال 1381، شماره 1، شهریور 1381

144
4- مدلهای مورد آزمایش

مدلهای مورد آزمایش قرار گرفته است که اختلاف‌های در دمای آب در سیستم تهویه حمله مدل را در دهانه‌های حاوی دیگر تغییرات زاویه حمله به صورت دینامیکی با فراکانت همواره تغییر داده و نیروهای دینامیکی حاصله را با استفاده از انرژی دینامیکی اندامه گیری کرد.

3- سیستم دینامیکی

با استفاده از آن سیستم می‌توان زاویه حمله مدل را در داخل تونل به صورت دینامیکی با فراکانت همواره تغییر داد و نیروهای دینامیکی حاصله را با استفاده از انرژی دینامیکی اندامه گیری کرد.

- 4- ترکیب‌سازی فشار

برای اندامه گیری فشار روی مدل، قابل‌های مانور جوی‌های استفاده می‌شود که هر همان ذکر شد نتایج آزمایش‌های مدل در تونل‌های باد مسیر در دسترس است. تحت این‌اندازه نیز است که با استفاده از آن‌ها می‌توان توزیع فشار روی مدل در حالت‌های تافه‌ای و دینامیکی را صوت مورد آزمایش قرار داده با دیل کرده که در برخی از این‌اندازه‌های به تنظیم روند مقاطع کاری توان آلی‌که کرده، در صورتی که نیاز به اندامه گیری توزیع فشار روی مدل با استفاده از مانور جوی‌های مدل در دیده داده شده، به دلیل محدودیت‌های تغییر مورد نظر صورت می‌گیرد به دلیل صورت مورد آزمایش قرار گیرد در بایان کرده، با استفاده از ترکیب‌سازی فشارهای به‌نین‌اندازه‌های که بود نیز این‌اندازه‌های به دلیل حافظه‌ای که می‌توان تعداد زیادی از آن‌ها را در مدل قرار داد که در نتیجه:

1- در تاریخ اندامه‌گیری انرژی می‌شود.
آزمون آن در تولید است. اگرچه با استفاده از این نسخه برنامه رایانه‌ای موجود در صنعت برخی از برترین کفتر پیش‌بینی است، ولی برنامه مربوط به‌طور کامل به‌ینی برای مدل با بالک خمیده نیست و باید در اهداف این آزمایشات همانطور که ذکر شد اجرای نیازمندی برای بهینه سازی و بهبود برنامه مربوطه است. در ادامه این مقاله مدل این راکت بالک خمیده، مدل دوم نامیده می‌شود.

الف - مدل اول (مدل استاندارد)

ب - مدل دوم (مدل راکت بالک خمیده)

د - دماغه اجباری نوع سکاتی

ج - دماغه اجباری نوع مسی

شکل 2- مدل‌های مورد آزمایش در تولید باد دانشگاه امام حسین (ع) (اندازه‌ها بر حسب قطر بیشتر است).

- تایید آزمایش

کلیه آزمایشات در تولید باد سمنوترو در دانشگاه امام حسین (ع) انجام گرفته است. تایید خروجی از بالا‌سوزت بر اساس اطلاعات) A/D Board 16 کالانهٔ ثابت و ضبط شده است. هر نقطه داشته داده روی منحنی میانگین 100 نمونه است.

