تحليل اجزای محدود فرآیند نورد حلقه در حضور غلتکه‌های راهنما

موجود رضای‌فرزندان، محمد سلیمی، محمد سید کادولا
دانشگاه مهندسی مکانیک، دانشگاه صنعتی اصفهان
دانشکده مهندسی مکانیک، دانشگاه بیرجشگان، کیش-کانادا

(دریافت مقاله: 8/11/8800 - دریافت نسخه نهایی: 8/17/81)

چکیده - در این مقاله روشی جدیدی برای مدلسازی غلتکه‌های راهنما و بررسی اثر آنها در فرآیند نورد حلقه ارائه می‌شود. این روش که مدل‌های اکرماپی نامیده می‌شود اولین و تنها روشی است که قادر است ضمن مدلسازی غلتکه‌های راهنما نیروی عکس اعمال این غلتکه‌ها را با توجه به ساختار مکانیزم تطبیق دهنده محاسبه کند. از خصوصیات این روش سازگاری آن با استوای فرمول‌بندی اجزای محدود ساده‌گی در به کارگیری و عدم تغییر جمله‌های غیر محاسبه‌کننده است. این روش با موفقیت در تحلیل اجزای محدود نورد حلقه به مقاطع مستطیلی و T از شکل به کار گرفته شده است. نتایج تحلیل اجزای محدود، تحلیل نوری جدیدی که بر مبنای نظریه پایوی-هرتز به انجام رسیده و نتایج آزمایش‌ها در توالی بسیاری سنتی و این نتایج می‌تواند از اکرماپی بر غلتکه‌های راهنما بر فرآیند نورد حلقه است.

ویژگی‌ها: خنثی‌گر، روش اجزای محدود، غلتکه‌های راهنما، مدل‌های اکرماپی.

Ring Rolling FE Analysis in The Presence of the Guide Rolls

M.R. Forouzan, M. Salimi and M.S. Gadala
Mechanical Engineering Department, IUT, Esfahan, Iran
Mechanical Engineering department, UBC, Vancouver, BC, Canada

Abstract A new method (thermal spokes) is proposed to simulate the guide rolls in FE analysis of the ring rolling process. So far this method is the only one, capable of calculating guide rolls reaction contact forces related to the stiffness of their adjustment mechanism. The method is simple to use, does not introduce further nonlinearities and could be used in any kind of FE formulations. The method is successfully employed in FE analysis of rectangular and T-section rolls. The results of the thermal spokes method, a new analytical method based on lever arm principle with experimental results are in good agreements. This analysis shows that the guide rolls greatly affect the process.

Keywords: Ring rolling, finite element method, guide rolls, thermal spokes.
شماره ماهوری را نمایش می‌دهد. شیاری که در مندل ایجاد شده بابت می‌شود که با پیشروی فراگرد، ماده به داخل شیار جریان آب و مقطع حلقوی خام از داخل مستطیلی به حالت T شکل تغییر کند که با استحکام بینشت محصول در مقابل بارگذاری خمیش می‌شود.

نورد حلقوی اولین بار در سال 1842 در انگلستان به منظور تهیه ریگ بلانژ چرخ قطر به کار گرفته شد. اما علی‌رغم قدمت آن، پیچ و دکل فراورد باعث شده تا جهیزیکی از تطبیق‌های نظری کلیشه‌شناس: تحلیل‌های کالسیک و خطوط لغزش [2, 7], روش بایلی [8], روش وریزی [9] با مطالعات عمومی هیل [10] قادر به تحمل کلیه جوانان این فراورده‌های مجموعی نظری در فرمول‌بندی فراورد حلقه به روش اجزای محدود وجود ندارد و شیب‌سازی فراورد بی‌دست اعمال فرضیات خاصی حتی با استفاده از ریزانهای امروزی نیز ممکن است. شیار که با طول خواده ایجاد می‌شود، در ادامه یک امکان است: هنگام سپیدن قطعه کار و ابراز که استخراج از مندلی هستند، باید نزدیک به سطح حلقوی ماشین به کمک اصطلاحات مسیر مسیر بررسی کرد.

استقلال، سال 21، شماره 3، اسفند 1381

۹۴
وی فیزاده‌ها را در هر یک گردو حلقه به دور خود دانست و این کرد.
تفهیم فشار شکن نسبتاً بلافاصله اختیار می‌شود که گاهی می‌بایست
دوایر داخلی و خارجی قرص اولیه کاملاً ممکن باشد. همین‌طور، در
تامین به خارج شدن از دستگاه را دارد. آن‌ها از انتقال قطر و
کاهش ضخامت، حلقو شیبیت خود را در مقابل پاره‌ای خمشی
از دست میدهند. پس از این‌گونه، فشار سیستم کنترل به
آهستگی کمتری می‌شود تا ابعاد و خروجی حلقو در مراحل
پایانی شود(۳۴).

۳-اصلاح نظریه پازوی هرز

۳-۱-نظریه پازوی هرز

شماتیک از شکل حلقو در اندکیش آن با استمرار و فلکش
اسی تشکیل داده می‌شود. در شکل(۳-۱) نمایش داده
شده است. بردارهای V و W نمایشگر برای نرخ‌های استمراری
از طرف فلکش اصلی و باردار به حلقو ان. این باردار حکم
محور عضو هرز است نی نیچ گشتاور تحمیل کننده بر شیار
آهستگی (۳۳) نمایشگر برای نرخ‌های استمراری (نقاط)
ضرر است، پس انتگرد W با دانستن توزیع فشار در دهنده فلکش
مشخص می‌شود. به علائم از آن دنیا یک نیرو وارد از طرف
فلکش راهنما به حلقو در مساوی با نرخ‌های استمراری
عبارت کرک است(۳۲). نظریه پازوی هرز، معادله تصادف حلقو را به
صورت زیر بیان می‌کند:

\[L_1 = L_2 \]

در این صورت برای این کل توانانشتهای وارد بر فلکش اصلی به
حلقو (W)، می‌باشد. محاسبه و در بک انتگرد با ها
است. با دن نظر گرفتن نمودار آزاد فلکش اصلی گشتابار
لایه نورد به صورت زیر به دست می‌آید:

\[T = L_1 \Delta \theta \]

که در آن W پازوی گشتابار گری است.

۳-۲-اصلاح نظریه پازوی هرز

در شکل (۳-۲) نسبت کاهش ضخامت بر اثر این
عمل اختیار شده تا تصمیم شود که از آن‌ها استفاده یا
لایه اصلی می‌شود.
شکل ۲- اثر ظلکه‌های راهنما در اصلاح نظریه بازوی هرز

- تامین ظلکه‌ها و حلقه‌های توجه به فرضیات نظریه بازوی هرز
- چگونگی اعمال نیروی از طرف ظلکه‌های راهنما در ضایعات ویدئو

سطح فشار وارد بر حلقه از طرف ظلکه اصلی نسبی گذرد.

مجدداً از بیو‌کره یک برون نیروی تناسب ظلکه‌های راهنما.

معادله (۱) را صادقی فرض می‌کنیم. با این تفاوت که این بار L_1 به سایر L_2 و موارد و موارد وارد نشسته‌اند در اینجا M به واسطه وجود فاصله و بین راستای این دو نیرو و به صورت زیر تعریف می‌شود:

$$M = \frac{MA_1L_1a_2}{\text{یک چه در حالت واقعی فاصله به بیو کره یک}}$$

مانند M مقدار تلفیز دارد که با نیروی بزرگ است. در شکل (۲) این مان تلفیز به بزرگ‌ترین ساختار حلقه را دارد. به‌دست است این تلفیز مانند با وجود ظلکه‌ای راهنما بفردا می‌شود. این اکنون این ایده‌السیم ظلکه‌های راهنما

را در نظر می‌گیریم. در چنین حالتی ظلکه‌های راهنما حداکثر نیروی لأزم برای ایجاد تناسب در سیستم را اعمال می‌کنند. همان طور که در شکل (۲) نمایش داده شده ظلکه‌های این مجموعه چپ با اعمال نیروی L_1 زا نابود حلقه به واسطه وجود مان

جوگوری می‌کند. از معادله تعادل مان حول مرکز خروجی

$$L_1 + L_2 + L_3 = L_4$$

$$M = \frac{MA_1L_1a_2}{\text{یک چه در حالت واقعی فاصله به بیو کره یک}}$$
با معلوم بودن نرخ تحتی پارامتر جدیدی به نام تحتی به ازای هر دور گرداشته حلقه را می‌توان به صورت زیر تعریف کرد:

\[\Delta H = \Delta h = k_1 + k_2 \]

با توجه به افتالاف نامی که \(k_2 \) و \(k_1 \) نسبت به ضخامت حلقه \(h \) می‌توان نوشت:

\[k_1 = k_2 = \frac{\Delta h}{2} = \frac{H - h}{2} \]

مرجع [25] نقله‌ای ثروتمندانی \(I_1 \) و \(I_2 \) را مرکز کمیابی \(C_0 \) در می‌داند. لذا فاصله \(a_2 \) بر حسب پارامترهای \(I_1 \) و \(I_2 \) محاسبه است:

\[a_2 = \frac{C_0 (r + h) - C_0}{2r} \]