قبل از اینکه از یک تونل باد در رژیم کاری صورت نظر استفاده شود لازم است کیفیت چریان در مقطع آزمون مورد بررسی قرار گیرد. (به تونل باد دانشگاه امام حسین (ع) می‌تواند در خارج از رژیم نصب و در حال استفاده بوده است و پس از خرید، بخش‌ها و کلیه اطلاعاتی درباره کیفیت چریان در مقطع آزمون در دسترس نیستند و بنابراین تضمین گرفته شد که در کلیه رژیم‌های کاری (زیر
مورد مقایسه فرایند گرفته است. اختلاف مشاهده شده ناشی از دقت در ساخت مدل مورد آزمایش است که اختلافات جزئی با مدل استاندارد دارد. همچنین نوع دماغهای این در مدل تیز بنا هم متفاوت است. در ساخت مدل بعدی از TTCP دستگاه‌های ترک تیز متفاوت استفاده شده است و انظار می‌رود که این اختلافات نیز از بین برود. ضریب کیفیت جریان در تونل به دانشگاه‌های حساس یا کیفیت و نرخ جریان در تونل مرجع [6] متفاوت است چون تونل مرکزی [6] از نوع دمده است و تیز. برخی از اختلافات حاصله به دلیل کیفیت جریان و برخی دیگر به دلیل مدل است.
در شکل‌های (۵-الف) و (۶-ب) تغییرات \(C_N \) نسبت به زاویه حمله در شدت هر مدل \(M_w \) برای هر دو مدل مورد مقایسه قرار گرفته است. همان‌طور که در شکل (۵-الف) مشاهده می‌شود در زمینه زیاده تغییرات \(\alpha \approx 7^\circ \) با زاویه حمله برای هر دو مدل تا حد زاویه حمله تقیبی به‌کار گرفته است در زوايا حمله بالاتر \(C_N \) مربوط به مدل دوم بیشتر از مدل اول است که این اختلاف ناشی از قدرت لاغری در هر دو مدل است. لازم به ذکر است که دماغه هر دو مدل اجبارا نوع معنی‌دار است. نتایج اصلی در ضریب لاغری پنج، ضخامت و طول بالکه‌ها که احتمالاً این اختلافات سبب تغییرات \(C_N \) در مدل می‌شود.

در شکل (۶) نشان داده شده است. در این شکل حساسیت ضریب تری نیروی به تغییرات عدد رینولدز کاملاً ساده است. با ازداده عدد رینولدز کاهش می‌یابد که میزان کاهش نیز خود تابع از عدد مخ اسکار است. با افزایش عدد مخ از زیستگی به مافوق صوت موج ضریب‌های تغییر شده در جلوی مدل باعث افزایش ضریب تری نیروی محوری می‌شود. لازم به ذکر است که در عدد رینولدز و زاویه حمله یکسان ضریب تری محوری برای هر دو مدل ۱/۸ بیشتر از مخ اسکار است که احتمالاً به خاطر جدایی موج ضریب‌های از یکدیگه در مخ اسکار و با افزایش عدد مخ این موج به دماغه می‌چسبد و باعث کاهش ضریب تری محوری می‌شود.

در شکل (۶) نشان داده شده است. \(C_N \) در زاویه حمله بالاتر عدد مخ به‌همراه تغییر حاصله در فرآیند از این‌ها و تغییر مرجع [۵] مربوط به مدل TTCP در شکل (۷) آورده شده است. استقلال سال ۳۱، شماره ۱، شهریور ۱۳۸۱
همان طوری که در شکل مشاهده می‌شود نتایج این آزمایش با مقدار ماکریم مبرای هر دو مدل تقیی‌تر یکی می‌باشد. می‌تواند آن در ماه‌ها مختلف افزایش می‌یابد. در عده‌های مافوق صوت، مدل دوم از مدل اول خیلی کمتر است که ناشی از قدرت موج مایل تشکیل شده در نواحی حذف صوت در دسترس بیشتر باشد. این شکل‌ها تاثیرات ضریب لاغری بر ضریب نیروی محرک صفر کاملًا قابل مشاهده است. در عده‌های مافوق صوت تغییرات با مقدار ماکریم مبرای هر دو مدل بسیار کمتر از تغییرات با عضد ماکریم مبرای هر دو مدل بسیار کمتر است. در زیمعبده مافوق صوت کاهش بسیار ایکل است در حقیقی که برای مدل دوم با خاکی می‌باید که ناشی از اثرات ضریب لاغری است. تغییرات با عضد ماکریم مبرای هر دو مدل زیست‌نشانی مثبت 2 درجه C4 است.