معمولاً اختلاف \(a_2 \) و \(C_0 \) نیز قابل اغضاب است [26], به این صورت معادله (14) به فرمی تقلیل می‌یابد که اثر پارامترهای مختلف در بازار گسترای ایستا (A0) به شکل واضحی قابل تشخیص است:

\[a_2 = \frac{HC}{2r} \]

که در آن \(C \) طول تمام حلقه و \(H \) اصلی یا ساندر است:

\[C = \frac{(R_m + \frac{h}{2} - R^2 - (R + \frac{h}{2} + R_m)^2)^{\frac{1}{2}}}{2(R + \frac{h}{2} + R_m)} \]

از تلفیق معادله‌ای اخیر با معادله (4) نیروی غلظ‌های راهش ماشینه می‌شود:

\[L_3 = \frac{HC}{2a_3} \]

که در آن \(L \) نیروی نورد است.

بر اساس معادلات بالا طول نمایی حلقه و ماندرل یا غلظ‌های

اصلی که به ترتیب با \(C_0 \) و \(C_1 \) تعیین داده می‌شوند به صورت زیر تعریف می‌شوند:

\[R(x, y) = x^2 + (y - R - \frac{h}{2})^2 - R^2 = 0 \]
\[L(x, y) = x^2 + (y + R_m)^2 - (R + \frac{h}{2} + k)^2 = 0 \]
\[L(x, y) = x^2 + (y + \frac{h}{2} + r)^2 - R^2 = 0 \]
\[L_1(x, y) = x^2 + (y + R_m)^2 - (R - \frac{h}{2} - k)^2 = 0 \]

در صورتی که نورد بدون کمک غلظ‌های راهشما به انجام تمایل به کم کردن حلقه به مدت فضایی رنگ

\[\text{استنلای، سال} 21، \text{شهرما 2} \]
جدول 1- مشخصات نورد، حلقه‌های آلومینیومی

<table>
<thead>
<tr>
<th>ماده</th>
<th>سرعت دورانی حلک اصلی</th>
<th>نرخ تغذیه</th>
<th>قطر حلک اصلی</th>
<th>قطر ماندرل</th>
<th>قطر خارجی قرص اولیه</th>
<th>قطر داخلی قرص اولیه</th>
<th>ضخامت شعاعی قرص اولیه (ارتفاع)</th>
<th>ضخامت محوری قرص اولیه (پیچ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum-alloy HE 30 (0.8 % Mg, 1% Si, 0.7% Mn)</td>
<td>0.15 (in/rev)</td>
<td>9 (in)</td>
<td>2/75 (in)</td>
<td>1 (in)</td>
<td>3 (in)</td>
<td>1 (in)</td>
<td>1 (in)</td>
<td></td>
</tr>
</tbody>
</table>

 حول مرکز دهانه خروجی نورد قرار گرفته و در این می‌باشد (5). وضعیت کفی سطوح نورد را در حضور و در اندازهای فلتکه‌های راهنمای متفاوت. این شکل نشان می‌دهد که با حذف فلتکه‌های راهنمای شعاعی نیروی حلقه و فلتکه اصلی به سمت ورودی دهانه و ناحیه نماس حلقه و ماندرل به سمت خروجی حلقه می‌گردد. لذا می‌توان نتیجه گرفت که:

\[
\frac{a_0}{a_1} > \frac{r_0}{r_1}
\]

که در آن \(a_0\) و \(a_1\) طبق شکل (لاچی) تعیین می‌شوند و \(r_0\) و \(r_1\) کل بزرگ‌ترین هز در خیابان فلتکه‌ای راهنمایی به منظور میانگین نظری به‌طور کلی آزمایش نمونه‌ای از نتایج آزمایش پیش انجام گیری می‌شود که توسط معنی‌های

[5] به‌طور رسمی در شکل(1) می‌باشد. شکل کاملی از روش و دستگاه آزمایشی در مرجع [4] موجود است. خلاصه‌ای از شرایط نورد نیز در جدول (1) فهرست شده است. بر این مبنای اصلی تشخیص شده در نظریه اصلی شده به‌طور هر مربوط به در جدول (2) می‌باشد. شکل است. از آنجایی که قابلیت \(a_0\) یعنی به‌طور کلی مانگ کریف فلتکه‌های راهنمای قابلیت‌های مناسبی برای شعاعی نزدیکش باید این باز را برابر با نوری‌های لکه‌ها یا \(L_2\) امتداز شود. از آنجایی که خط راهنمایی ماندرل و فلتکه اصلی گزارش شده که می‌توان حلقه را در دو مراحل یک درون صلب

![شکل 5- وضعیت کفی سطوح نماس هنگام حضور و هنگام غیبت فلتکه‌های راهنمای را دارد. در این صورت ناحیه دگرگیری حلقه و اندازه تغییر یکینگدار و حلقه را جایی که می‌تواند که نیروهای \(L_1\) و \(L_2\) امتداز شود. از آنجایی که حلقه بین ماندرل و فلتکه اصلی گزارش گرخته شده که می‌توان حلقه را در مراحل یک درون صلب 1381

استقلال، سال 21، شماره 2، اسفند 1381
جدول ۲- بررسی اطلاعات تجربی مرحله [۸] بر مبنای نظریه اصلاح شده پاژوزی هرز

| شماره | نسبت کاهش ضخامت (%) | نسبت نیروی غلظت‌های راهنمای | مقدار لوله غلظت‌های راهنمای | انتهای همه‌پوست | شماره لوله غلظت‌های راهنمای | نسبت بار میدان | نسبت بار میدان کل
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۱۷</td>
<td>۸۷۰۵۰</td>
<td>۸۷۱۷۰</td>
<td>۸۷۱۷۰</td>
<td>۸۷۱۷۰</td>
<td>۸۷۱۷۰</td>
<td>۸۷۱۷۰</td>
</tr>
<tr>
<td>۲</td>
<td>۱۸۸۸</td>
<td>۸۵۷۹۰</td>
<td>۸۵۷۹۰</td>
<td>۸۵۷۹۰</td>
<td>۸۵۷۹۰</td>
<td>۸۵۷۹۰</td>
<td>۸۵۷۹۰</td>
</tr>
<tr>
<td>۳</td>
<td>۳/۴۲۶</td>
<td>۲/۳۴۶۰</td>
<td>۲/۳۴۶۰</td>
<td>۲/۳۴۶۰</td>
<td>۲/۳۴۶۰</td>
<td>۲/۳۴۶۰</td>
<td>۲/۳۴۶۰</td>
</tr>
<tr>
<td>۴</td>
<td>۷/۸۱</td>
<td>۲/۸۱۰۶</td>
<td>۲/۸۱۰۶</td>
<td>۲/۸۱۰۶</td>
<td>۲/۸۱۰۶</td>
<td>۲/۸۱۰۶</td>
<td>۲/۸۱۰۶</td>
</tr>
<tr>
<td>۵</td>
<td>۱۰/۲۰</td>
<td>۹/۱۲۰۰</td>
<td>۹/۱۲۰۰</td>
<td>۹/۱۲۰۰</td>
<td>۹/۱۲۰۰</td>
<td>۹/۱۲۰۰</td>
<td>۹/۱۲۰۰</td>
</tr>
<tr>
<td>۶</td>
<td>۱۰/۵۵</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
</tr>
<tr>
<td>۷</td>
<td>۱۰/۵۵</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
</tr>
<tr>
<td>۸</td>
<td>۱۰/۵۵</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
</tr>
<tr>
<td>۹</td>
<td>۱۰/۵۵</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۰/۵۵</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱۰/۵۵</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
<td>۸/۱۱۰۰</td>
</tr>
</tbody>
</table>

شکل ۱- نمونه‌ای از نتایج آزمایش نسبت بار میدان در هر لحظه

۴- شیب‌سازی اجزای محدود غلظت‌های راهنما

نیروی غلظت‌های راهنما به قدری کریک از کجات اثرات محسن شده است که اثرات محسون آنها باید یک‌نفر یا یک‌نفر کاری کرده‌ایست که غلظت‌های راهنما با یک‌نفر و یک‌نفر کاری کرده و با یک‌نفر راهنما با یک‌نفر کاری کرده و با یک‌نفر نمایش داده شده. تکنیک میدانی کریک‌های نشانه‌ای است که می‌تواند بارفتگی اجزای محدود که قادر است تأثیر غلظت‌های راهنما را در جلوگیری از آن‌ها کمک کند. در این روش، غلظت‌های راهنما با میدانی نشانه‌ای میدانی نشانه‌ای شونده آن‌ها که دقیقاً ۷ نماش داده شده، ملزومات اصلی این روش می‌باشد اند:

از تعریف یک گره اضافی در مرکز فرض اولیه.