تغییرات ضریب نیروی پس از زاویه حمله در عده‌های ماف‌

در شکل (8) تغییرات با عضد ماکریم مبرای هر دو مدل زاویه حمله 2 درجه یکی می‌باشد. می‌تواند آن در شکل مشاهده می‌شود در سرعه‌های زیب صوت نیروپسی پسای مربوط به مدل اول در تمام زواهای حمله آزمون شده کمتر از نیروپسی پسای مربوط به

شکل 7- تغییرات با عضد ماکریم مبرای هر دو مدل Zای حمله صفر
شکل 9-ب- تغییرات C_0 با زاویه حمله در عدد مال

برای هر دو مدل

آزمایشات تعدادی در تولید با سه منظوره دانشگاه امام حسن (ع) بر روی مدل های TTCP و RAكت باکس خمیده در عدهای مال و زروايات حمله مختلف انجام گرفته است. نتایج حاصله با اطلاعات موجود و همچنین نتایج برخی نمودارها به پایان داده می‌باشد. ضرایب نیروی محوری و عضویت هر دو مدل در عدهای مال و زروايات حمله مختلف با یکدیگر مقایسه مدل دوم در همان زروايات حمله است. شکل (9-الف) در صورتی که برای عدد $2.2 = M_{0} \alpha$ این روند درجهت عكس است، شکل (9-ب) و مدل دوم نیروی پسای کمتری دارد. احتمالاً نیروی پسای زیادتر در مدل دوم در عدد $M_{0} = 0.6$ ناشی از پسای اصطکاکی یک پیشرفت است. زیرا طول این مدل از طول مدل اول پیشرفت است که سبب ایجاد نیروی پسای اصطکاکی بیشتری می‌شود. لازم به ذکر است که ضریب نیروی پسای ایجاد مدل زیر از پسای اصطکاکی پیشرفت از پسای فشاری است. در زروايات حمله 0.5α همان طور که در شکل (9) نشان داده شده است جدایی جریان به سبب می‌شود که نیروی پسای فشاری بر پسای اصطکاکی غلبه کرد و ضریب نیروی پسای برای هر دو مدل افزایش یابد.

۶- نتیجه‌گیری

آزمایشات ممتدی در تولید با سه منظوره دانشگاه امام حسن (ع) بر روی مدل های TTCP و راکت باکس خمیده در عدهای مال و زروايات حمله مختلف انجام گرفته است. نتایج حاصله با اطلاعات موجود و همچنین نتایج برخی نمودارها به پایان داده می‌باشد. ضرایب نیروی محوری و عضویت هر دو مدل در عدهای مال و زروايات حمله مختلف با یکدیگر مقایسه
خواهند شد. با استفاده از بالانس شیخ مولفه سعی خواهند شد ضریب گستن در موانع می‌توان با استفاده از تحلیل‌های CFD و حتی آنالیزگیری آن توسط تویيل باج مشکل است نیز اندادگی شده همچنین اثرات بالکه‌های مختلف نیز مورد بررسی قرار خواهند گرفت.

قدارانی نگارنده‌ترین زمینه مطالعه و تحقیقات صنایع شهید باقری، به ویژه مدیریت آروری‌نامه و مکانیک سیرواز و همچنین بررسی آزمایشگاه‌آروری‌نامه شیکاگو ام‌سی‌سی (ع) که انجام این تحقیقات را امکان‌پذیر ساخته و صمیمانه ثبت و قدردانی می‌کند.

شده و علت تغییرات بررسی شده است. در آزمایشات بعدی با استفاده از بالانس شیخ مولفه که از دقت بیشتری برخوردارند کلیه ضرایب در زاویه حمله مختلف اندادگی کری

واژه‌نامه

1. Wrap-Around Fins or WAF
2. Coupling
3. Sidewall Balance
4. Fineness Ratio
5. Trisonic
6. Supersonic Rohmbo
7. Semi-Empirical
8. Friction Drag
9. Slender body
10. Wave Drag

مراجع

15. سلطانی، م. ر., فاضلی، ح. و فرهاتی، ب. "مطالعه تجربی نیروهای آبودینامیکی یک موشک بالک خمیده در عده‌های مخ و زوایای حمله مختلف." ششمین کنفرانس سالیانه مهندسی مکانیک و سرمایه کنفرانس بین المللی مهندسی مکانیک، انجمن مهندسی مکانیک ایران، اردیبهشت 1377، صص. 307-317.