نتیجه‌ی بین‌هار۴۲۲۲ نمایش نوردها در هر لحظه

۹۸

استفاده، سال ۳۱، شماره ۲، اسفند ۱۳۸۱
شکل 7- مدل‌های اصلی روش میله‌های گرمايی (TS-FEM)

- تمرین المان‌های میله‌ای بین گره مکزیکی و گرمايی مستقیم بر تار مکزیکی حلقه. این المانها ارتجاعی بوده و اثرات مربوط به کمیت پیش‌دراکن در آنها تمرین نشده. تار مکزیکی حلقه عبارت است از تاری که در حلقه شروع نورد بر قطر متوسط حلقه عمودی است.

- اعمال ورود به میله دیگری به زمان بندی گرمايی که انبساط ناشی از تخلیه حرارتی می‌باشد. تار مکزیکی حلقه به دو دسته تقسیم می‌شود: 1. نوردی به کمک جریان الکتریکی و 2. نوردی به دست آورد به تاریکی که در حلقه شروع نورد بر قطر متوسط حلقه عمودی است.

- اعمال ورود به میله دیگری به زمان بندی گرمايی به حرفه که کمک جریان الکتریکی در حلقه شروع نورد بر قطر ماکزیکی حلقه به دو دسته تقسیم می‌شود: 1. نوردی به کمک جریان الکتریکی و 2. نوردی به دست آورد به تاریکی که در حلقه شروع نورد بر قطر متوسط حلقه عمودی است.
شکل 8- تغییر شکل المانها و ایسته بر حسب کاهش ضخامت

شکل 9- موقعیت نهایی حلقه: a - مجموعه A0 b - مجموعه A10

دوم تا چهارم به ترتیب A0 و A10 نامگذاری می‌شوند. هر یک از مدل‌ها شامل ۱۳۰ میل‌جراحی هستند که با اتصال گره‌های واقع در تقاطع اضلاع المان‌های تار مبنا حلقه به گره مرکزی تعریف می‌شوند.

شکل 8- نحوه تغییر شکل المانها بر حسب نسبت کاهش ضخامت اعمال شده را نشان می‌دهد. امکان پیش‌بینی شده است.
شکل 10 - توزیع فشار بین حلقه و فلکه‌ای کار

(Reduction = 45\%)

شکل 11 - نقاط دیدار و وداع بین حلقه و فلکه‌ای کار

(b) نقاط انتخاب ماس بین حلقه و مانندل

(d) نقاط انتخاب ماس بین حلقه و فلکه‌ای کار

در حلقه‌ها و این فلکه‌ها در شکل (11) تصویر شده، همان طور که با استفاده از شکل (5) استفاده شد مشاهده می‌شود که با انرژی خروجی سختی می‌باشد که به مدت کار در مرزهای حلقه‌ای است، ناحیه شکل‌های مختلف و حلقه‌های همبسته به جهت توزیع قدرت این فلکه‌های کار و حلقه را تصویر می‌كند. نقاط دیدار و وداع

می‌دهد مشاهده می‌شود که حدم و وجود فلکه‌های راهنمای مجموعه 40 باعث کمیابی حلقه شده است. بنابراین داده‌اند که این کمیابی ناحیه در کسری حلقه و ابراز را تغییر دهد. شکل (10) نمونه‌ای از منحنی‌های توزیع فشار بین

فلکه‌ای کار و حلقه را تصویر می‌کند. نقاط دیدار و وداع

استقلال سال 31، شماره 2، اسفند 1381
دیدگر می‌توان ملاحظه کرد که با بالا رفتن نسبت کاهش ضخامت نزایی دریگره‌های مجموعه‌های مختلف به یک‌دیگر نزدیکتر می‌شوند که این امر آنچنان که معتقد می‌باشد.

(17) پیش بینی می‌کند حاکی از کاهش نسبی حلقه به چکش‌دهن است.

شکل‌های (12) و (13) نیروی نورد و گشتاور مجموعه‌های اجزای محصولی A0 تا A10 را مقایسه می‌کند. در این شکل‌ها به‌هیچ‌جوار جمله‌ای مکنن از نقطه محسوب شده گذرانده‌شده‌اند نمایش به‌پهنا و سری دو اطلاعات مربوط به آزمایش‌ها نیز از جدول (1) اخذ شده تا امکان مقایسه آن با حالت درودید فرآورده شود. از بررسی نتایج ملاحظه می‌شود که موجود

غلطگاه‌های راهنما تا 14 درصد مقادیر محسوب شده نیروی نورد را افزایش داده است. همچنین انطباق بسیار خوبی که بین نتایج آزمایش‌ها و شبیه‌سازی‌ها مراحل پایانی مشاهده می‌شود حاکی از عدم تأثیر افزایش احتمالی خطا در اثر ابعاد‌جهات شدیدت

المات است که در مراحل پایانی مشاهده می‌شود. در عرض،

آزمایش‌های نیروی نورد گشتاور غلتگاه اصلی در شروع

فرآیند حدود 10 درصد کاهش یافته است از آن‌جایی که از مصرفی در این فرآیند از طریق گشتاور غلتگک اصلی تامین

شکل 12- نیروی نورد

شکل 13- گشتاور نورد

می‌شود این امر نشان می‌دهد که استفاده از غلتکه‌ها راهنما موجب به کاهش مصرف انرژی می‌شود. بر اساس نظریه اصلاح

شهبازی هر کاهش یک گشتاور مناسب با کاهش بارزی فعال گشتاورگیری می‌باشد اما این گشتاور در ارتباط با میزان

مان ایستای M است. از طرف مشخص شد که با کاهش

ضخامت شش‌ای بار و مان ایستا کمتر می‌شود، لذا باید

انظار داشت که با پیش‌تری فرآیند، چکش‌دهن حلقه در تعیین

بازی گشتاور خالق قندیلی باری نکند. به همین سبب

در شکل (13) مشاهده می‌شود که هر چند گشتاور نورد تا

حدود 30 درصد نسبت کاهش ضخامت، حلقی مقدار بین 8

مجموعی مورد مطالعه دارایت اما مقدار این گشتاور در

حدود 50 درصد نسبت کاهش ضخامت از هر در مورد دیگر

بهتر است که به همان طور که انتظار می‌رود این ایجاد

متانسب با افزایش مشاهده شده در نیروی نورد است."
هگمی که از روش مدل‌های گرمسایی در مدلسازی غلظت‌های راهنما استفاده کنیم، دیده که فاصله عمودی نسبی عکس عمل گرمکی راهنما است. بنابراین نیروی غلظت‌های راهنما محاسبه شده در سطح مکانی (2) قابل مقایسه با نیروی عکس عمل گرمکی راهنما در روش مدل‌های گرمسایی است. این نیروها در شکل (15) تصویر شده‌اند. هنگامی که میله‌ای تعیین نشده، عکس عمل در گرمکی صفر است. بنابراین برای مجموعه A0 حداکثر چسبین حلقه اتفاق می‌افتد. عکس عمل گرمکی در مجموعه A1 نشان می‌دهد که حدوداً 18 نیرون به ازای یک حرکت نیرو در گرمکی ایجاد شده، این نیرو تا حد زیادی از چسبیدن حلقه جلوگیری می‌کند. هنگامی که میله‌ای به 10 بارکبی قسمت تقریباً چسبیده به صفحه می‌رسد و نیروی ایجاد شده در این حالت 2/1 درب حالت قابل است. حال اگر میله‌ها را 100 بارکبی به طور مطلوب تیغ خاصی در مرز کشیدن حلقه اتفاق نماید و آنچنان که انتظار می‌رود نیروی گرمکی محاسبه شده از مجموعه‌های A0 و A10 تقریباً یکسان کنند. انتخاب تاییدیه مؤثر A10 و A100 فقط در سطح اولین تشخیص است به طوری که در کلیه شکل‌های قبلی پاسخ‌های مجموعه A100 تقریباً بر

شکل 14- گشایش نورد در مراحل ابتدا

شکل 10- نیرو در غلظت‌های راهنما

پاسخ‌های مجموعه A10 منطبق است. طبیعتی که در ماده (17) مشاهده شد در هر سه این منحنی‌ها مشاهده می‌شود. بدلیلاً معنی که نیروی غلظت‌های راهنما با پیشرفت فرآیند کاهش می‌یابد. نکته حائز اهمیت انعطاق پیشرفت خوب تابع مجموعه A1 و تراپیآزیشها است و این نیروهای در شکل (15) تصویر شده‌اند. هنگامی که میله‌ای تعیین نشده، عکس عمل در گرمکی صفر است. بنابراین برای مجموعه A0 حداکثر چسبین حلقه اتفاق می‌افتد. عکس عمل گرمکی در مجموعه A1 نشان می‌دهد که حدوداً 18 نیرون به ازای یک حرکت نیرو در گرمکی ایجاد شده، این نیرو تا حد زیادی از چسبیدن حلقه جلوگیری می‌کند. هنگامی که میله‌ای به 10 بارکبی قسمت تقریباً چسبیده به صفحه می‌رسد و نیروی ایجاد شده در این حالت 2/1 درب حالت قابل است. حال اگر میله‌ها را 100 بارکبی به طور مطلوب تیغ خاصی در مرز کشیدن حلقه اتفاق نماید و آنچنان که انتظار می‌رود نیروی گرمکی محاسبه شده از مجموعه‌های A0 و A10 تقریباً یکسان کنند. انتخاب تاییدیه مؤثر A10 و A100 فقط در سطح اولین تشخیص است به طوری که در کلیه شکل‌های قبلی پاسخ‌های مجموعه A100 تقریباً بر

استقلال، سال 21، شماره 2، اسفند 1381

103
<table>
<thead>
<tr>
<th>مشخصات اندازه‌گیری</th>
<th>شکل مقطع محوطه‌نهایی</th>
<th>سطحی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مشخصات هندسی رایج و غلظت اصلی</td>
<td>مشخصات هندسی ماندارل</td>
<td>مشخصات تحریک</td>
</tr>
<tr>
<td>قطر (in)</td>
<td>نسبت پیش‌گرفته به پهنای (h/Ho)</td>
<td>نرخ تغذیه (in/rev)</td>
</tr>
<tr>
<td>2/75</td>
<td>0/25</td>
<td>31</td>
</tr>
<tr>
<td>2/75</td>
<td>31</td>
<td>6/1</td>
</tr>
<tr>
<td>36</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>تعداد المانهای هدف</td>
<td>تعداد المانهای ملهای</td>
<td>تعداد المانهای تعمیمی</td>
</tr>
<tr>
<td>446</td>
<td>360</td>
<td>700</td>
</tr>
<tr>
<td>660</td>
<td>360</td>
<td>600</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0/500</td>
<td>0/400</td>
<td>0/280</td>
</tr>
<tr>
<td>تعداد کل المانها</td>
<td>تعداد کل المانها</td>
<td>تعداد کل گره‌ها</td>
</tr>
<tr>
<td>5162</td>
<td>4824</td>
<td>5283</td>
</tr>
<tr>
<td>8842</td>
<td>5283</td>
<td>5162</td>
</tr>
</tbody>
</table>

مورد نشان می‌دهد که سختی مورد نیاز برای میله‌های گرمای بسیار جزئی است و این میله‌ها ظریف‌تر از آن سختی که با انسک پل‌برداری جرگه‌ای که یا تا پایین یا عالی به‌گونه‌ی آن بکدلاند، نتایج این افزایش سختی می‌دهد که اگر سختی ملهای به‌هیچ‌یک از پایه‌ها قرار نگرفته باشد که از کن کند حلقه جرگه‌ی کن جا‌بایند سختی میله‌های تا پایین به‌طور نتیجه‌ای می‌باشد به علت تغییر در قوی‌ترین سختی خروج گرهر متشکل به مدل از ناحیه تغییر شکل خواهد بود.

5-3 مدل آزمایش محدود سه‌بعدی

به مرجع شیب‌شانزه نورد قله‌های پر‌آبی در حالات داغ، به مرحله‌ای است. میدان آزمایش‌های متعددی بر روی آن‌ها گروه‌های ۴۳ در دامی می‌باشد به‌طور انجام رسیده است. مثال فرآیند داغی مشکله‌ای مدل

استحلا / سال 21، شماره 2، استاد 1381
شکل ۱۷- الگوریتم شبیه‌سازی پارامتری در محاسبه مایه‌ای گرماگیری

بندی در مقطع حل‌های را نشان می‌دهد. المان‌های آری و یا گرمی مثبت‌تر از درون این مقطع حموله محور اولیه حل‌های در کامپیوتر به اندازه ۲ درجه حرارت می‌شوند. هر چه مشخصات این المان‌ها را می‌زیست، [۲۲] تحت تخت عناوین سیالات مشخص و بین عمود Solid به این المان به منظور کاهش احتمال برروز قفل حجمی از نرم‌افزار روش انگرال کری که نیکان انتخاب تحت عنوان روش استفاده شده است [۲۷]. اگر نیز به صورت استاتیکی سلبه تنش المان‌های محدود این شده است. در مورد حلقه با مقطع ۲، اگر سطح حل‌های محدب به مانند به نیاز نصف عرض شیار از صباح نقل و نقلیه در نظر گرفته و در داخل شیار با میدان درونی به سطح داخلی و خارجی حل‌های المان‌های تام تریف شده‌اند. این شش‌چاهی که مطمئناً به داخل شیار تشکیل می‌گردد، از این قاعدگی مستقل است. در هر دو محاکه بر رفت و آماده‌سازی شده در حالت این شیار تام در نظر گرفته شده، که نتواند المان‌ها را تغییر می‌دهد. در هر دو محاکه بر رفت و آماده‌سازی شده در حالت این شیار تام در نظر گرفته شده، که نتواند المان‌ها را تغییر می‌دهد. در هر دو محاکه بر رفت و آماده‌سازی شده در حالت این شیار تام در نظر گرفته شده، که نتواند المان‌ها را تغییر می‌دهد. در هر دو محاکه بر رفت و آماده‌سازی شده در حالت این شیار تام در نظر گرفته شده، که نتواند المان‌ها را تغییر می‌دهد.

شکل ۲۲- مقطع‌های تابع حل‌های حل‌های

۴-۵- تعیین دما برای شبیه‌سازی مدل‌های سبدی در باخ و قیمت حسی در منطقه راهنمایی برای مهندسین
راه اندازی مجدد سطح برای هر گام پیشرفت انجام است. تعیین
پرودهای مناسب اهمیت زیادی دارد. در سرعت های مرسوم
مطالعه سختی میله‌ها به قدری اندک است که حتی در صورت
1 میلی‌متر خط دیده بینی می‌شود. ما می‌توانیم به
شماره 20 ناحیه در حلقوی ایجاد می‌شود. لذا کل هر 300 گام بارگذاری
بقیه اعضا هستند. این ناحیه قطر حلقوی در ابتدا فرابند
کمتر، اولین گام برحسب زمان حقيقی جه / 20 ثانیه و
آخرین گام / 10 ثانیه در نظر گرفته شده است.

به طور مثال زمان حقيقی، بین زمان ادامه فرابند حین از آزمایش برای اعمال 45 درصد نسبت کامی ضخامت به مقطع 2 گام / 10 ثانیه است.

* که بار شیب‌سازی آن توسط کرک رایانه به مشخصات کلی (PentiumIII, 1GHZ) (44 روز به طول می‌گیرد، به‌طور متوسط 2 روز یک دوره، با در نظر گرفتن گام بارگذاری حدید برای سالهای تعریف شده.

شماره 21، سال 1381
شکل 20: تمریض در حلقه با مقطع مستطیلی

- متوسط تمریض ۶- تمریض در لاپاروپن ۵- تمریض در لاپاروپن ۴- تمریض در لاپاروپن

شکل 21: تمریض در حلقه با مقطع T شکل

- متوسط تمریض ۶- تمریض در لاپاروپن، بینایی و پایینی

همان طور که ملاحظه می‌شود، این مدل در بررسی افزایش نرمال و تمریض، چگالی پایین مش در حوالی شیار مانع از محاسبه دقیق نیروهای پر شدن شیار شده است. برای اجتاف از افزایش هریتی های محاسباتی در این خصوص

شکل (22): شکل الماهی در مقطع حلقه حاکم را نشان می‌دهد.
مدل‌های جدید تمایل به شکل که ابدهی اصلی آن کاهش چگالی می‌شود، به بدن حلقه‌ها و انقباض آن در حوالی شیار است. [17] شکل (22) توزیع نشان می‌دهد. افزایش در حوالی شکاف بین گلکسی‌ها، ممکن است به این ترتیب تغییر می‌دهد. غلظت‌های باز در اینجا، غلظت‌های خمشی ناشی از گاز گرفتن حلقه‌ها بین گلکسی‌ها هم کار است.

- ترجمه گیری
مقایسه نتایج شبیه‌سازی‌های اجرای حضور نشان می‌دهد که کشش حلقه باعث تغییر در ناحیه درگیری حلقه و ابزار می‌شود و به تبع آن کلیه پارامترها‌های منجمله نیرو، کشتن و تغییر تغییر می‌کند. روش شبیه‌سازی گرمایی به ما کمک می‌کند تا شبیه‌سازی‌های غیر خطی سلسله ترکیبی و مفهومی پیچیده‌گی مکانیزم تغییر جزئی و هم‌زمان با حلقه و همچنین پیچیدگی مکانیزم تغییر در طول این غلظت‌های راهنا با حلقه و همچنین پیچیدگی مکانیزم تغییر در طول این غلظت‌های راهنا با حلقه و همچنین پیچیدگی مکانیزم تغییر

108

استقلال، سال 31، شماره 2، اسفند 1381
شیب‌سازی کننده، این روش اولین و تنها روشی است که به‌طور مستقیم بر روی سطح، می‌تواند با استفاده از روش‌های مختلفی انجام شود.

1- thermal spokes
2- closed pass rolling
3- feed rate
4- roll gap
5- collapse
6- deformation zone
7- reduction
8- tilting
9- circularity (opposite of ovality)
10- bar or truss elements

11- target elements
12- contact elements
13- time steps
14- augmented-Lagrange multiplier method
15- ovality
16- tellurium lead
17- Peirce
18- spread
19- groove
20- parametric simulation

استناد: سال 21، شماره 2، اسفند

